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Administrivia/Overview

e Readings & and homeworks are now posted

e Basic quantum theory
— Background concepts: Systems & states
— Distinguishable states, state vectors, Hilbert
spaces
— Ket Notation, measurement, wavefunctions
— Operators, observables, entanglement
— Unitary transformations & time-evolution



Linear Operators

e \V,W: Vector spaces.

e A linear operator A from V to W Is a linear
function A:V - W. An operator on V iIs an
operator from V to itself.

e Given bases for V and W, we can represent linear
operators as matrices.

e An operator A on V Is Hermitian_Iiff it is self-
adjoint (A=A"). Its diagonal elements are real.



Eigenvalues & Eigenvectors

v IS called an eigenvector of linear operator A iff
A just multiplies v by a scalar x, 1.e. Av=xv

— “elgen” (German) = “characteristic”.

X, the eigenvalue corresponding to eigenvector v,
IS just the scalar that A multiplies v by.

X 1S degenerate If it is shared by 2 eigenvectors
that are not scalar multiples of each other.

Any Hermitian operator has all real-valued
elgenvectors, which are orthogonal (for distinct
eigenvalues).



Unitary Transformations

o A matrix (or linear operator) U is unitary iff its
inverse equals its adjoint: U™t = UT

e Some properties of unitary transformations:
— Invertible, bijective, one-to-one.
— The set of row vectors Is orthonormal.
— Ditto for the set of column vectors.

— Preserves vector length: (U¥Y = |¥/|
» Therefore also preserves total probability over all states:

W Z#LP(S )
— Corresponds to a change of basis, from one
orthonormal basis to another.
— Or, a generalized rotation of ¢ in Hilbert space
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Postulates of Quantum Mechanics
Lecture objectives

e \WWhy are postulates important?
— ... they provide the connections between the

physical, real, world and the quantum
mechanics mathematics used to model these
systems

e L_ecture ODbjectives
— Description of connections
— Introduce the postulates
— Learn how to use them
— ...and when to use them




Physical Systems -
Quantum Mechanics
Connections

Isolated physical

#  Hilbert Space

system
Evolution of a physical » Unitary
system ~~ transformation
Measurements of a i Measurement
physical system operators

Composite physical ? Tensor product
system ~~of components



Postulate 1:

State Space



Systems and Subsystems

 Intuitively speaking, a physical system consists

of a region of spacetime & all the entities (e.qg.

particles & fields) contained within it.

— The universe (over all time) Is a physical system

— Transistors, computers, people: also physical
systems. 5

e One physical system A Is a subsystem o
another system B (write ALIB) Iff A'is @
completely contained within B.

 Later, we may try to make these definitions
more formal & precise.




Closed vs. Open Systems

e A subsystem is closed to the extent that no
particles, information, energy, or entropy enter
or leave the system.

— The universe is (presumably) a closed system.
— Subsystems of the universe may be almost closed

e Often In physics we consider statements about
closed systems.

— These statements may often be perfectly true only In
a perfectly closed system.

— However, they will often also be approximately true
In any nearly closed system (in a well-defined way)



Concrete vs. Abstract Systems

« Usually, when reasoning about or interacting
with a system, an entity (e.g. a physicist) has in
mind a description of the system.

A description that contains every property of
the system Is an exact or concrete description.
— That system (to the entity) Is a concrete system.

e Other descriptions are abstract descriptions.

— The system (as considered by that entity) Is an
abstract system, to some degree.

 We nearly always deal with abstract systems!
— Based on the descriptions that are available to us.




States & State Spaces

A possible state S of an abstract system A
(described by a description D) Is any concrete

system C that is consistent with D.

— l.e,, 1t Is possible that the system in question could be
completely described by the description of C.

e The state space of A Is the set of all possible states
of A.

Most of the class, the concepts we’ve discussed
can be applied to either classical or quantum
physICS

— Now, let’s get to the unigquely guantum stuff...




Distinguishability of States

 Classical and quantum mechanics differ regarding
the distinguishability of states.

