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Introduction
* Short-Term Objectives

Introduce Quantum Computing Basics to interested students at KAIST.
Especially non-physics students

* Long-Term Objectives

Engage into Al/CS/Math Research projects benefiting from Quantum
Computing. Continue our previous projects in guantum computing

* Prerequisite

- No linear algebra or quantum mechanics assumed
- A ECE, math, physics or CS background would be
beneficial, practically-oriented class.




Introduction

e MainTextbook

Quantum Computation
&
Quantum Information

Michael A. Nielsen
Isaac L. Chuang

ISBN: 0 521 63503 9
Paperback
ISBN: 0 521 63235 8 Hardback

Cost:  $48.00 New Paperback
$35.45 Used Paperback

(http://www.amazon.com)
also in KAIST bookstore

Quantum Computatio
and Quantum Informat




Presentation Overview

1 Qubit -> Bloch Sphere,
2 Qubits -> Bell States,
n Qubits

Gates: Single Qubit, Arbitrary Single Qubit -> Universal
Quantum Gates, Multiple Qubit Gates -> CNOT

Other Computational Bases

Qubit Swap Circuit

Qubit Copying Circuit

Bell State Circuit -> Quantum Teleportation

Toffoli Gate -> Quantum Parallelism -> Hadamard Transform
Deutsch's Algorithm, Deutsch-Josa Algorithm

Other Algorithms

- Fouyrier Transform, ()uanfu m Search, Quantum
Simulation

%’cc)q[rsn -Gerlach, Optical Techniques, Traps, NMR, Quantum




Historical Background and Links

Study of information
processing tasks that can
be accomplished using
guantum mechanical
systems

Digital
Design




What will be

discussed?

» Background

« Quantum circuits synthesis and algorithms
« Quantum circuits simulation

« Quantum Computation

Al for guantum computation

« Quantum computation for Al
« Quantum logic emulation and evolvable hardware
« Quantum circuits verification

« Quantum-based robot control



What is quantum
computation?

« Computation with coherent atomic-scale
dynamics.

« The behavior of a quantum computer Is
governed by the laws of quantum
mechanics.



Why bother with quantum
computation?

« Moore’s Law: We hit the quantum level
2010~2020.

« Quantum computation is more powerful
than classical computation.

« More can be computed in less time—the
complexity classes are different!



The power of quantum

computation

 In guantum systems possibilities count,
even If they never happen!

« Each of exponentially many possibilities

can
com

ne used to perform a part of a

outation at the same time.



Nobody understands quantum
mechanics

“No, you’re not going to be able to understand it. . .
. You see, my physics students don’t understand it
either. That iIs because | don’t understand it.
Nobody does. ... The theory of quantum
electrodynamics describes Nature as absurd from
the point of view of common sense. And it agrees
fully with an experiment. So | hope that you can
accept Nature as She is -- absurd.

Richard Feynman



Absurd but taken seriously (not just
guantum mechanics but also
guantum computation)

« Under active investigation by many of the top
physics labs around the world (including CalTech,
MIT, AT&T, Stanford, Los Alamos, UCLA, Oxford,

I’Université de Montréal, University of Innsbruck,
IBM Research . . )

 In the mass media (including The New York Times,

The Economist, American Scientist, Scientific
American, . . .)

e Here.



Quantum
Logic
Circuits



A beam splitter

Half of the photons leaving the light source arrive at
detector A;

the other half arrive at detector B.




A beam-splitter

W D 50%
1

50%

The simplest explanation 1s that the beam-splitter
acts as a classical coin-flip, randomly sending each
photon one way or the other.



An imterferometer

» Equal path lengths, rigid mirrors.

* Only one photon In the apparatus at a time.
 All photons leaving the source arrive at B.

« WHY?



Possibilities count

* There is a quantity that we’ll call the “amplitude” for each
possible path that a photon can take.

« The amplitudes can interfere constructively and destructively,
even though each photon takes only one path.

« The amplitudes at detector A interfere destructively; those at
detector B interfere constructively.




Calculating interference

Arrows for each possibility.
Arrows rotate; speed depends on frequency.

Arrows flip 180° at mirrors, rotate 90° counter-clockwise
when reflected from beam splitters.

