Quantum Logic

Marek Perkowski

Sources

Origin of slides: John Hayes, Peter Shor, Martin Lukac, Mikhail Pivtoraiko, Alan Mishchenko, Pawel Kerntopf, Mosca, Ekert

Lee Spector
in collaboration with
Herbert J. Bernstein, Howard Barnum, Nikhil Swamy
\{lspector, hbernstein, hbarnum, nikhil_swamy\}@hampshire.edu\}

School of Cognitive Science, School of Natural Science Institute for Science and Interdisciplinary Studies (ISIS) Hampshire College

Introduction

- Short-Term Objectives

Introduce Quantum Computing Basics to interested students at KAIST.
Especially non-physics students

- Long-Term Objectives

Engage into A/CS/Math Research projects benefiting from Quantum Computing. Continue our previous projects in quantum computing

- Prerequisite
- No linear algebra or quantum mechanics assumed
- A ECE, math, physics or CS background would be beneficial, practically-oriented class.

Introduction

- MainTextbook

Quantum Computation \&

Quantum Information

Michael A. Nielsen Isaac L. Chuang

ISBN: 0521635039
Paperback
ISBN: 0521632358 Hardback

Cost: \$48.00 New Paperback \$35.45 Used Paperback
(http:/ / www. amazon. com)

Presentation Overview

Qubits

Quantum
Computation

Quantum Circuits

Stern-Gerlach, Optical Techniques, Traps, NMR, Quantum Dots

Historical Background and Links

What will be discussed?

- Background
- Quantum circuits synthesis and algorithms
- Quantum circuits simulation
- Quantum Computation
- AI for quantum computation
- Quantum computation for AI
- Quantum logic emulation and evolvable hardware
- Quantum circuits verification
- Quantum-based robot control

What is quantum computation?

- Computation with coherent atomic-scale dynamics.
- The behavior of a quantum computer is governed by the laws of quantum mechanics.

Why bother with quantum computation?

- Moore's Law: We hit the quantum level 2010~2020.
- Quantum computation is more powerful than classical computation.
- More can be computed in less time-the complexity classes are different!

The power of quantum computation

- In quantum systems possibilities count, even if they never happen!
- Each of exponentially many possibilities can be used to perform a part of a computation at the same time.

Nobody understands quantum mechanics

'No, you're not going to be able to understand it. . . . You see, my physics students don't understand it either. That is because I don't understand it. Nobody does. ... The theory of quantum electrodynamics describes Nature as absurd from the point of view of common sense. And it agrees fully with an experiment. So I hope that you can accept Nature as She is -- absurd.

Richard Feynman

Absurd but taken seriously (not just

quantum mechænics but also quantum computation)

- Under active investigation by many of the top physics labs around the world (including CalTech, MIT, AT\&T, Stanford, Los Alamos, UCLA, Oxford, l'Université de Montréal, University of Innsbruck, IBM Research . . .)
- In the mass media (including The New York Times, The Economist, American Scientist, Scientific American, ...)
- Here.

Quantum Logic
Circuits

A beam splitter

Half of the photons leaving the light source arrive at detector A; the other half arrive at detector B.

A beam-splitter

The simplest explanation is that the beam-splitter acts as a classical coin-flip, randomly sending each photon one way or the other.

An interferometer

- Equal path lengths, rigid mirrors.
- Only one photon in the apparatus at a time.
- All photons leaving the source arrive at B.
- WHY?

Possibilities count

- There is a quantity that we'll call the "amplitude" for each possible path that a photon can take.
- The amplitudes can interfere constructively and destructively, even though each photon takes only one path.
- The amplitudes at detector A interfere destructively; those at detector B interfere constructively.

Calculating interference

- Arrows for each possibility.
- Arrows rotate; speed depends on frequency.
- Arrows flip 180° at mirrors, rotate 90° counter-clockwise when reflected from beam splitters.
- Add arrows and square the length of the result to determine the probability for any possibility.

Double slit interference

Quantum Interference : Amplitudes are added and not intensities!

slits detector

Figure 1: Two-slit experiment.

