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IntroductionIntroduction
• Short-Term Objectives

• Long-Term Objectives

• Prerequisite

Introduce Quantum Computing Basics to interested students at KAIST.
Especially non-physics students

Engage into AI/CS/Math Research projects benefiting from Quantum
Computing. Continue our previous projects in quantum computing

-  No linear algebra or quantum mechanics assumed
-  A ECE, math, physics or CS background would be
beneficial, practically-oriented class.



IntroductionIntroduction

• MainTextbook
Quantum Computation
&
Quantum Information

Michael A. Nielsen
Isaac L. Chuang

ISBN:  0 521 63503 9
Paperback
ISBN:  0 521 63235 8  Hardback

Cost: $48.00 New Paperback
$35.45 Used Paperback

(http://www.amazon.com)
also in KAIST bookstore



Presentation OverviewPresentation Overview
Qubits

Quantum
Computation

Quantum
Circuits

Quantum
Algorithms

Quantum
Information
Processing

1 Qubit -> Bloch Sphere,
2 Qubits -> Bell States,
n Qubits

Gates:  Single Qubit, Arbitrary Single Qubit -> Universal
Quantum Gates, Multiple Qubit Gates -> CNOT
Other Computational Bases
Qubit Swap Circuit
Qubit Copying Circuit
Bell State Circuit -> Quantum Teleportation
Toffoli Gate -> Quantum Parallelism -> Hadamard Transform
Deutsch's Algorithm, Deutsch-Josa Algorithm
Other Algorithms
     – Fourier Transform, Quantum Search, Quantum
Simulation

Stern-Gerlach, Optical Techniques, Traps, NMR, Quantum
Dots



Historical Background and LinksHistorical Background and Links
Quantum 

Computation
&

Quantum
Information

Computer
Science

Information
Theory

Cryptography
Quantum

Mechanics

Study of information
processing tasks that can
be accomplished using
quantum mechanical
systems

Digital 
Design



What will be
discussed?

• Background

• Quantum circuits synthesis and algorithms

•  Quantum circuits simulation

• Quantum Computation

• AI for quantum computation

• Quantum computation for AI

•  Quantum logic emulation and evolvable hardware

•  Quantum circuits verification

•  Quantum-based robot control



What is quantumWhat is quantum
computation?computation?

• Computation with coherent atomic-scale
dynamics.

• The behavior of a quantum computer is
governed by the laws of quantum
mechanics.



Why bother with quantumWhy bother with quantum
computation?computation?

•  Moore’s Law: We hit the quantum level
2010~2020.
•  Quantum computation is more powerful
than classical computation.
•  More can be computed in less time—the
complexity classes are different!



The power of quantumThe power of quantum
computationcomputation

• In quantum systems possibilities count,
even if they never happen!

• Each of exponentially many possibilities
can be used to perform a part of a
computation at the same time.



Nobody understands quantumNobody understands quantum
mechanicsmechanics

“No, you’re not going to be able to understand it. . .
. You see, my physics students don’t understand it
either. That is because I don’t understand it.
Nobody does. ... The theory of quantum
electrodynamics describes Nature as absurd from
the point of view of common sense. And it agrees
fully with an experiment. So I hope that you can
accept Nature as She is -- absurd.

Richard Feynman



Absurd but taken seriously (not justAbsurd but taken seriously (not just
quantum mechanics but alsoquantum mechanics but also

quantum computation)quantum computation)

•  Under active investigation by many of the top
physics labs around the world (including CalTech,
MIT, AT&T, Stanford, Los Alamos, UCLA, Oxford,
l’Université de Montréal, University of Innsbruck,
IBM Research . . .)

• In the mass media (including The New York Times,
The Economist, American Scientist, Scientific
American, . . .)

• Here.





A beam splitterA beam splitter

Half of the photons leaving the light source arrive at
detector A;
the other half arrive at detector B.



A beam-splitterA beam-splitter
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The simplest explanation is that the beam-splitter
acts as a classical coin-flip, randomly sending each
photon one way or the other.



An interferometerAn interferometer

• Equal path lengths, rigid mirrors.
• Only one photon in the apparatus at a time.
• All photons leaving the source arrive at B.
•     WHY?