Add arrows and square the length of the result to determine
the probability for any possibility.




Double slit interference
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Quantum Interference : Amplitudes
are added and not intensities !

slits detector

. A (x)
Electron 1 o o, + o, |
gun / |

=5
\ . A
A+ 5
B (x)

Figure 1: Two-slit expariment.



Interference in the interferometer




Quantum Interference

w 0
1 %B 100%

The simplest explanation must be wrong, since 1t
would predict a 50-50 distribution.




More experimental data

T




A new theory

The particle can exist in a linear combination or
superposition of the two paths




Probability Amplitude and
Measurement

If the photon 1s measured when it is 1n the state )
0,|0) +a,[1) then we get [0) with probability |a,|
and |1> with probability of |a,|?

LT
L o —D [of




Quantum Operations

The operations are induced by the apparatus linearly,
that 1s, 1f 0 0) +
0) - o)+

and 1) - \f‘0> TH

then

1[0) +a,[1) - ot 7510+ {1+ 50} +
(o for{o e

)

i



Quantum Operations

Any linear operation that takes states
o(O‘O>+o(1‘1> satisfying ‘o(o‘z +‘o(1‘2 =1

and maps them to states
0,|0) +a,|1) satistying ‘0"0

must be UNITARY



| 10

11 |

o g
00 01
U
U Uy
1s unitary i1f and only 1f
00 01 u10
U U U

11

Linear Algebra




Linear Algebra

1
0) corresponds to (O

1) corresponds to (1

0o|0)+041)  corresponds to a,

J

:

|

o



Linear Algebra

/

i 1
% corresponds to \15 *IE
V2 42

\

q 1 O
corresponds to 0 e




Linear Algebra

T K

corresponds to

[ [ 1)

i 1)/1 o0 1
z|low) 2 2l
|

1 |

(V2 V2 V2 2,




Abstraction

The two position states of a photon 1n a
Mach-Zehnder apparatus 1s just one
example of a quantum bit or qubit

Except when addressing a particular physical
implementation, we will simply talk about
“basis” states |0Yand |1)

and unitary operations like

—1 H [ and — 0 —




where

and

corresponds to

(1 1 )

2z 2

1 -1

V2 42

0 e

corresponds to (1 0 ]



An arrangement like
K
%

is represented with a network like

0)— H 0 H




More than one qubit

If we concatenate two qubits

(010]0) + 01,[1)) (B,[0) +By[1))
we have a 2-qubit system with 4 basis states
0)|0)=|00) |0)j1)=|01)  [1)0) =[10) [1)]1)=[11)
and we can also describe the state as
0oPo|00) + 01, |01) + 01,3, 10) + 01,3, 11)

KGOBO\
or by the vector a,B (aoj (Boj
= N
GlBO a, Bl
ity




More than one qubit

In general we can have arbitrary superpositions

040|0)|0) + 0 |0)[1) + 0, |1)|0) + 0y | 1)|1)
‘0‘00‘2 + ‘0‘01‘2 + ‘0‘10‘2 + ‘0‘11‘2 =1

where there 1s no factorization into the tensor
product of two independent qubits.
These states are called entangled.




Entanglement

« Qubits In a multi-qubit system are not
Independent—they can become
“entangled.”

* To represent the state of n qubits we
use 2" complex number amplitudes.



Measuring multi-qubit systems

If we measure both bits of

120/ 0)10) + 1, O)1) + 1,1 ) + a1, 1))

2

a,,

we get X)Y)  with probability



Measurement

« 2 |al? for amplitudes of all states matching an output
bit-pattern, gives the probability that it will be read.

« Example:
0.316/00> + 0.447|01> + 0.548|10> + 0.632|11>
—The probability to read the rightmost bit as 0 is [0.316]% +
0.548|2 = 0.4
« Measurement during a computation changes the state of
the system but can be used in some cases to increase
efficiency (measure and halt or continue).



Classical
Versus
Quantum



Classical vs. Quantum Circuits

* Goal: Fast, low-cost implementation of useful algorithms
using standard components (gates) and design techniques

* Classical Logic Circuits
— Circuit behavior 1s governed implicitly by classical physics
— Signal states are simple bit vectors, e.g. X=01010111

— Operations are defined by Boolean Algebra
— No restrictions exist on copying or measuring signals

— Small well-defined sets of universal gate types, e.g. {NAND},
{AND,OR,NOT}, {AND,NOT}, etc.