Interference in the interferometer

Quantum Interference

The simplest explanation must be wrong, since it would predict a $50-50$ distribution.

More experimental data

A new theory

The particle can exist in a linear combination or superposition of the two paths

Probability Amplitude and Measurement

If the photon is measured when it is in the state $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$ then we get $|0\rangle \quad$ with probability $\left|\alpha_{o}\right|^{2}$ and $\mid 1>$ with probability of $\left|a_{1}\right|^{2}$

Quantum Operations

The operations are induced by the apparatus linearly, that is, if

$$
\begin{aligned}
\quad|0\rangle & \rightarrow \frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
\text { and } \quad|1\rangle & \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle
\end{aligned}
$$

then

$$
\alpha_{o}|0\rangle+\alpha_{1}|1\rangle \rightarrow \alpha_{0}\left(\frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)+\alpha_{1}\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle\right)
$$

$$
=\left(\alpha_{0} \frac{i}{\sqrt{2}}+\alpha_{1} \frac{1}{\sqrt{2}}\right)|0\rangle+\left(\alpha_{0} \frac{1}{\sqrt{2}}+\alpha_{1} \frac{i}{\sqrt{2}}\right)|1\rangle
$$

Quantum Operations

Any linear operation that takes states

$$
\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \quad \text { satisfying } \quad\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1
$$

and maps them to states

$$
\alpha_{0}^{\prime}|0\rangle+\alpha_{1}^{\prime}|1\rangle \quad \text { satisfying } \quad\left|\alpha_{0}^{\prime}\right|^{2}+\left|\alpha_{1}^{\prime}\right|^{2}=1
$$

must be UNITARY

Linear Algebra

$$
\mathcal{U}=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]
$$

is unitary if and only if

$$
\mathcal{U U l}^{t}=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]\left[\begin{array}{cc}
u_{00}^{*} & u_{10}^{*} \\
u_{*}^{*} & u_{11}^{*}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

Linear Algebra

$|0\rangle \quad$ corresponds to $\quad\binom{1}{0}$
$|1\rangle \quad$ corresponds to $\quad\binom{0}{1}$
$\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$
corresponds to $\quad \alpha_{0}\binom{1}{0}+\alpha_{1}\binom{0}{1}=\binom{\alpha_{0}}{\alpha_{1}}$

Linear Algebra

$$
\text { corresponds to }\left(\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)
$$

$$
\text { corresponds to }\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right)
$$

Linear Algebra

corresponds to

$$
\left(\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right)\left(\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\binom{1}{0}
$$

Abstraction

The two position states of a photon in a Mach-Zehnder apparatus is just one example of a quantum bit or qubit

Except when addressing a particular physical implementation, we will simply talk about "basis" states $|0\rangle$ and $|1\rangle$ and unitary operations like

An arrangement like

is represented with a network like

More than one qubit

If we concatenate two qubits

$$
\left(\alpha_{o}|0\rangle+\alpha_{1}|1\rangle\right)\left(\beta_{o}|0\rangle+\beta_{1}|1\rangle\right)
$$

we have a 2-qubit system with 4 basis states

$$
|0\rangle|0\rangle=|00\rangle \quad|0\rangle|1\rangle=|01\rangle \quad|1\rangle|0\rangle=|10\rangle \quad|1\rangle|1\rangle=|11\rangle
$$

and we can also describe the state as
$\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{o}|10\rangle+\alpha_{1} \beta_{1}|11\rangle$
or by the vector $\quad\left(\begin{array}{c}\alpha_{0} \beta_{o} \\ \alpha_{0} \beta \\ \alpha_{1} \beta_{o} \\ \alpha_{1} \beta_{1}\end{array}\right)=\binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}$

More than one qubit

In general we can have arbitrary superpositions

$$
\begin{aligned}
& \alpha_{00}|0\rangle|0\rangle+\alpha_{01}|0\rangle|1\rangle+\alpha_{10}|1\rangle|0\rangle+\alpha_{11}|1\rangle|1\rangle \\
& \qquad\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
\end{aligned}
$$

where there is no factorization into the tensor product of two independent qubits.
These states are called entangled.

