Quantum Computing

Lecture on Linear Algebra

Sources: Angela Antoniu, Bulitko, Rezania,
Chuang, Nielsen

Introduction to Quantum Mechanics

- Review Chapters 1 and 2 from Chuang and Nielsen
- Objective
- To introduce all of the fundamental principles of Quantum mechanics
- Quantum mechanics
- The most realistic known description of the world
- The basis for quantum computing and quantum information
- Why Linear Algebra?
- LA is the prerequisite for understanding Quantum Mechanics
- What is Linear Algebra?
- ... is the study of vector spaces... and of
- linear operations on those vector spaces

Linear algebra -Lecture objectives

- Review basic concepts from Linear Algebra:
- Complex numbers
- Vector Spaces and Vector Subspaces
- Linear Independence and Bases Vectors
- Linear Operators
- Pauli matrices
- Inner (dot) product, outer product, tensor product
- Eigenvalues, eigenvectors, Singular Value Decomposition (SVD)
- Describe the standard notations (the Dirac notations) adopted for these concepts in the study of Quantum mechanics
- ... which, in the next lecture, will allow us to study the main topic of the Chapter: the postulates of quantum mechanics

Review: The Complex Number System

- It is the extension of the real number system via closure under exponentiation.

$$
i \equiv \sqrt{-1} \quad c=a+b i \quad(c \in \mathbf{C}, a, b \in \mathbf{R})
$$

The "imaginary" $\operatorname{Re}[c] \equiv a$ unit
$\operatorname{Im}[c] \equiv b$
(Complex) conjugate:

$$
c^{*}=(a+b i)^{*} \equiv(a-b i)
$$

- Magnitude or absolute value:

$$
\begin{aligned}
& |c|^{2}=c^{*} c=a^{2}+b^{2} \\
& \quad|c| \equiv \sqrt{c^{*} c}=\sqrt{(a-b i)(a+b i)}=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Review: Complex Exponentiation

- Powers of i are complex units: $e^{\theta i} \equiv \cos \theta+i \sin \theta$

- Note:
$e^{\pi i / 2}=i$
$e^{\pi i}=-1$
$e^{3 \pi i / 2}=-i$
$e^{2 \pi i}=e^{0}=1$

What is a qubit?

- A qubit has two possible states $|0\rangle$ or $|1\rangle$
- Unlike bits, a quibit can be in a state other than

$$
|0\rangle \text { or }|1\rangle
$$

- We can form linear combinations of states

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- A quibit state is a unit vector in a two dimensional complex vector space

Properties of Qubits

- Qubits are computational basis states
- orthonormal basis

$$
\langle i \mid j\rangle=\delta_{i j} \quad \delta_{i j}=\left\{\begin{array}{l}
0 \text { for } i \neq j \\
1 \text { for } i=j
\end{array}\right.
$$

- we cannot examine a qubit to determine its quantum state
- A measurement yields

0 with probability $|\alpha|^{2}$ 1 with probability $|\beta|^{2}$
where $|\alpha|^{2}+|\beta|^{2}=1$

Complex numbers

- A complex number $Z_{n} \in C$ is of the form $a, b \in R$ where $\quad \boldsymbol{z}_{n}=a_{n}+i b_{n} \quad$ and $\boldsymbol{i}^{2}=-\mathbf{1}$
- Polar representation

$$
z_{n}=u_{n} e^{\sigma_{0}}, \text { where } u_{n}, \theta_{n} \in R
$$

- With $u_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}$ the modulus or magnitude
- And the phase

$$
\theta_{n}=\arctan \left(b_{n} / a_{n}\right)
$$

- Complex conjugate

$$
z_{n}=u_{n}\left(\cos \theta_{n}+i \sin \theta_{n}\right)
$$

$$
z_{n}^{*}=\left(a_{n}+i b_{n}\right)^{*}=a_{n}-i b_{n}
$$

(Abstract)

- A concept from linear algebra.
- A vector space, in the abstract, is any set of objects that can be combined like vectors, i.e.:
- you can add them
- addition is associative \& commutative
- identity law holds for addition to zero vector $\mathbf{0}$
- you can multiply them by scalars (incl. -1)
- associative, commutative, and distributive laws hold
- Note: There is no inherent basis (set of axes)
- the vectors themselves are the fundamental objects
- rather than being just lists of coordinates

Hilbert spaces

- A Hilbert space is a vector space in which the scalars are complex numbers, with an inner product (dot product) operation • : $H \times H \rightarrow \mathbf{C}$
- Definition of inner product:

$$
\begin{aligned}
& x \bullet y=(y \bullet x)^{*} \quad(*=\text { complex conjugate }) \\
& x \bullet x \geq 0
\end{aligned}
$$

