Quantum Error
 Correction

SOURCES:

Michele Mosca

Richard Spillman

* PROBLEM: When computing with a quantum computer, you can't look at what the computer is doing
> You are only allowed to look at the end
* RESULT: What happens if an error is introduced during calculation?
* SOLUTION: We need some sort of quantum error detection/correction procedure
* In standard digital systems bits are added to a data word in order to detect/correct errors
* A code is e-error detecting if any fault which causes at most e bits to be erroneous can be detected
* A code is e-error correcting if for any fault which causes at most e erroneous bits, the set of all correct bits can be automatically determined
* The Hamming Distance, d, of a code is the minimum number of bits in which any two code words differ
$>$ the error detecting/correcting capability of a code depends on the value of d

* PROCESS: Add an extra bit to a word before transmitting to make the total number of bits even or odd (even or odd parity)
> at the receiving end, check the number of bits for even or odd parity
$>$ It will detect a single bit error
$>$ Cost: extra bit
* Example: Transmit the 8-bit data word 101100 01
> Even parity version: 101100010
> Odd parity version: 101100011 Pebershor
$\%$ In 1995, Peter Shor developed an improved procedure using 9 qubits to encode a single qubit of information
$*$ His algorithm was a majority vote type of system that allowed all single qubit errors to be detected and corrected
*Suppose errors in our physical system for storing 0 and 1 cause each physical bit to be toggled independently with probability p
*We can reduce the probability of error to be in $O\left(p^{2}\right)$ by using a "repetition code"
e.g. : encode a logical 0 with the state 000 and a logical 1 with the state 111

Reversilble netwoiks for enooding and

cleooding

*After the errors occur, decode the logical bits by taking the majority answer of the three bits and correct the encoded bits

* So

$$
\begin{array}{ll}
000 \rightarrow 000 & 111 \rightarrow 111 \\
001 \rightarrow 000 & 011 \rightarrow 111 \\
010 \rightarrow 000 & 101 \rightarrow 111 \\
100 \rightarrow 000 & 110 \rightarrow 111
\end{array}
$$

Classical Enor Conecting Codes

*As long as less than 2 errors occurred, we will keep the correct value of the logical bit * The probability of 2 or more errors is

$$
3 p^{2}(1-p)+p^{3}=3 p^{2}-2 p^{3} \in O\left(p^{2}\right)
$$

(which is less than p if $p<\frac{1}{2}$)

Example of 3-quibit enor oonection

*A 3-bit quantum error correction scheme uses an encoder and a decoder circuit as shown below:
 qubits with the input qubit:

1. If the input state is $|0\rangle$ then the encoder does nothing so the output state is |000>
2. If the input state is $\mid 1>$ then the encoder flips the lower states so the output state is |111>
3. If the input is an superposition state, then the output is the entangled state $a|000>+b| 111>$

* Problem: Any correction must be done without looking at the output
> The decoder looks just like the encoder:

If the input to the decoder is $\mid 000>$ or $\mid 111>$ there was no error so the output of the decoder is:

Input	Output
$\|000>1000\rangle$	
\|111>	1100 (the top 1 c
	Error free flag

Example contbinusedb

Consider all the possible error conditions:

No Errors:
$\mathrm{a}|000>+\mathrm{b}| 111>$ decoded to $\mathrm{a}|000>+\mathrm{b}| 100>=(\mathrm{a}|0\rangle+\mathrm{b} \mid 1>) \mid 00>$
Top qubit flipped:
$\mathrm{a}|100>+\mathrm{b}| 011>$ decoded to $\mathrm{a}|111>+\mathrm{b}| 011>=(\mathrm{a}|1>+\mathrm{b}| 0>) \mid 11>$ So, flip the top qubit $=(a|0\rangle+b \mid 1>) \mid 11>$
Middle qubit flipped: $\mathrm{a}|010>+\mathrm{b}| 101>$ decoded to $\mathrm{a}|010>+\mathrm{b}| 110>=(\mathrm{a}|0\rangle+\mathrm{b} \mid 1>) \mid 10>$