Possibilities countPossibilities count

• There is a quantity that we’ll call the “amplitude” for each
possible path that a photon can take.

• The amplitudes can interfere constructively and destructively,
even though each photon takes only one path.

• The amplitudes at detector A interfere destructively; those at
detector B interfere constructively.



Calculating interferenceCalculating interference
• Arrows for each possibility.
• Arrows rotate; speed depends on frequency.
• Arrows flip 180o at mirrors, rotate 90o counter-clockwise

when reflected from beam splitters.
• Add arrows and square the length of the result to determine

the probability for any possibility.



Double slit interferenceDouble slit interference



Quantum Interference : AmplitudesQuantum Interference : Amplitudes
are added and not intensities !are added and not intensities !



Interference in the interferometerInterference in the interferometer



Quantum InterferenceQuantum Interference
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The simplest explanation must be wrong, since it
would predict a 50-50 distribution.



More experimental dataMore experimental data
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Probability Amplitude andProbability Amplitude and
MeasurementMeasurement
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Quantum OperationsQuantum Operations
The operations are induced by the apparatus linearly,
that is, if

and
then
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Quantum OperationsQuantum Operations

Any linear operation that takes states
satisfying

and maps them to states
satisfying

must be UNITARY
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Linear AlgebraLinear Algebra
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Linear AlgebraLinear Algebra
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Linear AlgebraLinear Algebra



















2
i

2
1

2
1

2
i

corresponds to

corresponds to
ϕ 








ϕie0

01



Linear AlgebraLinear Algebra
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AbstractionAbstraction
The two position states of a photon in a
Mach-Zehnder apparatus is just one
example of a quantum bit or qubit

Except when addressing a particular physical
implementation, we will simply talk about
“basis” states      and
and unitary operations like

and

0 1

H ϕ
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An arrangement like

0

ϕ

is represented with a  network like

H ϕ H0



More than one More than one qubitqubit

( )10 10 α+α

If we concatenate two qubits

11100100 11011000 βα+βα+βα+βα

( )10 10 β+β
we have a 2-qubit system with 4 basis states

0000 = 0110 = 1001 = 1111 =
and we can also describe the state as
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More than one More than one qubitqubit
In general we can have arbitrary superpositions

11011000 11100100 α+α+α+α

12
11

2
10

2
01

2
00 =α+α+α+α

where there is no factorization into the tensor
product of two independent qubits.
These states are called entangled.



EntanglementEntanglement
• Qubits in a multi-qubit system are not

independent—they can become
“entangled.”

• To represent the state of n qubits we
use 2n complex number amplitudes.



Measuring multi-Measuring multi-qubit qubit systemssystems

If we measure both bits of

we get with probability

11011000 11100100 α+α+α+α

yx 2
xyα



• ∑∑∑∑|αααα|2, for amplitudes of all states matching an output
bit-pattern, gives the probability that it will be read.

• Example:
  0.316|00› + 0.447|01› + 0.548|10› + 0.632|11›
–The probability to read the rightmost bit as 0 is |0.316|2   +
|0.548|2  =  0.4

• Measurement during a computation changes the state of
the system but can be used in some cases to increase
efficiency (measure and halt or continue).





• Goal:  Fast, low-cost implementation of useful algorithms
using standard components (gates) and design techniques

•  Classical Logic Circuits
– Circuit behavior is  governed implicitly by classical physics
– Signal states are simple bit vectors, e.g. X = 01010111
– Operations are defined  by Boolean Algebra
– No restrictions exist on copying or measuring signals
– Small well-defined sets of universal gate types, e.g. {NAND},

{AND,OR,NOT}, {AND,NOT}, etc.
– Well developed CAD methodologies exist
– Circuits are easily implemented in fast,  scalable and

macroscopic technologies such as CMOS

Classical vs. Quantum CircuitsClassical vs. Quantum Circuits



•  Quantum Logic Circuits
– Circuit behavior is governed explicitly by quantum mechanics
– Signal states are  vectors interpreted as a  superposition of binary

“qubit” vectors with complex-number coefficients

– Operations are defined by linear algebra over Hilbert Space and
can be represented by unitary matrices with complex elements