 In classical mechanics, there Is no Issue:
— Any two states s, t are either the same (s =t), or
different (s # t), and that’s all there is to it.

e |n quantum mechanics (i.e. in reality):
— There are pairs of states s # t that are mathematically
distinct, but not 100% physically distinguishable.
— Such states cannot be reliably distinguished by any

number of measurements, no matter how precise.
« But you can know the real state (with high probability), if you
prepared the system to be In a certain state.




Postulate 1: State Space

— Postulate 1 defines “the setting” in which Quantum
Mechanics takes place, which is the Hilbert space (inner
product space which satisfies the condition of
completeness)

e Postulatel: Any isolated physical space is associated
with a complex vector space with inner product

called the State Space of the system.
— The system is completely described by a state vector, a unit
vector, pertaining to the state space.
— The state space describes all possible states the system can
be in.
— Postulate 1 does NOT tell us either what the state space or
state vector Is.




An example of a state space

A Qubit: The Simplest
State Space

The simplest quantum system is a state space with
2 dimensions - there are two possible states the

inl .
system can be in! W/) ={ID‘0>+{1’1‘1> =) a qubitl
Recall: state vector is a unit vector, so

wly)=1= \afnf + \aflf —1  (normalization condition)

A linear combination of states is called a superposition
of statesmmpqualitatively new feature: a qubit can be
a mixture of two classical bits!



Postulate 1: An
Isolated physical
system Is described
by a unit vector
(state vector) in a
Hilbert space (state
space)




Distinguishability of States, more
precisely

Two state vectors s and t are (perfectly) - qa .
distinguishable or orthogonal (write sLit) ¥
iff s't = 0. (Their inner product is zero.)

State vectors s and t are perfectly indistinguishable
or identical (write s=t)

iff s't = 1. (Their inner product is one.)

Otherwise, s and t are both non-orthogonal, and
non-identical. Not perfectly distinquishable.

We say, “the amplitude of state s, given state t, IS
s't”. Note: amplitudes are complex numbers.




State Vectors & Hilbert Space

e Let S be any maximal set of distinguishable
possible states s, t, ... of an abstract system A.

* |dentify the elements of S with unit-length,
mutually-orthogonal (basis) vectors in an
abstract complex vector space H.

— The “Hilbert space”

o Postulate 1: The possible states (¢ of A

can be identified with the unit

vectors of H. Qk )




Postulate 2:
Evolution




Postulate 2: Evolution

« Evolution of an isolated system can be expressed as:

v(t,)) =U(t,t,) v(t))

where t,, t, are moments in time and U(t,, t,) IS a unitary

operator.

— U may vary with time. Hence, the corresponding segment of time is
explicitly specified:

o U(tlg t,) _
— the process is in a sense Markovian (history doesn’t_matter) and

U'U|v) = v,

reversible, since

Unitary operations preserve inner product



Example of evolution

Examble: Hadamard Gate

=

Hadamard Gate: H|0) :LQO)HI))

J2 H_1{1 1}

)=o) 2




Time Evolution

* Recall the Postulate: (Closed) systems evolve
(change state) over time via unitary transformations.

Wo = Uy Lo Wh

« Note that since U is linear, a small-factor change in
amplitude of a particular state at t1 leads to a
correspondingly small change in the amplitude of

the corresponding state at t2.
— Chaos (sensitivity to initial conditions) requires an
ensemble of initial states that are different enough to be

distinguishable (in the sense we defined)
e Indistinguishable initial states never beget distinguishable
outcomes - “analog” computing Is infeasible?



Wavefunctions

e Glven any set S of system states (mutually
distinguishable, or not),

e A quantum state vector can also be translated to a
wavefunction W :S - C, giving, for each state

s1S, the amplitude W(s) of that state.

— When s Is another state vector, and the real state Is t,
then W(s) is just s't.

— W is called a wavefunction because its time evolution
obeys an equation (Schrddinger’s equation) which has
the form of a wave equation when S ranges over a
space of positional states.