— Well developed CAD methodologies exist

— Circuits are easily implemented in fast, scalable and
macroscopic technologies such as CMOS



Classical vs. Quantum Circuits

* Quantum Logic Circuits

— Circuit behavior 1s governed explicitly by quantum mechanics

— Signal states are vectors interpreted as a superposition of binary
“qubit” vectors with complex-number coefficients

2" -1

Wy=>"clii i i)

=0

— Operations are defined by linear algebra over Hilbert Space and
can be represented by unitary matrices with complex elements

— Severe restrictions exist on copying and measuring signals
— Many universal gate sets exist but the best types are not obvious

— Circuits must use microscopic technologies that are slow, fragile,
and not yet scalable, e.g., NMR




Quantum Circuit Characteristics

* Unitary Operations

— Qates and circuits must be reversible (information-lossless)
* Number of output signal lines = Number of input signal lines

» The circuit function must be a bijection, implying that output vectors are
a permutation of the input vectors

— Classical logic behavior can be represented by permutation
matrices

— Non-classical logic behavior can be represented including
state sign (phase) and entanglement



Quantum Circuit Characteristics




Classical vs. Quantum Circuits

Classical adder B
b




Classical vs. Quantum Circuits

7 H

Crp] =) _ - L =1
Quantum adder b X T b
) = ] .
T  Here we use Pauli

=11
_ :L J + %I - T rotations notation.

|'L  Controlled o, 1s

the same as
controlled NOT

Controlled-controlled

o, 1s the same as
Toffoli

| AHHY \

AR
N

Controlled o, 1s the
same as Feynman



Reversible
Circuits




Reversible Circuits

* Reversibility was studied around 1980 motivated
by power minimization considerations

* Bennett, Toffoli et al. showed that any classical
logic circuit C can be made reversible with modest
overhead

£

Generic
Boolean
Circuit

) ) i{...

n inputs

m outputs “Junk”{ —

Reversible | *°

Boolean
Circuit

R } (4 CJunkB bJ

| £(i)



Reversible Circuits

* How to make a given f reversible
— Suppose f:1 — f(i) has n inputs m outputs
— Introduce n extra outputs and m extra inputs
— Replace fby f_:1,] — I, f(i) U J where U is XOR

« Example 1: f(a,b) = AND(a,b)

ab clab f

000|000

a _ N 00 1]00°1
Reversible 010010

b — AND b 011|011
ate — 1 00[100

c 9 101|101
— f=ablc 110111

1 111110

e This 1s the well-known Toffol1 gate, which realizes AND
when ¢ = 0, and NAND when c = 1.



Reversible Circuits

« Reversible gate family [Toffoli 1980]

- =

| S —

NOT XOR/FAN-OUT AND[NAND generalized ANDfNAND

(Toffoli gate)

* Every Boolean function has a reversible
implementation using Toffoli gates.

* There 1s no universal reversible gate with fewer than
three inputs



Quantum
Gates



Quantum Gates

* One-Input gate: NOT
— Input state: ¢,|0) + ¢, |1)
— Output state: ¢,|0) +¢c,|1) — [NOT
— Pure states are mapped thus: |0) - |1) and [1) - |O)

— Gate operator (matrix) is[o I (N (0
1 0 |O>'(o) 'D'[l)

— As expected:

Lol o=l 1 el e




Quantum Gates
* One-Input gate: “Square root of NOT”

— Some matrix elements are imaginary

— Gate operator (matrix):

(i/,/l/z 1/,/1/2J_L[i \
— We find: T2 i/4172) 20 i)

| [i 1\[1\_ | [i\ 50 [0) — |0) with probability [i/V2]2 = 1/2
2\ N0/ V2V and 10) & |1) with probability [1/V 22 = 1/2

Similarly, this gate randomizes input |1)

— But concatenation of two gates eliminates the randomness!