Entanglement

- Qubits in a multi-qubit system are not independent-they can become "entangled."
- To represent the state of n qubits we use $2^{\text {n }}$ complex number amplitudes.

Measuring multio-qubit systems

If we measure both bits of

$$
\alpha_{o o}|0\rangle|0\rangle+\alpha_{01}|0\rangle|1\rangle+\alpha_{10}|1\rangle|0\rangle+\alpha_{11}|1\rangle|1\rangle
$$

we get $\quad|x\rangle|y\rangle$ with probability $\quad\left|\alpha_{x y}\right|^{2}$

- $\Sigma|\alpha|^{2}$, for amplitudes of all states matching an output bit-pattern, gives the probability that it will be read.
- Example:
$0.316|00>+0.447| 01>+0.548|10>+0.632| 11>$
- The probability to read the rightmost bit as 0 is $|0.316|^{2}+$ $|0.548|^{2}=0.4$
- Measurement during a computation changes the state of the system but can be used in some cases to increase efficiency (measure and halt or continue).

Versus

Classical vs. Quantum Circuits

- Goal: Fast, low-cost implementation of useful algorithms using standard components (gates) and design techniques
- Classical Logic Circuits
- Circuit behavior is governed implicitly by classical physics
- Signal states are simple bit vectors, e.g. $X=01010111$
- Operations are defined by Boolean Algebra
- No restrictions exist on copying or measuring signals
- Small well-defined sets of universal gate types, e.g. \{NAND\}, \{AND,OR,NOT\}, \{AND,NOT\}, etc.
- Well developed CAD methodologies exist
- Circuits are easily implemented in fast, scalable and macroscopic technologies such as CMOS

Classical vs. Quantum Circuits

Quantum Logic Circuits

- Circuit behavior is governed explicitly by quantum mechanics
- Signal states are vectors interpreted as a superposition of binary "qubit" vectors with complex-number coefficients

$$
|\Psi\rangle=\sum_{i=0}^{2^{n}-1} c_{i}\left|i_{n-1} i_{n-1} \ldots i_{0}\right\rangle
$$

- Operations are defined by linear algebra over Hilbert Space and can be represented by unitary matrices with complex elements
- Severe restrictions exist on copying and measuring signals
- Many universal gate sets exist but the best types are not obvious
- Circuits must use microscopic technologies that are slow, fragile, and not yet scalable, e.g., NMR

Quantum Circuit Characteristics

- Unitary Operations
- Gates and circuits must be reversible (information-lossless)
- Number of output signal lines $=$ Number of input signal lines
- The circuit function must be a bijection, implying that output vectors are a permutation of the input vectors
- Classical logic behavior can be represented by permutation matrices
- Non-classical logic behavior can be represented including state sign (phase) and entanglement

Quantum Circuit Characteristics

- Quantum Measurement
- Measurement yields only one state X of the superposed states
- Measurement also makes X the new state and so interferes with computational processes
$-X$ is determined with some probability, implying uncertainty in the result
- States cannot be copied ("cloned"), implying that signal fanout is not permitted
- Environmental interference can cause a measurement-like state collapse (decoherence)

Classical vs. Quantum Cïrcuits

Classical vs. Quantum Cirrcuits

Quantum adder

Controlled σ_{x} is the same as Feynman

Reversible

Reversible Circuits

- Reversibility was studied around 1980 motivated by power minimization considerations
- Bennett, Toffoli et al. showed that any classical logic circuit C can be made reversible with modest overhead

Reversible Circuits

- How to make a given f reversible
- Suppose $f: i \rightarrow f(i)$ has n inputs m outputs
- Introduce n extra outputs and m extra inputs
- Replace f by $f_{\text {rev }}: i, j \rightarrow i, f(i) \oplus j$ where \oplus is XOR
- Example 1: $f(a, b)=\operatorname{AND}(a, b)$

a	b	c	a	b	f
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

- This is the well-known Toffoli gate, which realizes AND when $c=0$, and NAND when $c=1$.