Schrodinger’s Wave Equation

We have a system with states given by (x,t) where:
— tis aglobal time coordinate, and
— x describes N/3 particles (py,...,Py/3) With masses (my,...,Myy3)
In a 3-D Euclidean space,
— where each p; is located at coordinates (Xs;, X341; Xsisp), @nd
— where particles interact with potential enepgy function V(x,t),

« the wavefunction W(x,t) obeys the fallowing (2"d-order,
linear, partial) differential equatio#:

N -1 2
_h > } 02 W(x,1) +V(x,t):ihiLIJ(X,t)
2\ 530 M j13) OX; ot



Features of the wave equation

e Particles’ momentum state p Is encoded implicitly
by the particle’s wavelength A: p=h/A

* The energy of any state Is given by the frequency
v of rotation of the wavefunction in the complex
plane: E=hv.

e By simulating this simple equation, one can

observe basic quantum phenomena such as:
— Interference fringes
— Tunneling of wave packets through potential barriers



Heisenberqg and Schroedinger
views of Postulate 2

The evolution of a closed system is described by a unitary

transformation. . : :
This iIs Heisenberg picture

‘I,U > (f fh”(fl»‘_
«— U(r,rl)=exp[—;;H(f—f1 )}
— ihi\y/(f)):H‘W(f))‘_

This i1s Schroedinger

’ P ot ] picture
Planck’s constant Hamiltonian (must be input
(set to unity) from physical considerations)

H® = H ==> Hamiltonian has a spectral decomposition
— H_YHENE = B k)
£
Energy eignvalues —— Stationary states

.In this class we are interested in Heisenberg’s view.....



Postulate 3:

Quantum
Measurement




Probability and Measurement

e A yes/no measurement Is an interaction designed
to determine whether a given system is in a
certain state s.

e The amplitude of state s, given the actual state t
of the system determines the probability of
getting a “yes” from the measurement.

e Important: For a system prepared In state t, any
measurement that asks “iIs It in state s?”” will
return “yes” with probability Pr[s|t] = |s't]?

— After the measurement, the state is changed, in a way
we will define later.




A Simple Example of distinguishable, non-
distinguishable states and measurements

e Suppose abstract system S has a set of only 4
distinguishable possible states, which we’ll call
So» S1» S, @Nd S5, With corresponding ket vectors
|SO>1 |Sl>1 |82>1 and |83>'

* Another possible state Is then the vector

1 | i}
ﬁ‘%‘ﬁ S3) 1/32
0
 Which is equal to the column matrix: 0
 If measured to see If It Is In state s, -i/V2

we have a 50% chance of getting a “yes”.



Observables

Hermitian operator A on V is called an
observable If there iIs an orthonormal (all unit-
length, and mutually orthogonal) subset of its
elgenvectors that forms a basis of V.

Postulate 3: Every measurable physical
property of a system is described by a
corresponding operator A. Measurement
outcomes correspond to eigenvalues.

Postulate 3a: The probability of an outcome I3

given by the squared absolute amplitude of the
corresponding eigenvector(s), given the state.




Towards QM Postulate 3 on
measurement and general formulas

A measurement Is described by an Hermitian

operator (observable)
M=2mP,

— P, Is the projector onto the eigenspace of M with
eigenvalue m P

— After the measurement the state will be pmy with
probability p(m) = ([P, |W).

— e.g. measurement of a qubit in the computational basis

e measuring [@) = a0 + (B|1) gives:
* |0) with probability (Q|0)O0|g) = KO|)* = |af?
* |1) with probability (Q[1)X1y) = [KL|Y)* = B



Postulate 3:
Quantum Measurement

The measurement of a closed system is described by a
collection of operators M _ which act on the state space

such that
describes the probability the

1) plm)=(y ‘MmMm\W) measurement outcome m occurred

2) ‘W'> = M’”‘w> is the state of the system after
J(tp M:M, |y) measurement outcome m occurred

)Y MM, =I< Y p(m)=1 Completeness relation

Notes: Measurement is an external observation of a
system and so disturbs its unitary evolution



