Shor's Factoring

Sources

Richard Spillman
Mike Frank
Isaac Chuang

Quantum Circuits

Quantum Fourier Transform Circuit

$$
|y\rangle=\frac{1}{2^{n / 2}} \sum_{x} e^{i \frac{i \pi}{2 n} \cdot x x}|x\rangle
$$

$A B(\pi) H B(\pi / 2) B(\pi) H B(\pi / 4 \mid B(\pi / 2) B(\pi) H$

Shor's Factoring Algorithm

- Solves the >2000-year-old problem:
- Given a large number N, quickly find the prime factorization of N. (At least as old as Euclid.)
- No polynomial-time (as a function of $n=\lg N$) classical algorithm for this problem is known.
- The best known (as of 1993) was a number field sieve algorithm taking time $\mathbf{O}\left(\exp \left(n^{1 / 3} \log \left(n^{2 / 3}\right)\right)\right)$
- However, there is also no proof that a fast classical algorithm does not exist.
- Shor's quantum algorithm takes time $\mathbf{O}\left(n^{2}\right)$
- No worse than multiplication of n-bit numbers!

More Details of Shor's Algorithm

- Uses a standard reduction of factoring to another number-theory problem called the discrete logarithm problem.
- The discrete logarithm problem corresponds to finding the period of a certain periodic function defined over the integers.
- A general way to find the period of a function is to perform a Fourier transform on the function.
- Shor showed how to generalize an earlier algorithm by Simon, to provide a Quantum Fourier Transform that is exponentially faster than classical ones.

Main Idea: Factoring

- Given two large prime numbers \boldsymbol{p} and \boldsymbol{q} it is easy to calculate their product
$-\boldsymbol{p}=15485863$ and $\boldsymbol{q}=15485867$ then
$\boldsymbol{p} \times \boldsymbol{q}=239813014798221$
- On the other hand, given a large number \boldsymbol{n} it is very difficult to find two integers \boldsymbol{p} and \boldsymbol{q} such that $\boldsymbol{n}=\boldsymbol{p} \times \boldsymbol{q}$

Powers of numbers $\bmod N$

- Given natural numbers (non-negative integers) $N \geq 1, x<N$, and x, consider the sequence: $x^{0} \bmod N, x^{1} \bmod N, x^{2} \bmod N, \ldots$ $=1, x, x^{2} \bmod N, \ldots$
- If x and N are relatively prime, this sequence is guaranteed not to repeat until it gets back to 1.
- Discrete logarithm of y, base $x, \bmod N$:
- The smallest natural number exponent k (if any) such that $x^{k}=y(\bmod N)$.
- I.e., the integer logarithm of y, base x, in modulo- N arithmetic. Example: $\operatorname{dlog}_{7} 13(\bmod N)=$?

Discrete Log Example

- $N=15, x=7, y=13$.
- 1
- X
- $x^{2}=49=4(\bmod 15)$
- $x^{3}=4 \cdot 7=28=13(\bmod 15)$

- $x^{4}=13 \cdot 7=91=1(\bmod 15)$
- So, $\mathrm{dlog}_{7} 13=3(\bmod N)$,
- Because $7^{3}=13(\bmod N)$.

Period 4

The order of $x \bmod N$

- Problem: Given $N>0$, and an $x<N$ that is relatively prime to N, what is the smallest value of $k>0$ such that $x^{k}=1(\bmod N)$?
- This is called the order of $x(\bmod N)$.
- From our previous example, the order of $7 \bmod N$ is...?

Order-finding permits Factoring

- A standard reduction of factoring N to finding orders $\bmod N$:
Γ - 1. Pick a random number $x<N$.
- 2. If $\operatorname{gcd}(x, N) \neq 1$, return it (it's a factor).
- 3. Compute the order of $x(\bmod N)$.
- Let $r:=\min k>0: x^{k} \bmod N=1$
- 4. If $\operatorname{gcd}\left(x^{r / 2} \pm 1, N\right) \neq 1$, return it (it's a factor).
- 5. Repeat as needed.
- The expected number of repetitions of the loop needed to find a factor with probability >0.5 is known to be only polynomial in the length of N.