Reversible Circuits

- Reversible gate family [Toffoli 1980]

NOT

XOR/FAN-OUT

AND/NAND
(Toffoli gate)

generalized AND/NAND

- Every Boolean function has a reversible implementation using Toffoli gates.
- There is no universal reversible gate with fewer than three inputs

Gates

Quantum Gates

- One-Input gate: NOT
- Input state: $c_{0}|0\rangle+c_{1}|1\rangle$
- Output state: $c_{1}|0\rangle+c_{0}|1\rangle$

- Pure states are mapped thus: $|0\rangle \rightarrow|1\rangle$ and $|1\rangle \rightarrow|0\rangle$
- Gate operator (matrix) is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}$
- As expected:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Quantum Gates

- One-Input gate: "Square root of NOT"

- Some matrix elements are imaginary
- Gate operator (matrix):
- We find:

$$
\left(\begin{array}{ll}
i / \sqrt{1 / 2} & 1 / \sqrt{1 / 2} \\
1 / \sqrt{1 / 2} & i / \sqrt{1 / 2}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)
$$

$\frac{1}{\sqrt{2}}\left(\begin{array}{ll}i & 1 \\ 1 & i\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{i}{1}$ so $|0\rangle \rightarrow|0\rangle$ with probability $|i / \sqrt{ } 2|^{2}=1 / 2$ and $|0\rangle \rightarrow|1\rangle$ with probability $|1 / \sqrt{ } 2|^{2}=1 / 2$
Similarly, this gate randomizes input $|1\rangle$

- But concatenation of two gates eliminates the randomness!

$$
\frac{1}{2}\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

Quantum Gates

- One-Input gate: Hadamard

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- Maps $|0\rangle \rightarrow 1 / \sqrt{ } 2|0\rangle+1 / \sqrt{ } 2|1\rangle$ and $|1\rangle \rightarrow 1 / \sqrt{ } 2|0\rangle-1 / \sqrt{ } 2|1\rangle$.
- Ignoring the normalization factor $1 / \sqrt{ } 2$, we can write $|x\rangle \rightarrow(-1)^{x}|x\rangle-|1-x\rangle$
- One-Input gate: Phase shift

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)
$$

Quentum Gates

Universal One-Input Gate Sets

- Requirement:

$$
|0\rangle-\mathrm{U} \quad \text { Any state }|\psi\rangle
$$

- Hadamard and phase-shift gates form a universal gate set of 1-qubit gates, every 1-qubit gate can be built from them.
- Example: The following circuit generates $|\psi\rangle=\cos \theta|0\rangle+e^{i \phi} \sin \theta|1\rangle$ up to a global factor

Other Quantum Gates

Rotation $(U \theta):\left[\begin{array}{cc}{\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ {[-\sin (\theta)} & \cos (\theta)]\end{array}\right]}\end{array}\right.$
Hadamard $\left.(H): \begin{array}{cc}1 & 1 \\ \sqrt{2}[1 & 1\end{array}\right]$

There are many small "universal" sets of gates. Gates must be unitary: $U^{\dagger} U=U U^{\dagger}$, where U^{\dagger} is the Hermitean adjoint of U.

Quantum Gates

- Two-Input Gate: Controlled NOT (CNOT)

- CNOT maps $|x\rangle|0\rangle \rightarrow|x\rangle \| x\rangle$ and $|x\rangle|1\rangle \rightarrow|x\rangle|\mid$ NOT $x\rangle$ $|x\rangle|0\rangle \rightarrow|x\rangle||x\rangle$ looks like cloning, but it's not. These mappings are valid only for the pure states $|0\rangle$ and |1>
- Serves as a "non-demolition" measurement gate

Polarizing Beam-Splitter CNOT gate from [Cerf,Adami, Kwiat]

- Two qubits encoded in one photon, one in momentum (direction) and one in polarization.
- Polarization controls change in momentum.
- Cannot be scaled up directly, but demonstrates an implementation of a 2 -qubit gate.