"Component" $\boldsymbol{x} \bullet \boldsymbol{x}=0$ if and only if $\boldsymbol{x}=\mathbf{0}$ picture: $\quad \boldsymbol{x} \bullet y$ is linear, under scalar multiplication
 and vector addition within both \boldsymbol{x} and \boldsymbol{y} Another notation often used:

$$
\boldsymbol{x} \bullet \boldsymbol{y} \equiv \underset{\text { "bracket" }}{\langle\boldsymbol{x} \mid \boldsymbol{y}\rangle}
$$

Vector Representation of States

- Let $S=\left\{s_{0}, s_{1}, \ldots\right\}$ be a maximal set of distinguishable states, indexed by i.
- The basis vector \boldsymbol{v}_{i} identified with the $i^{\text {th }}$ such state can be represented as a list of numbers:

$$
\begin{gathered}
s_{0} s_{1} s_{2} \quad s_{i-1} s_{i} s_{i+1} \\
\boldsymbol{v}_{i}=(0,0,0, \ldots, 0,1,0, \ldots)
\end{gathered}
$$

- Arbitrary vectors v in the Hilbert space can then be defined by linear combinations of the \boldsymbol{v}_{i} :

$$
\boldsymbol{v}=\sum c_{i} \boldsymbol{v}_{i}=\left(c_{0}, c_{1}, \ldots\right)
$$

- And the inner product is given by: $\langle\boldsymbol{x} \mid \boldsymbol{y}\rangle=\sum_{i} x_{i}^{*} y_{i}$

Dirac's Ket Notation

- Note: The inner product definition is the same as the matrix product of \boldsymbol{x}, as a conjugated row vector, times \boldsymbol{y}, as a normal column vector.

$$
\langle\boldsymbol{x} \mid \boldsymbol{y}\rangle=\sum x_{i}^{*} y_{i}
$$

$$
\begin{gathered}
\text { "Bracket"" } \bar{i} \\
=\left[\begin{array}{lll}
x_{1}^{*} & x_{2}^{*} & \ldots
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right]
\end{gathered}
$$

- This leads to the definition, for state s, of:
- The "bra" $\langle s|$ means the row matrix $\left[c_{0}{ }^{*} c_{1}{ }^{*} \ldots\right]$
- The "ket" $|s\rangle$ means the column matrix $\quad \rightarrow$
- The adjoint operator ${ }^{\dagger}$ takes any matrix \boldsymbol{M} to its conjugate transpose $\boldsymbol{M}^{\dagger} \equiv \boldsymbol{M}^{\mathrm{T} *}$, so $\langle s|$ can be defined as $|s\rangle^{\dagger}$, and $\boldsymbol{x} \bullet \boldsymbol{y}=\boldsymbol{x}^{\dagger} \boldsymbol{y}$.

Vectors

Characteristics:

- Modulus (or magnitude)
- Orientation
- Matrix representation of a vector

$$
\begin{aligned}
& |\mathbf{v}\rangle=\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right] \text { (a column), and its dual } \\
& \mathbf{v}\rangle^{\tau}=\langle\mathbf{v}|=\left[z_{1}^{*}, \cdots, z_{n}^{*}\right] \text { (row vector) }
\end{aligned}
$$

Vector Space, definition:

- A vector space (of dimension \boldsymbol{n}) is a set of \boldsymbol{n} vectors satisfying the following axioms (rules):
- Addition: add any two vectors $\mathbf{v}\rangle$ and $\mathbf{v}\rangle$ pertaining to a vector space, say $\mathbf{C}^{\mathbf{n}}$, obtain a vector,

the sum, with the properties :
- Commutative: $\quad|\mathbf{v}\rangle+\left|\mathbf{v}^{\prime}\right\rangle=\left|\mathbf{v}^{\prime}\right\rangle+|\mathbf{v}\rangle$
- Associative: $\left(|\mathbf{v}\rangle+\left|\mathbf{v}^{\prime}\right\rangle\right)+\left|\mathbf{v}^{\prime \prime}\right\rangle=|\mathbf{v}\rangle+\left(\left|\mathbf{v}^{\prime}\right\rangle+\left|\mathbf{v}^{\prime \prime}\right\rangle\right)$
- Any $|\mathbf{v}\rangle$ has a zero vector (called the origin):
- To every $|\mathbf{v}\rangle$ in $\mathbf{C}^{\mathbf{n}}$ corresponds a unique vector - $\mathrm{v}^{\text {. }}$ such as $|\mathbf{v}\rangle+\mathbf{0}=|\mathbf{v}\rangle$

$$
|\mathbf{v}\rangle+(-|\mathbf{v}\rangle)=\mathbf{0}
$$

- Scalar multiplication: \rightarrow next slide

Vector Space (cont)