Factoring Example

- For $N=15, x=7 \ldots$
- Order of x is $r=4$.
- $r / 2=2$.
- $x^{2}=5$.
- In this case (we are lucky),
 both $x^{2}+1$ and $x^{2}-1$ are factors (3 and 5).
- Now, how do we compute orders efficiently?

Main Idea: Number Theory Trick

- Given an integer \mathbf{N} to factor, create a function:
$-f_{N}(a)=x^{a} \bmod N$
$-\mathbf{x}$ is a random integer such that $\operatorname{gcd}(\mathbf{x}, \mathbf{N})=\mathbf{1}$
- It turns out that $\mathbf{f}_{\mathrm{N}}(\mathbf{a})$ is periodic
- For successive inputs $\mathbf{a}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$ The function values $\mathbf{f}_{\mathrm{N}}(0), \mathbf{f}_{\mathrm{N}}(1), \ldots$ will repeat (different \mathbf{x} values will produce different patterns)
- For a given \mathbf{x}, the period of the pattern is r

There is a very good chance that the $\operatorname{gcd}\left(N, x^{r / 2}-1\right)$ is a factor of N

- Given an integer \mathbf{N} to factor, create a function:
$-f_{n}(a)=x^{a} \bmod N$
$-\mathbf{x}$ is a random integer such that $\operatorname{gcd}(\mathbf{x}, \mathbf{N})=\mathbf{1}$

Example

- It turns out that $\mathbf{f}_{\mathrm{N}}(\mathbf{a})$ is periodic
- For successive inputs $a=0,1,2, \ldots$ The function values $f_{N}(0), f_{N}(1), \ldots$ will repeat (different \mathbf{x} values will produce different patterns)
- For a given \mathbf{x}, the period of the pattern is r

There is a very good chance that the $\operatorname{gcd}\left(\mathrm{N}, \mathrm{x}^{\mathrm{r} / 2}-1\right)$

 is a factor of \mathbf{N}Select $x=8$ then $f_{15}(a)=8^{a}$ mod
$\operatorname{gcd}\left(N, x^{r / 2}-1\right)$
15

3 is a factor of 15

Main Idea: Quantum Approach

Goal: Find the period of $f_{N}(a)$

PROCESS: construct a single quantum register then partition it into two parts

- R1 and R2
- Store a superposition of all values of \boldsymbol{a} in \mathbf{a}
- Evaluate $f_{N}(a)$ and place the result in \mathbf{b}

Main Idea: Using b

- Now b is a superposition of all possible function values (it only took 1 evaluation)
- Measure b-this causes it to collapse to a single value, say \mathbf{k}
- This means that for some $\mathbf{a}, \mathbf{x}^{\mathbf{a}} \bmod \mathbf{N}=\mathbf{k}$
- Because \mathbf{a} and \mathbf{b} are entangled, a now contains a superposition of only those values of a such that $x^{a} \bmod \mathbf{N}=k$

Select $x=8$ then $f_{15}(a)=8^{a} \bmod 15$

$$
\operatorname{gcd}\left(N, x^{r / 2}-1\right)
$$

3 is a factor of 15

Main Idea: Fourier Transform

- Perform a Fourier Transform on a to find the period \mathbf{r}
- Calculate the gcd to find a possible factor

Quantum Order-Finding

- Uses 2 quantum registers (a, b)
$-0 \leq a<q$, is the k (exponent) used in order-finding.
$-0 \leq b<n$, is the $y\left(x^{k} \bmod n\right)$ value
$-q$ is the smallest power of 2 greater than N^{2}.
- Algorithm:
- 1. Initial quantum state is $|0,0\rangle$, i.e., $(a=0, b=0)$.
-2 . Go to superposition of all possible values of a :

Initial State

After Doing Hadamard Transform on all bits of a

After modular exponentiation $b=x^{a}(\bmod N)$

32	
	1 1
-	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0 Register a 255

State After Fourier Transform