Bottom qubit flipped: $\mathrm{a}|001>+\mathrm{b}| 110>$ decoded to $\mathrm{a}|001>+\mathrm{b}| 101>=(\mathrm{a}|0\rangle+\mathrm{b} \mid 1>) \mid 01>$
*The prior decoder circuit requires the measurement of the two extra bits and a possible flip of the top bit
> Both these operations can be implemented automatically using a Toffoli gate

If these are both 1 then flip the top bit emorconcection
*Assume that $e_{3}+e_{2}+e_{1} \leq 1 \quad e_{i} \in\{0,1\}$
$6 \oplus e$
$6 \oplus e$
$6 \oplus$

If $s_{1} s_{2}=00$ then no error occurred

- Otherwise, the error occurred in 6 it j where $j=2 s_{1}+s_{2}$

Equivalenily using measurements

Stahilivermeasurement??

- This is implementing a Z_{1} measurement (interpreting 0 as +1 , and 1 as -1)

Stabilivernmeasurement??

- Tfis is implementing a $Z_{1} Z_{2}$
measurement

Stabilivernmeasurement??

- Tfis is implementing a $X_{1} X_{2}$
measurement

Nobation Clanimication

- For ann-qubit system Z_{j} denotes

$$
\underbrace{I \otimes I \otimes \ldots \otimes I \otimes Z \otimes \underbrace{I \otimes \ldots \otimes I}_{n-j}}_{j-1}
$$

- E.g. $n=3$, then
$Z_{1} Z_{2}=(Z \otimes I \otimes I)(I \otimes Z \otimes I)=(Z \otimes Z \otimes I)$

Perfom operations on logicall bits

*e.g. NOT gate

Perfom operations on logicall bits

e.g. c-NOT gate

Quantum Enor Comecting Codes

*e.g. : encode a logical $|0\rangle$
with the state $|000\rangle$
and a logical $|1\rangle$ with the state $|111\rangle$

Quantumnetwork forenooding

$(\alpha|0\rangle+\beta|1\rangle)|0\rangle|0\rangle \rightarrow \alpha|0\rangle|0\rangle|0\rangle+\beta|1\rangle|1\rangle|1\rangle$

Quanhumnetworkfor

conecting enors

*Assume that $e_{3}+e_{2}+e_{1} \leq 1 \quad e_{i} \in\{0,1\}$

$\alpha\left|e_{3}\right\rangle\left|e_{2}\right\rangle\left|e_{1}\right\rangle+\beta\left|1 \oplus e_{3}\right\rangle\left|1 \oplus e_{2}\right\rangle\left|1 \oplus e_{1}\right\rangle \rightarrow$ $\alpha|0\rangle|0\rangle|0\rangle+\beta|1\rangle|1\rangle|1\rangle$

Equivalently

Perfom operations on logicall bits

e.g. Hadamard gate

What is the problem with classical cryptography?

*Secret key cryptography
> Requires secure channel for key distribution
>In principle every classical channel can be monitored passively
$>$ Security is mostly based on complicated non-proven algorithms
*Public key cryptography
$>$ Security is based on non-proven mathematical assumptions (e.g. difficulty of factoring large numbers)
> We DO know how to factorize in polynomial time! Shor's algorithm for quantum computers. Just wait until one is built.
>Breakthrough renders messages insecure retroactively

Key distribution

\& Secret key cryptography requires secure channel for key distribution.

* Quantum cryptography distributes the key by transmitting quantum states in open channel.

The holy grail: One-time pad

*The only cipher mathematically proven
*Requires massive amounts of key material

6451
75145 43047 *4636 *7649 63461 03137

$56724 \quad 3507946598 \quad 7637129837 \quad 70579$
$43632 \quad 721038080717801 \quad 27430 \quad 71118$
$72097 \quad 5516845432 \quad .0896 \quad 26698 \quad 31812$

$00799+1393 \quad 2145395296890654240$

Cyypto Definitions: Alice, Bob and Eve

It is a standard in cryptography to define the sender, receiver, and interceptor as:
$>$ Alice is the one who sends the ciphertext
$>$ Bob is the one who receives the ciphertext
>Eve is the (evil) one who tries to steal the plaintext or key