– Severe restrictions exist on copying and measuring signals
– Many universal gate sets exist but the best types are not obvious
– Circuits must use microscopic technologies that are slow, fragile,

and not yet scalable, e.g., NMR

Classical vs. Quantum CircuitsClassical vs. Quantum Circuits

Ψ = ci in −1in−1… i0
i =0

2n −1

∑



• Unitary  Operations
– Gates and circuits must be reversible (information-lossless)

• Number of output signal lines = Number  of input  signal lines
• The circuit function must be a bijection, implying that output vectors are

a permutation of the input vectors

– Classical logic behavior can be represented by permutation
matrices

– Non-classical logic behavior can be represented  including
state sign (phase) and entanglement

Quantum Circuit CharacteristicsQuantum Circuit Characteristics



• Quantum Measurement
– Measurement yields only one state X of the

superposed states
– Measurement also makes X the new state and so

interferes with computational processes
– X is determined with some probability, implying

uncertainty in the result
– States cannot be copied (“cloned”), implying that

signal fanout is not permitted
– Environmental interference can cause a

measurement-like state collapse (decoherence)

Quantum Circuit CharacteristicsQuantum Circuit Characteristics



Classical vs. Quantum CircuitsClassical vs. Quantum Circuits

Classical adder

cn–1
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cn

a0

b0

a1

b1

a3

b3
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b2

Sum

Carry



Classical vs. Quantum CircuitsClassical vs. Quantum Circuits

Quantum adder

• Here we use Pauli
rotations notation.

•  Controlled σx is
the same as
controlled NOT

Controlled σx is the
same as Feynman

Controlled-controlled
σx is the same as
Toffoli





Reversible CircuitsReversible Circuits
• Reversibility was studied around 1980 motivated

by power minimization considerations
• Bennett, Toffoli et al. showed that any classical

logic circuit C can be made reversible with modest
overhead
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• How to make a given f reversible
– Suppose f :i  →  f(i) has n inputs m outputs
– Introduce n extra outputs and m extra inputs
– Replace f by  frev: i, j →  i, f(i) ⊕  j where ⊕  is XOR

• Example 1: f(a,b) = AND(a,b)

• This is the well-known Toffoli gate, which realizes AND
when c = 0, and NAND when c = 1.

Reversible CircuitsReversible Circuits

Reversible
AND
gate

a

b

f = ab ⊕  c

a

b
c

a  b   c    a  b   f
0   0   0     0   0   0
0   0   1     0   0   1
0   1   0     0   1   0
0   1   1     0   1   1
1   0   0     1   0   0
1   0   1     1   0   1
1   1   0     1   1   1
1   1   1     1   1   0



• Reversible gate family [Toffoli 1980]

Reversible CircuitsReversible Circuits

(Toffoli gate)

• Every  Boolean function has a reversible
implementation using Toffoli gates.

• There is no universal reversible gate with fewer than
three inputs





Quantum GatesQuantum Gates
• One-Input  gate: NOT

– Input state: c0|0〉 + c1|1〉
– Output state: c1|0〉 + c0|1〉
– Pure states are mapped thus:  |0〉 → |1〉 and |1〉 → |0〉
– Gate operator (matrix) is

– As expected:
0 1
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Quantum GatesQuantum Gates
• One-Input  gate: “Square root of NOT”

– Some matrix elements are imaginary
– Gate operator (matrix):

– We find:

                                      so |0〉 → |0〉 with probability  |i/√2|2 =  1/2

         and  |0〉 → |1〉 with probability |1/ √ 2|2 = 1/2
      Similarly, this gate  randomizes input |1〉
– But  concatenation of two gates eliminates the randomness!
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Other variant of square root of not - we do not use complex numbers
- only real numbers



Quantum GatesQuantum Gates
• One-Input gate: Hadamard

– Maps |0〉 → 1/ √ 2 |0〉 + 1/ √ 2 |1〉 and |1〉 → 1/ √ 2 |0〉 – 1/ √ 2 |1〉.

– Ignoring the normalization factor 1/ √ 2, we can write
|xx〉 → (-1)xx |xx〉 –  |1 –– xx〉

• One-Input gate: Phase shift

1
2

1 1
1 −1

 

 
  

 
H

1 0
0 eiφ

 

 
  

 φ



Universal One-Input Gate Sets
• Requirement:

• Hadamard and phase-shift gates form a universal gate  set
of 1-qubit gates, every 1-qubit gate can be built from them.