G B




Other variant of square root of not - we do not use complex numbers

- only real numbers

A square-root-of-NOT (SRN) gate

* Applied once to a classical state, this ~randomizes the
value of the qubit.

* Appled twice 1n a row, this 1s ~equivalent to NO'T:



Quantum Gates

e One-Input gate: Hadamard

1 (I 1Y o -
E[l -1 H

— Maps |0) -~ /V2]|0+1/V2|Dand |1) - 1/V2]0)—1/V2|D).

— Ignoring the normalization factor 1/V 2, we can write
Py — CDXPO— [1-%)

* One-Input gate: Phase shift

((1) e(i)¢) | P




Quantum Gates

Universal One-Input Gate Sets

* Requirement:

0 — U

Any state |)

« Hadamard and phase-shift gates form a universal gate set
of 1-qubit gates, every 1-qubit gate can be built from them.

« Example: The following circuit generates
JW) = cos @ [0) +e'?sin @ |1) up to a global factor

;L=

20

N

N | N

T




Other Quantum Gates

Rotation (UB):

Hadamard (H):
CNOT: CPHASE.:

There are B small “amversal” sets of cates.

Gates must be unitary: U7U=UUY, where U is the
Hermitean adjoint of U.



Quantum Gates

* Two-Input Gate: Controlled NOT

(CNOT)
(10 0 0
X) —— ot | X) 0 1 0 o0 ) )
y)y — — xOy) ng?zj Iy>1|xmy>

— CNOT maps [)|0) — [¥)|) and })|1) - [)[[NOT X)

X0y — X)) looks like cloning, but it’s not. These
mappings are valid only for the pure states |0) and

|3

— Serves as a “‘non-demolition” measurement gate




Polarizing Beam-Splitter CNOT gate

from [Cerf,Adami, Kwiat]

light | B . B

* I'wo qubits encoded 1n one photon, one in momentum
(direction) and one 1n polarization.

* Polanzation controls change In momentum.

* Cannot be scaled up directly, but demonstrates an
implementation of a 2-qubit gate.



Quantum Gates

« 3-Input gate: Controlled CNOT

(C?NOT or Toffoli gate)

1000 O0O0O0 O °
|01000000\| [2) [2)
oo 1000 0 ol

o 001000 o b) —®— |b)
I00001000|

|00000100I Ic) —&— Jab O c)
0000000 I

\0 000 00 1 0



Quantum Gates

* General controlled gates that control some 1-
qubit unitary operation U are useful

|

u00 uOl\
ulO ullj

U

U

*

T o

C(V) (0)

Ul —ul-

etc.



Quantum Gates

Universal Gate Sets

 To implement any unitary operation on N qubits
exactly requires an infinite number of gate types

* The (infinite) set of all 2-input gates 1s universal

— Any N-qubit unitary operation can be

implemented using ©(n34") gates [Reck et al.
19941

 CNOT and the (infinite) set of all 1-qubit gates 1s
universal



Quantum Gates

Discrete Universal Gate Sets
* The error on implementing U by V is defined as

E(U,V) = maxlu - V)W

« If U can be implemented by K gates, we can simulate U
with a total error less than € with a gate overhead that is
polynomial in log(K/¢)

« A discrete set of gate types G 1s universal, 1f we can
approximate any U to within any € > 0 using a sequence
of gates from G



Quantum Gates

Discrete Universal Gate Set

« Example 1: Four-member “standard” gate set

(1 0 0 O
[0 1 0 0

HE N B L LG I ()

—HFM— | S [F— —|718

CNOT Hadamard  Phase T1U8 (T) gate

« Example 2: {CNOT, Hadamard, Phase,
Toffol1}



Quantum
Circuits



Quantum Circuits

A quantum (combinational) circuit is a sequence of
quantum gates, linked by “wires”

The circuit has fixed “width” corresponding to the
number of qubits being processed

Logic design (classical and quantum) attempts to find
circuit structures for needed operations that are

— Functionally correct

— Independent of physical technology

— Low-cost, €.g., use the minimum number of qubits or gates

Quantum logic design 1s not well developed!