Scalar multiplication: for any scalar

$$
\begin{aligned}
& z \in C \text { and vector }|\mathrm{v}\rangle \in C^{n} \text { there is a vector } \\
& z|\mathbf{v}\rangle=\left[\begin{array}{c}
z z_{1} \\
\vdots \\
z z_{n}
\end{array}\right] \text {, the scalar product, in such way that } \quad 1|\mathbf{v}\rangle=|\mathbf{v}\rangle
\end{aligned}
$$

- Multiplication by scalars is Associative:

$$
z\left(z^{\prime}|\mathbf{v}\rangle\right)=\left(z z^{\prime}\right)|\mathbf{v}\rangle
$$

distributive with respect to vector addition:

$$
z\left(|\mathbf{v}\rangle+\left|\mathbf{v}^{\prime}\right\rangle\right)=z|\mathbf{v}\rangle+z\left|\mathbf{v}^{\prime}\right\rangle
$$

- Multiplication by vectors is
distributive with respect to scalar addition:

$$
\left.\left(z+z^{\prime}\right) \mathbf{v}\right\rangle=z|\mathbf{v}\rangle+z^{\prime}|\mathbf{v}\rangle
$$

A Vector subspace in an n-dimensional vector space is a non-empty subset of vectors satisfying the same axioms

Basis vectors

Or SPANNING SET for \mathbf{C}^{n} : any set of \mathbf{n} vectors such that any vector in the vector space C^{n} can be written using the n base vectors

$$
\begin{gathered}
\text { Example for } \mathbf{C}^{2}(\mathbf{n}=2) \text { : } \\
|0\rangle \text { corresponds to }\binom{1}{0} \\
|1\rangle \text { corresponds to }\binom{0}{1} \\
\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \text { corresponds to } \quad \alpha_{0}\binom{1}{0}+\alpha_{1}\binom{0}{1}=\binom{\alpha_{0}}{\alpha_{1}}
\end{gathered}
$$

which is a linear combination of the 2 dimensional basis vectors $\langle 0\rangle$ and 1\rangle

Bases and Linear

Independence

Spanning set: a set of vectors such that any vector in the space can be written as a linear combination of vectors in the set

$$
\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\} \Longrightarrow|v\rangle=\sum_{j=1}^{n} a_{j}\left|v_{j}\right\rangle \text { for any }|v\rangle
$$

Linear independence: a set of vectors is linearly independent if there is no linear combination of them which adds to zero non-trivially

$$
\sum_{j=1}^{n} a_{j}\left|v_{j}\right\rangle=0 \text { iff every } a_{j}=0
$$

Basis: a linearly independent spanning set

Always exists!

Quantum Notation

z^{*} Complex conjugate of z
$|\psi\rangle$ Vector (a ket) -- this will represent a possible state of the discrete quantum system
$\langle\psi| \quad$ Vector dual to $|\psi\rangle$ (abra)
$\langle\psi \mid \varphi\rangle$ Inner product of two vectors
$|\psi\rangle \otimes|\varphi\rangle$ Tensor product of two vectors
(Sometimes called Kronecker multiplication)

A A matrix -- this will represent an operator which can modify a quantum state
$\langle\psi| \mathbf{A}|\varphi\rangle$ Inner product of $|\psi\rangle$ and $\quad \mathbf{A}|\varphi\rangle$

Physical operations on quantum states are represented by linear operators which act on the states

Linear operator: An operator which maps one vector space into another that is linear in its arguments is called a linear operator

$$
\left.\mathbf{A}\left(\sum_{j=1}^{n} a_{j}\left|\mathbf{r}_{j}\right\rangle\right)=\sum_{j=1}^{n} a_{j} \mathbf{A}\left(\mathbf{v}_{j}\right\rangle\right)
$$

Linear operators \longleftrightarrow matrices (matrix elements determined by specifying action on a basis)

Pauli Matrices

A useful set of matrices which acts on a 2-dimensional vector space are the Pauli matrices:
X is like inverter

$$
\begin{array}{cc}
\sigma_{0}=I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & \sigma_{1}=\sigma_{x}=X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
\sigma_{2}=\sigma_{y}=Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{3}=\sigma_{z}=Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{array}
$$

Properties: Unitary $\quad\left(\boldsymbol{\sigma}_{k}\right)^{\tau} \boldsymbol{\sigma}_{k}=\mathbf{I}, \forall k$ and Hermitian $\quad\left(\boldsymbol{\sigma}_{k}\right)^{\tau}=\boldsymbol{\sigma}_{k}$

Inner Product: A method for combining two vectors which yields a complex number $(\psi\rangle,|\varphi\rangle) \equiv\langle\psi \mid \varphi\rangle \mapsto \mathrm{C}$ that obeys the following rules
$\cdot($,$) is linear in its 2nd argument$

$$
\left(|v\rangle, \sum_{k} a_{k}\left|w_{k}\right\rangle\right)=\sum_{k} a_{k}\left(|v\rangle,\left|w_{k}\right\rangle\right)
$$