Now we use this notation for

an Example of Qubit
Measurement

There are two possible outcomes in the measurement of a
qubit: |0) and |1)

=M, =|0)0| M, =1}l (M,+M,=I)

So the probability that|y)=a,|0)+a|1) is in the state|0) is

pO) = (M) =3 0]+ (1{o)0l (0)(0 e 0) 1)
— ot (0]0) =

And the state vector changes: |w) —>E—"’|'|uf) =—2|0)
0



What happens to a system after a
Measurement?

o After a system or subsystem is measured from outside, Its
state appears to collapse to exactly match the measured

outcome
— the amplitudes of all states perfectly distinguishable from states

consistent with that outcome drop to zero
— states consistent with measured outcome can be considered

“renormalized” so their probabilities sum to 1
e This “collapse” seems nonunitary (& nonlocal)

— However, this behavior is now explicable as the expected
consensus phenomenon that would be experienced even by entities

within a closed, perfectly unitarily-evolving world (Everett,
Zurek).




Distinguishability

Only orthogonal states can be distinguished in a measurement!

Why? Suppose|V,)and |V} are not orthogonal, but can be
distinguished by two measurement operators, E;, and E,
where E,+E, =1 ,and E,=MM, We must have

<IV1 ‘E1‘W1> =1 and (Ipf2 ‘Ez‘u/2> -1

since by assumption the states can be distinguished. However
we can also write|y,)=a|y )+ Bl¢) where (¥|@)=0 and
el +1B[ =1

Since E, +E, =Iwe have {,|E.|w,)=0 . But then
(Unless =0 in

<Wz ‘Ez‘la%) =‘,B‘2 (@‘Ez‘ﬁo> < ‘ﬁ‘z <1 @ which case states

/ \ are orthogonal)

Thus we have contradiction, states can be
On the other hand distinguished unless they are orthogonal



Projective
Measurements

Observable: A Hermitian operator on the state space.

Can write: M = ZmP = p(m) = (l!/\P P \W) (‘!/\P “f/>

(each measurement operator is a projector!}
Average value of a measurement:

M)=;mp(m>=;m(w\f'm\w> w2 P, |v)=(w M)

. (expectation value)
Standard deviation of a measurement:

A(M)= \/<(M ~(M)F) = (M?)=(M)"  where (M)=( Miy)




Uncertainty
Principle

Alp)A(q) 2 (':"‘[P’z‘l]‘»"ﬂ

Yty a8y > (4B =L 1A, BL+{a Bl

L I Blv) v Bl b L Bl
Set A=p—{p),B=q—{q) and the result follows!

Measurement errors are not arbitrarily reducible!



Positive Operator-Valued
Measurements (POVM)

Ml

POVM: Any complete set{E, Jof positive operators [ZEm :1}

Recall 1) and |v.)=aly,)+Blo) . Write

N If you observe

E, =|o)}{9| E, then you know
lwd—o e the state is|v.) .

E,= ) ‘ED)XJB(;W o) i you observe E,

then you know the

E,=1-E —-E, state is “Pﬁ) . If you

observe K, then you

POVMs: don't know the state

Advantage:  can never mis-identify a state

Disadvantage: sometimes you get no information




Phase

Global Phase: e°|y) is physically indistinguishable from [)
(wle"MIM, ¢ ly) = (y M/ M, |y)

Relative Phase: |w)=|x)+|¢) can be physically distinguished
from |y)=|x)+e’|9)

) o basis-dependent concept

Local Phase: If the phase is a function of position and/or time
we say that it is local
0 =0(%,1) (not relevant {yet) for
’ quantum computing)



Density Operators

e For agiven state |), the probabilities of all the
basis states s; are determined by an Hermitian

operator or matrix p (the density matrix):
cC, -+ CC

p=[p,)=¥)¥|=[c]c,]=

*

C,C

) C:Cn

n

 The diagonal elements p;; are the probabilities of

the basis states.
— The off-diagonal elements are “coherences”.

e The density matrix describes the state exactly.