Quantum Circuits

* Ad hoc designs known for many specific functions and
gates

« Example 1 illustrating a theorem by [Barenco et al. 1995]:
Any C2(U) gate can be built from CNOTSs, C(V), and C(VT")
gates, where VZ = U

SRS

U —

<l
e

Vi V=




Quantum Circuits

Example 1: Simulation

0) g 10

|1>%

X

U

X

0)

0) 10

0) g 10)

0)

2D

Loyl
LYBNLY 12NELY,

Ly

x)

ng

V|x)

B

X7

%




Quantum Circuits

Example 1: Simulation (contd.)

) g I 1) ) gl el g 11

Vi) va UK

D o 11 2 T |1>I0> |0>Il> Ly
V

UK )

U

 Exercise: Simulate the two remaining
cases



Quantum Circuits

Example 1: Algebraic analysis

Xlo. I l.

()
X2 ® — ® D
X; —U v % =
U, Uy | [ Uy | [Us || Uy | Us

Is Uy(Xy, Xp, X3) = UsU,UsU U (X, X5, X5)
= (X X, XX LU (X3) ) 7

We will verify unitary

matrix of Toffoli gate Observe that the order of matrices U, 1s inverted.



Quantum Circuits

Example 1 (contd); We calculate the Unitary Matrix U, of

the first block from left. /
U =10CV) /

(10 0 0 00 0 0)
01 0 0 00 0 0
(10 0 0) 100 vy, v, 0 0 0 0
_[10\|0100|_00v10v110000
~\o UDLO 0 v, va_ 00 0 010 0 0
0 0v, v, (00 0 0 01 0 0
00 0 0 0 0 v, V,
00 0 0 0 0 v, Vv,

Unite'u'y Kronecker
matrix of  gince thisisa  Unitary matrix of a
a wire parallel controlled V gate

connection (from definition)



Quantum Circuits

Example 1 (contd);

U, =U, =CNOT(X,,%,) O I,

—_ o O O

1
—
o O
oS O = O

Unitary matrix of
CNOT or Feynman

0

gate with EXOR down

0 1)

We calculate the Unitary Matrix U, of
the second block from left.

/

(100 00 0 0 0
0100000 0
0010000 0
0001000 0
000O0O0TO 0T 0
000 O0O0O0O0 1
0000100 0
000 0O 1 00

As we can check in the schematics, the Unitary
Matrices U, and U, are the same




(s

Ircul

Quantum C

Example 1 (contd);

CNOT(x,,%,)0 1,

U2:U4:

00 0 0 0 0 0

1

0

(1

0 0 00 0O

0
0 1
0 0 0

0 0 00O

1

0
1
0 0 O

1

1

0O 0 0 O

0O 00 00 020

1

00 0 0
\0 0 0 0 O

0y _
1) 0 00 0 0 0

<[5
0

0

0



Quantum Circuits

Example 1 (contd);

— U 1s the same as U, but has X,and X, permuted (tricky!)
— It remains to evaluate the product of five 8 x 8 matrices

U.U,U,U,U, using the fact that VVT=1and VV =U

S O O O O O~ O
S O O O O = O O

(= = = = - N =)

S O O O O O = O

[= R

S O O O o = O O

0 0
0 0
0 0
0 0

Vg, O

v, 0
0 Vg
0 v,

0 0

0 0

0 0

10

0 1

0 0

0 0

0 0

0Y(1
0llo
ollo
ollo
ol
()Ho

VOIJ‘ 0
Vin \0

-_ o O O O O

0 VOOVOO + V]OVIO VOOVOI + V]OV]]
0 VO]‘VOO + V11V10

S O O O O O~ O

S O O O O

0

S O O O O = O O

S O O O = O O O

S = O O O O O O
—_ o O O O o o <o

S O O O O

0

VOIVOI + Vllvll

S O O = O O O O

01
olo
ol o
ollo
olo

I
1o

ok

)
|
|
i _
|
)

S O O O o o = O

U,

o<OO
3

<
=4

oS O o O

o =<

(=R e -}

S O O = O O O O

S O = O O O O O

S O O O o O

VOO

01
ollo
ollo
0llo
ol
()Ho

VIOJ‘ 0
Vi \0

S O O O o o = O

S O O O O = O O

S O O O = O O O

S = O O O O O O

_0 O O O O o o

S O O = O O O O

01
olo
ol o
olo
olo

1“0

ohe

(= = = = R =

E<

<

oS O o O

S O O = O O O O

S O = O O O O O



Quantum Circuits

Example 1 (contd);