Quantum Gates

- 3-Input gate: Controlled CNOT (C^{2} NOT or Toffoli gate)
$\left\lvert\,\left(\left.\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array} \right\rvert\,\right.\right.$

Quantum Gates

- General controlled gates that control some 1qubit unitary operation U are useful

$$
\begin{gathered}
\left(\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right) \\
-U
\end{gathered}
$$

etc.
$\mathrm{C}(U)$
$\mathrm{C}^{2}(U)$

Ouantum

Universal Gate Sets

- To implement any unitary operation on n qubits exactly requires an infinite number of gate types
- The (infinite) set of all 2-input gates is universal - Any n-qubit unitary operation can be implemented using $\Theta\left(n^{3} 4^{n}\right)$ gates [Reck et al. 1994]
- CNOT and the (infinite) set of all 1-qubit gates is universal

Quantum Gates

Discrete Universal Gate Sets

- The error on implementing U by V is defined as

$$
E(U, V)=\max _{|\Psi\rangle} x \|(U-V)|\Psi\rangle \|
$$

- If U can be implemented by K gates, we can simulate U with a total error less than ε with a gate overhead that is polynomial in $\log (K / \varepsilon)$
- A discrete set of gate types \boldsymbol{G} is universal, if we can approximate any U to within any $\varepsilon>0$ using a sequence of gates from \boldsymbol{G}

Quantum Gates

Discrete Universal Gate Set

- Example 1: Four-member "standard" gate set

$$
\begin{aligned}
& \begin{array}{l}
\left(\left.\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array} \right\rvert\,\right. \\
0 \\
0
\end{array} 0 \\
& \text { CNOT } \\
& \text { Hadamard } \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) \\
& \text { Phase } \pi / 8(\mathrm{~T}) \text { gate }
\end{aligned}
$$

- Example 2: \{CNOT, Hadamard, Phase, Toffoli\}

Quantum Circuits

Quantum Circuits

- A quantum (combinational) circuit is a sequence of quantum gates, linked by "wires"
- The circuit has fixed "width" corresponding to the number of qubits being processed
- Logic design (classical and quantum) attempts to find circuit structures for needed operations that are
- Functionally correct
- Independent of physical technology
- Low-cost, e.g., use the minimum number of qubits or gates
- Quantum logic design is not well developed!

Quantum Circuits

- Ad hoc designs known for many specific functions and gates
- Example 1 illustrating a theorem by [Barenco et al. 1995]: Any $\mathrm{C}^{2}(U)$ gate can be built from CNOTs, $\mathrm{C}(V)$, and $\mathrm{C}\left(V^{\dagger}\right)$ gates, where $V^{2}=U$

Quantum Circuits

Example 1: Simulation

Quantum Circuits

Example 1: Simulation (contd.)

- Exercise: Simulate the two remaining cases

Quantum Circuits

Example 1: Algebraic analysis

$$
\therefore \text { Is } \begin{aligned}
U_{0}\left(x_{1}, x_{2}, x_{3}\right) & =\widehat{U_{5} U_{4} U_{3} U_{2} U_{1}}\left(x_{1}, x_{2}, x_{3}\right) \\
& =\left(x_{1}, x_{2}, x_{1} x_{2} \oplus U\left(x_{3}\right)\right) ?
\end{aligned}
$$

We will verify unitary matrix of Toffoli gate

Observe that the order of matrices U_{i} is inverted.