Mixed States

e Suppose one only knows of a system that it Is In
one of a statistical ensemble of state vectors v,
(“pure” states), each with density matrix p, and

probability P.. This is called a mixed state.

e This ensemble is completely described, for all
physical purposes, by the expectation
value (weighted average) of density matrices:
P = Z Ro,
— Note: even if there were uncountably many v,

the state remains fully described by <n? complex
numbers, where n Is the number of basis states!



Postulate 4:

Composite

Systems



Compound Systems

e Let C=AB be a system composed of two
separate subsystems A,B each with vector

spaces A, B with bases |a;), [bj).
e The state space of C Is a vector space

C=ALIB given by the tensor product
of spaces A and B, with basis states

labeled as |a;b;).




Postulate 4:
Composite Systems

The state space of a composite system is the tensor product
of the state spaces of its components.

System A: 2)
System B: |)

} System AB: |7)®|¢)

Common usage:
x)®lo)

Physical system / ™~ Ancilla system (corresponds
itV to measurement outcomes
{(call it V) :
-- call it M)

Unitary Dynamics + Projective Measurements
= General Measurement



Composition example

The state space of a composite physical system is
the tensor product of the state spaces of the
components

— n qubits represented by a 2"-dimensional Hilbert space
— composite state Is Q) = |, O |,y U. . .0 |P)
— e.g. 2 qubits:
1) = 04]0) + B]1)
J,) = 01,]0) + [3,]1)
D) = O ) = 0,0,/00) + a,3,[01) + 3,a,|10) + B,3,11)
— entanglement
2 qubits are entangled if |@) # |@,) O |P,) for any |Y,), |W,)
e.g. [y = al00) + fB[11)

~ -

—



Entanglement

e |f the state of compound system C can be
expressed as a tensor product of states of two
Independent subsystems A and B,

L|Jc = l-|Ja|1|J b?

 then, we say that A and B are not entangled, and

they have individual states.
— E.g. [00)+|01)+[10)+|11)=(|0)+[1))T1(|0)+(1))
* Otherwise, A and B are entangled (basically

correlated); their states are not independent.
— E.g. |00)+|11)




Size of Compound State Spaces

* Note that a system composed of many separate
subsystems has a very large state space.

e Say it Is composed of N subsystems, each with k

basis states:

— The compound system has kN basis states!

— There are states of the compound system having
nonzero amplitude in all these kN basis states!

— In such states, all the distinguishable basis states are
(simultaneously) possible outcomes (each with some
corresponding probability)

— lllustrates the “many worlds™ nature of quantum
mechanics.




General Measurements
In compound spaces

Let U:VOM > V®M be defined so that
Uly)|0) =} M, [y )/m)
for a fixed state |0) in M and a general state|¥)in V

= (U190} (Uly)0))= (p OUTIy }0) = X (oMM, Yo )

m

— Z(q; ‘M"mMmhu): ((p ‘t,if} =) U can be defined on
. entire space V@ M
Now set P, =T, ®|m){im|
=) p(m) = ( |(0|UP, Uy | 0) = ):(W\M (|2 ® )| ML, [y )

=Y (w|M%M, |y )= Genemi Measurement!



Superdense
Coding

Idea: exploit entanglement to send more information from
point A to point B that would classically be allowed

Problem: Alice has 2 classical bits of information she wants

to send 1o Bob, but is only allowed to send Bob a single qubit.
Can she do i1?

Solution: Yes! Put Alice's qubit in an entangled state with
Bob's! Alice acts on her qubit and then sends it to Bob -- this
allows Bob to uniquely deduce Alice's 2 classical bits!



Key Points to Remember:

« An abstractly-specified system may have many
possible states; only some are distinguishable.

e A quantum state/vector/wavefunction W assigns
a complex-valued amplitude Y¥(s;) to each
distinguishable state s; (out of some basis set)

 The probability of state s; is |W(s;)|%, the square
of W(s;)’s length in the complex plane.

 States evolve over time via unitary (invertible,
length-preserving) transformations.

e Statistical mixtures of states are represented by
welghted sums of density matrices p=|W)X¥|.
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