

SOURCES:

Michele Mosca

Richard Spillman

PROBLEM: When computing with a quantum computer, you can't look at what the computer is doing

> You are only allowed to look at the end

RESULT: What happens if an error is introduced during calculation?

SOLUTION: We need some sort of quantum error detection/correction procedure

Classical Error Codes

- In standard digital systems bits are added to a data word in order to detect/correct errors
- A code is e-error detecting if any fault which causes at most e bits to be erroneous can be detected
- A code is e-error correcting if for any fault which causes at most e erroneous bits, the set of all correct bits can be automatically determined
- The Hamming Distance, d, of a code is the minimum number of bits in which any two code words differ
 - The <u>error detecting/correcting capability</u> of a code depends on the value of d

PROCESS: Add an extra bit to a word before transmitting to make the total number of bits even or odd (even or odd parity)

- at the receiving end, check the number of bits for even or odd parity
- > It will detect a single bit error
- Cost: extra bit

Example: Transmit the 8-bit data word 1 0 1 1 0 0 0 1

- Even parity version: 101100010
- > Odd parity version: 101100011

Quantum Error Correcting by Peter Shor

In 1995, Peter Shor developed an improved procedure using 9 qubits to <u>encode a single qubit</u> of information

His algorithm was a majority vote type of system that allowed all single qubit errors to be detected and corrected

Classical Error Correcting Codes

- Suppose errors in our physical system for storing 0 and 1 cause each physical bit to be toggled independently with probability p
- We can reduce the probability of error to be in O(p²) by using a "repetition code"
- e.g. : encode a logical 0 with the state 000 and a logical 1 with the state 111

Reversible networks for encoding and decoding

Classical Error Correcting Codes

- After the errors occur, decode the logical bits by taking the majority answer of the three bits and correct the encoded bits
 So
 - $\begin{array}{ll} 000 \rightarrow 000 & 111 \rightarrow 111 \\ 001 \rightarrow 000 & 011 \rightarrow 111 \\ 010 \rightarrow 000 & 101 \rightarrow 111 \\ 100 \rightarrow 000 & 110 \rightarrow 111 \end{array}$

Classical Error Correcting Codes

As long as less than 2 errors occurred, we will keep the correct value of the logical bit The probability of 2 or more errors is

$$3p^{2}(1-p) + p^{3} = 3p^{2} - 2p^{3} \in O(p^{2})$$

(which is less than p if $p < \frac{1}{2}$)

Example of 3-qubit error correction

A 3-bit <u>quantum error correction</u> <u>scheme</u> uses an <u>encoder</u> and a <u>decoder</u> circuit as shown below:

Encoder

The encoder will entangle the two redundant qubits with the input qubit:

- 1. If the input state is |0> then the encoder does nothing so the output state is |000>
- 2. If the input state is |1> then the encoder flips the lower states so the output state is |111>

3. If the input is an superposition state, then the output is the entangled state a |000> + b|111>

Problem: Any correction must be done <u>without</u> looking at the output

The decoder looks just like the encoder:

If the input to the decoder is |000> or |111> there was no error so the output of the decoder is:

Example continued: Consider all the possible error

conditions:

No Errors:

a|000> + b|111> decoded to a|000> + b|100> = (a|0> + b|1>)|00>

- **Top qubit flipped: a**|100> + **b**|011> **decoded to a**|111> + **b**|011> = (**a**|1> + **b**|0>)|11> So, flip the top qubit = (**a**|0> + **b**|1>)|11>
- **Middle qubit flipped:** a|010> + b|101> decoded to a|010> + b|110> = (a|0> + b|1>)|10>
- **Bottom qubit flipped:**

a|001> + b|110> decoded to a|001> + b|101> = (a|0> + b|1>)|01>

Decoder without Measurement

The prior decoder circuit requires the measurement of the two extra bits and a possible flip of the top bit

Both these operations can be implemented automatically using a Toffoli gate

Reversible 5-qubit network for error correction

Assume that $e_3 + e_2 + e_1 \le 1$ $e_i \in \{0,1\}$

If s₁s₂ = 00 then no error occurred
Otherwise, the error occurred in bit j where j = 2s₁ + s₂

Equivalently using measurements

Stabilizer measurement??

 This is implementing a Z₁ measurement (interpreting 0 as +1, and 1 as -1)

Stabilizer measurement??

• This is implementing a Z_1Z_2 measurement

Stabilizer measurement??

• This is implementing a X_1X_2 measurement

Notation clarification

• For an n-qubit system Z_j denotes

• E.g. n=3, then

 $Z_1Z_2 = (Z \otimes I \otimes I)(I \otimes Z \otimes I) = (Z \otimes Z \otimes I)$

Perform operations on logical bits

✤e.g. NOT gate

Perform operations on logical bits

✤e.g. c-NOT gate

Quantum Error Correcting Codes

✤ e.g. : encode a logical $|0\rangle$ with the state $|000\rangle$ and a logical $|1\rangle$ with the state $|111\rangle$

Quantum network for encoding

 $(\alpha | \mathbf{O} \rangle + \beta | \mathbf{1} \rangle) | \mathbf{O} \rangle | \mathbf{O} \rangle \rightarrow \alpha | \mathbf{O} \rangle | \mathbf{O} \rangle + \beta | \mathbf{1} \rangle | \mathbf{1} \rangle | \mathbf{1} \rangle$

Quantum network for correcting errors

Assume that $e_3 + e_2 + e_1 \le 1$ $e_i \in \{0,1\}$

$$\begin{split} &\alpha \big| e_{_{3}} \big\rangle \big| e_{_{2}} \big\rangle \big| e_{_{1}} \big\rangle + \beta \big| 1 \oplus e_{_{3}} \big\rangle \big| 1 \oplus e_{_{2}} \big\rangle \big| 1 \oplus e_{_{1}} \big\rangle \rightarrow \\ &\alpha \big| 0 \big\rangle \big| 0 \big\rangle \big| 0 \big\rangle + \beta \big| 1 \big\rangle \big| 1 \big\rangle \end{split}$$

Perform operations on logical bits

e.g. Hadamard gate

What is the problem with classical cryptography?

Secret key cryptography

- Requires secure channel for key distribution
- > In principle every classical channel can be monitored passively
- Security is mostly based on complicated non-proven algorithms

Public key cryptography

- Security is based on non-proven mathematical assumptions (e.g. difficulty of factoring large numbers)
- We DO know how to factorize in polynomial time! Shor's algorithm for quantum computers. Just wait until one is built.
- >Breakthrough renders messages insecure retroactively

Secret key cryptography requires secure channel for key distribution.

Quantum cryptography distributes the key by transmitting quantum states in open channel.

The holy grail: One-time pad

The only cipher mathematically proven Requires massive amounts of key material

Crypto Definitions: Alice, Bob and Eve

It is a standard in cryptography to define the sender, receiver, and interceptor as:

Alice is the one who sends the ciphertext

- Bob is the one who receives the ciphertext
- Eve is the (evil) one who tries to steal the plaintext or key