— We calculate matrix U,

10
01

1 0 0O
01 0 O
0 0 Vg Vyg

0 0 Vo Viy

This 1s a hermitian matrix, so
we transpose and next
calculate complex conjugates,
we denote complex
conjugates by bold symbols

(1

S O O O O O

0

S O O O O O = O

o O

o O

o O O O

S O O = O O O O

S O = O O O O O

0 0)
0 0
0 0
0 0
0 0
0 0

VOO VlO

VOl VII/



Quantum Circuits

Example 1 (contd);

— Us 1s the same as U, but has X,and X, permuted because in U,
black dot 1s in variable x, and in U black dot 1s in variable x,

— This can be also checked by definition, see next slide.

(1000 0 0 0 0)
0100 0 0 0 0
0010 0 0 0 0
—_ '00 01 0 0 0 O
U5 0000 v, vy 0 0
0000wV v, 0 0
0000 0 0 v, Vv,
0 000 0 0 v, v,/



Quantum Circuits

Example 1 (here we explain in detail how to calculate Uy)

: =«
X4 v A3 _____________ V .............
/ S
U. Us 1 Ug
U, 1s calculated as a Kronecker
product of U, and [, U5 — U6 U . U .

U, is a unitary matrix of a swap
gate



Quantum Circuits

Example 1 (contd);

— It remains to evaluate the product of five 8 x 8 matrices U,U,U,U,U, using
the fact that VV' =1 and VV=U

(1000 0 0 0 O)1 O0O0O0O0O0O0TOLO O 0 00 0 O0)100O0O0GOOOTO O 0 00
lo1 00 0 0o o olflo1 00000 w0o0lo1 0o o o0 o0 ofllo10o0000®o0lo1 0 0 00
o o100 0o o olloo 10000 o0loowv, v, 00 0o olloo1 0000 oloov v 0o0
I0001000o’I00010000VI00v01v110000’!00010000|;00v10v“00
|OOOOV°°°‘OOI|OOOOOOIOI|OOO01000I|00000010I1000010
0000 v v 0 000000001000 001 0 0400000001000 001
100 00 0 0 Ve V[0 0001 000100 0 0 00 Vy VO 000100000 0 0 00
Kooooo0vmv”JK00000100JK000000vmv“Jkooooo1ooJkoooooo
U,

(10000 0 0 0

01 0000 0 0 |

o 01 00 0 0 o |

_;000100 0 0 |_U

_|000010 0 0 I_O

00000 1 0 0 |

|O 0.0 0 0 0 VyVey +VyeVyg V00V01+V10V11J

ko 0 0 0 O O VOI‘VO() +V11V10 VOIVOI + Vllvll



Quantum Circuits

* Implementing a Half Adder

— Problem: Implement the classical functions sum =
X; U X,and carry = XX,

* Generic design:

X1) X1)

Xo) Xo)

Yi) y;» U carry
Yo) Yo, LI sum



Ircults

Quantum C

- Half Adder. Generic design (contd.)

00 00O0O0OO0OO0OOO0OO0OO0OO0O0 0

(1

1
00 00O
1

000 0 O0 O

1

0 000 0O0O

1

00 00O O0O0ODFUPO

1
1 0 00 00O0OO0OO
1

00 00 O0O0OO0OOOO

1

0 00O0O0OO0OTO0ODOTO0OTGO0OU OO

1

00 0O0O0OO0OO0OUO0OOOTO0OO0OTO

1

1
0
0 00
000 0O0OO0OO0OOTO0OOUO0ODO

000 0O0 00O
000 0 O0 O

000 O0OTO0OOOO
000 00 O0O0OTUPO0
000 0O O0OO0OTO0OTO0OTO O

0 00 0O

1

000 O0O0OO0OO0OOO0OTUO0OO

0 0 O

1

o0 0000 0O0OO0OGO0O0 0



Quantum Circuits

 Half Adder. Specific (reduced) design

|X1> |X1>

Xo) sum

y) ly) O carry