• Example: The following circuit generates
  |ψ〉 = cos θ  |0〉 + eiφ sin θ  |1〉  up to a global factor

Quantum GatesQuantum Gates

U|0〉 Any state |ψ〉

2θH H π
2

+ φ



Other Quantum GatesOther Quantum Gates



• Two-Input Gate: Controlled NOT
(CNOT)

Quantum GatesQuantum Gates

|x〉

|y〉

|x〉

|x ⊕  y〉
 CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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 
 

 

 

 

 
 

– CNOT maps |x〉|0〉 → |x〉||x〉 and |x〉|1〉 → |x〉||NOT x〉

|x〉|0〉 → |x〉||x〉 looks like cloning, but it’s not. These
mappings are valid only for the pure states |0〉 and
|1〉

– Serves as a “non-demolition” measurement gate

|x〉

|y〉

|x〉

|x ⊕  y〉



Polarizing Beam-Splitter CNOT gatePolarizing Beam-Splitter CNOT gate
from [from [CerfCerf,,AdamiAdami, , KwiatKwiat]]



• 3-Input gate: Controlled CNOT
(C2NOT or Toffoli gate)

Quantum GatesQuantum Gates

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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|ab ⊕  c〉

|a〉 |a〉



• General controlled gates that control some 1-
qubit unitary operation U are useful

Quantum GatesQuantum Gates

U

u00 u01

u10 u11
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U

C2(U)

U

U

etc.



Universal Gate Sets
• To implement any unitary operation on n qubits

exactly requires an infinite number of gate types
• The (infinite) set of all 2-input gates is universal

– Any n-qubit unitary operation can be
implemented using Θ(n34n) gates [Reck et al.
1994]

• CNOT and the (infinite) set of all 1-qubit gates is
universal



Discrete Universal Gate Sets
• The error on implementing U by V is defined as

• If U can be implemented by K gates, we can simulate U
with a total error less than ε with a gate overhead that is
polynomial in log(K/ε)

• A discrete set of gate types G is universal, if we can
approximate any U to within any ε > 0 using  a sequence
of gates from G

Quantum GatesQuantum Gates

E(U,V ) = max
Ψ

(U − V ) Ψ



Discrete Universal Gate Set
• Example 1: Four-member “standard”  gate set

Quantum GatesQuantum Gates

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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      CNOT          Hadamard      Phase     π/8 (T) gate

• Example 2: {CNOT, Hadamard, Phase,
Toffoli}





• A quantum (combinational) circuit is a sequence of
quantum gates, linked by “wires”

• The circuit has fixed “width” corresponding to the
number of qubits being processed

• Logic design (classical and quantum) attempts to find
circuit structures for needed operations that are
– Functionally correct
– Independent of physical technology
– Low-cost, e.g., use the minimum number of qubits or gates

• Quantum logic design is not well developed!

Quantum CircuitsQuantum Circuits



• Ad hoc designs known for many specific functions and
gates

• Example 1 illustrating a theorem by [Barenco et al. 1995]:
Any C2(U) gate can be built from CNOTs, C(V), and C(V†)
gates, where V2 = U

Quantum CircuitsQuantum Circuits

V V† V

=

U



Example 1: Simulation

Quantum CircuitsQuantum Circuits

|0〉

|1〉

|x〉

|0〉

|1〉

|x〉

|0〉

|1〉

|x〉
V V† V

=

U

|0〉

|1〉

V|x〉

|0〉

|1〉

|0〉

|1〉

|x〉

|0〉

|1〉

|0〉

|1〉

|x〉

?



Quantum CircuitsQuantum Circuits

|1〉

|1〉

|x〉

|1〉

|1〉

|x〉

|1〉

|1〉

U|x〉
V V† V

=

U

|1〉

|1〉

V|x〉

|1〉

|0〉

|1〉

|0〉

V|x〉

|1〉

|1〉

|1〉

|1〉

U|x〉

Example 1: Simulation (contd.)

?