Quantum Circuits

Example 1 (contd);

$$
U_{1}=I_{1} \otimes C(V)
$$

Unitary matrix of a wire

Kronecker since this is a parallel connection

We calculate the Unitary Matrix U_{1} of the first block from left.

$$
\left.=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right| \begin{array}{lllllll}
0 & 0 & v_{00} & v_{01} \\
0 & 0 & v_{10} & v_{11}
\end{array}\right)=\left|\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mid \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right|
$$

Unitary matrix of a controlled V gate (from definition)

Quantum Circuits

Example 1 (contd);

$$
\begin{aligned}
& U_{2}=U_{4}=\operatorname{CNOT}\left(x_{1}, x_{2}\right) \otimes I_{1}
\end{aligned}
$$

Unitary matrix of CNOT or Feynman gate with EXOR down

As we can check in the schematics, the Unitary Matrices U_{2} and U_{4} are the same

Quantum Circuits

Example 1 (contd);

$$
\begin{aligned}
& U_{2}=U_{4}=\operatorname{CNOT}\left(x_{1}, x_{2}\right) \otimes I_{1} \\
& \left.=\left\lvert\, \begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right.\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left|\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right|
\end{aligned}
$$

Quantum Circuits

Example 1 (contd);

- U_{5} is the same as U_{1} but has x_{1} and x_{2} permuted (tricky!)
- It remains to evaluate the product of five 8×8 matrices $U_{5} U_{4} U_{3} U_{2} U_{1}$ using the fact that $V V^{\dagger}=I$ and $V V=U$

$\left.=\left\lvert\, \begin{array}{ccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{00} v_{00}+\mathbf{v}_{10} v_{10} \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{00} v_{00}+\mathbf{v}_{11} v_{10} \\ \mathbf{v}_{01} v_{01}+\mathbf{v}_{11} v_{11}\end{array}\right.\right)=U_{0}$

Quantum Circuits

Example 1 (contd);

- We calculate matrix U_{3}

$\left.$| 1 | 0 |
| :--- | :--- |
| 0 | 1 |$|\otimes|$| 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 |
| 0 | 0 | $\mathbf{v}_{\mathbf{0 0}}$ | $\mathbf{v}_{\mathbf{1 0}}$ |
| 0 | 0 | $\mathbf{v}_{\mathbf{0 1}}$ | $\mathbf{v}_{\mathbf{1 1}}$ | \right\rvert\,

This is a hermitian matrix, so we transpose and next
calculate complex conjugates, we denote complex conjugates by bold symbols
$\left.\left\lvert\, \begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{v}_{00} & \mathbf{v}_{10} & 0 & 0 & 0 & 0 \\ \| & 0 & \mathbf{v}_{01} & \mathbf{v}_{11} & 0 & 0 & 0 & 0 \\ \| & \| \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \| & \mid \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{00} & \mathbf{v}_{10} \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{01} & \mathbf{v}_{11}\end{array}\right.\right)$$|$

Quantum Circuits

Example 1 (contd);

- U_{5} is the same as U_{1} but has x_{1} and x_{2} permuted because in U_{1} black dot is in variable x_{2} and in U_{5} black dot is in variable x_{1}
- This can be also checked by definition, see next slide.

Quantum Circuits

Example 1 (here we explain in detail how to calculate U_{5})

U_{6} is calculated as a Kronecker product of U_{7} and I_{1}
U_{7} is a unitary matrix of a swap gate

$$
U_{5}=U_{6} U_{1} U_{6}
$$

Quantum Circuits

Example 1 (contd);

- It remains to evaluate the product of five 8×8 matrices $U_{5} U_{4} U_{3} U_{2} U_{1}$ using the fact that $V V^{\dagger}=I$ and $V V=U$

$$
=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{00} v_{00}+\mathbf{v}_{10} v_{10} & \mathbf{v}_{00} v_{01}+\mathbf{v}_{10} v_{11} \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{01} v_{00}+\mathbf{v}_{11} v_{10} & \mathbf{v}_{01} v_{01}+\mathbf{v}_{11} v_{11}
\end{array}\right)=U_{0}
$$

Quantum Circuits

- Implementing a Half Adder
- Problem: Implement the classical functions sum= $x_{1} \oplus x_{0}$ and carry $=x_{1} x_{0}$
- Generic design:

Quantum Circuits

- Half Adder: Generic design (contd.)

$$
U_{A D D}=\left|\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right|
$$

Quantum Circuits

- Half Adder: Specific (reduced) design