• Exercise: Simulate the two remaining
cases



Quantum CircuitsQuantum Circuits
Example 1: Algebraic analysis

U4U2 U3U1 U5U0

V V† V

=

U

?
x1

x2

x3

• Is U0(x1, x2, x3) = U5U4U3U2U1(x1, x2, x3)

               = (x1, x2, x1x2 ⊕  U (x3) )  ?
We will verify unitary
matrix of Toffoli gate Observe that the order of matrices Ui is inverted.



Quantum CircuitsQuantum Circuits
Example 1 (contd);

U1 = I1 ⊗ C(V)

=
1 0
0 1
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0 0 v10 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kronecker
since this is a
parallel
connection

Unitary
matrix of
a wire

Unitary matrix of a
controlled V gate
(from definition)

We calculate the Unitary Matrix U1 of
the first block from left.



Quantum CircuitsQuantum Circuits
Example 1 (contd);

U2 = U4 = CNOT(x1, x2 ) ⊗ I1

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 

 
 

 

 

 

 
 

⊗
1 0
0 1

 

 
  

 
=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We calculate the Unitary Matrix U2 of
the second block from left.

Unitary matrix of
CNOT or Feynman
gate with EXOR down

As we can check in the schematics, the Unitary
Matrices  U2 and U4 are the same



Quantum CircuitsQuantum Circuits
Example 1 (contd);

U2 = U4 = CNOT(x1, x2 ) ⊗ I1

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 

 
 

 

 

 

 
 

⊗
1 0
0 1

 

 
  

 
=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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Example 1 (contd);

– U5 is the same as U1 but has x1and x2 permuted (tricky!)
– It remains to evaluate the product of five 8 x 8 matrices

U5U4U3U2U1 using the fact that VV† = I and VV = U

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 v00 v01 0 0
0 0 0 0 v10 v11 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v10 0 0 0 0
0 0 v01 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v10

0 0 0 0 0 0 v01 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v01 0 0 0 0
0 0 v10 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00v00 + v10v10 v00v01 + v10v11

0 0 0 0 0 0 v01̀ v00 + v11v10 v01v01 + v11v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= U0
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Example 1 (contd);

– We calculate matrix U3

0
0
0
0
0

0
0

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v10 0 0 0 0
0 0 v01 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v10

0 0 0 0 0 0 v01 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a hermitian matrix, so
we transpose and next
calculate complex conjugates,
we denote complex
conjugates by bold symbols1  0

0  1

1   0   0   0

0  1   0   0

0  0  vv0000 vv1010

0  0  vv0101 v v1111



Quantum CircuitsQuantum Circuits
Example 1 (contd);

– U5 is the same as U1 but has x1and x2 permuted because in U1
black dot is in variable x2 and in U5 black dot is in variable x1

– This can be also checked by definition, see next slide.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 v00 v01 0 0
0 0 0 0 v10 v11 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



















U5 =



Quantum CircuitsQuantum Circuits
Example 1 (here we explain in detail how to calculate U5)

.x1

x2

x3
V

U5

x1

x2

x3
V

U1

.

U6 U6

U6 is calculated as a Kronecker
product of U7 and I1

U7 is a unitary matrix of a swap
gate

U5 = U6 U 1 U 6



Quantum CircuitsQuantum Circuits
Example 1 (contd);

– It remains to evaluate the product of five 8 x 8 matrices U5U4U3U2U1 using
the fact that VV† = I and VV = U

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 v00 v01 0 0
0 0 0 0 v10 v11 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v10 0 0 0 0
0 0 v01 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v10

0 0 0 0 0 0 v01 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v01 0 0 0 0
0 0 v10 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00v00 + v10v10 v00v01 + v10v11

0 0 0 0 0 0 v 01̀ v00 + v11v10 v01v01 + v11v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= U0

U1



Quantum CircuitsQuantum Circuits
• Implementing a Half Adder

– Problem:  Implement the classical functions sum =
x1 ⊕  x0 and carry =   x1x0

• Generic design:
|x1〉

Uadd
|x0〉

|y1〉

|y0〉

|x1〉

|x0〉

|y1〉 ⊕  carry
|y0〉 ⊕  sum



Quantum CircuitsQuantum Circuits
• Half Adder: Generic design (contd.)

UADD =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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• Half Adder: Specific (reduced) design

|x1〉

|x0〉

|y〉

|x1〉

|y〉 ⊕  carry

sum C2NOT
(Toffoli)

CNOT