- $(|v\rangle,|w\rangle)=(w\rangle,|v\rangle)^{\prime}$
- $(\nu\rangle,|\nu\rangle) \geq 0$

Example: C^{n}

$$
\left(\left(w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right)=w_{1}^{*} z_{1}+\cdots w_{n}^{*} z_{n}
$$

Eigenvalues and Eigenvectors

More on Inner Products

Hilbert Space: the inner product space of a quantum system
Orthogonality: $|w\rangle$ and $|v\rangle$ are orthogonal if $\langle v \mid w\rangle=0$
Norm: $\quad \| v\rangle \| \equiv \sqrt{\langle\nu \mid v\rangle}$ Unit: $\frac{|v\rangle}{\sqrt{\langle\nu \mid v\rangle}}$ is the unit vector parallel to $|v\rangle$
Orthonormal basis: : a basis set $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$ where $\left\langle v_{i} \mid v_{j}\right\rangle=\delta_{i j}$ Gram-Schmidt Orthogonalization: an algorithmic procedure for finding an orthonormal basis $|j\rangle$ from a given basis

$$
\left.\begin{array}{l}
|v\rangle=\sum_{j=l}^{n} v_{j}|j\rangle \\
|w\rangle=\sum_{j=1}^{n} w_{j}|j\rangle
\end{array}\right\} \longrightarrow\langle v \mid w\rangle=\sum_{j} v_{j}^{*} w_{j} \begin{aligned}
& \text { inner product of } 2 \text { vectors } \\
& \text { is equal to inner product } \\
& \text { the } 2 \text { vectors) }
\end{aligned}
$$

Let $|w\rangle$ be a vector in the vector space W Let $|v\rangle$ be a vector in the vector space V

Outer product: $|w\rangle\langle v|$ is the outer product of $|w\rangle$ and $|v\rangle$
It is a linear map from V into W defined by

$$
|w\rangle\left\langle v \mid\left(\mid v^{\prime}\right)\right\rangle=|w\rangle\left(v\left|v^{\prime}\right\rangle\right.
$$

Completeness relation: Let $|j\rangle$ be a basis for V . It is easy to show that

$$
\begin{aligned}
& \dagger \quad \sum_{j}|j\rangle\langle j|=\mathbf{I} \\
& \text { i.e. } \left.\sum|j\rangle\langle j|(v\rangle\right)=|v\rangle \text { for every }|v\rangle
\end{aligned}
$$

Eigenvalues and Eigenvectors

$$
\begin{array}{ll}
\mathbf{A}|v\rangle=\lambda_{v}|v\rangle=v|v\rangle & \begin{array}{l}
\text { Eigenvalue obtain by finding all } \\
\text { roots to the eqn }
\end{array} \\
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
\end{array}
$$

Diagonalizable: A matrix \mathbf{A} is diagonalizable if it can be written as
${ }^{\text {e.g. }} Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=|0\rangle\langle 0|-|1\rangle\langle 1|$

$$
\mathbf{A}=\sum_{j} \lambda_{j}|j\rangle\langle j| \quad \text { orthonormal basis }
$$

Degeneracy: when two (or more) eigenvalues are equal
In this case the eigenspace is larger than one dimension

Hermitian Operators

Adjoint: \mathbf{A}^{τ} is the adjoint of \mathbf{A} if $\left(\mathbf{A}^{\tau}|\nu\rangle,|v\rangle\right)=(\nu \nu, \mathbf{A}|w\rangle)$ for all vectors $|\nu\rangle,|w\rangle$ in the vector space V

Properties: $\quad \mathbf{A}^{\tau}=\mathbf{A}^{* T} \quad\left(\mathbf{A}^{\tau}\right)^{\tau}=\mathbf{A} \quad(\mathbf{A B})^{\tau}=\mathbf{B}^{\tau} \mathbf{A}^{\tau}$

$$
|\nu\rangle^{\tau}=\langle v|
$$

Hermiticity: \mathbf{A} is Hermitian if $\mathbf{A}^{\tau}=\mathbf{A}$

$$
\text { e.g. } \mathbf{P}=\sum_{j=1}^{k}|j\rangle\langle j| \quad \begin{aligned}
& \text { Projects any vector into a } k \text {-dim'| } \\
& \text { subspace }
\end{aligned}
$$

Normal: \mathbf{A} is Normal if $\mathbf{A}^{\tau} \mathbf{A}=\mathbf{A} \mathbf{A}^{\tau}$
can show: Normal \longleftrightarrow Diagonalizable (spectral decomposition)

Unitary and Positive

Operators

Unitary: \mathbf{U} is unitary if $\mathbf{U}^{\mathbf{t}} \mathbf{U}=\mathbf{I}$
can write: $\mathbf{U}=\sum|\hat{j}\rangle\langle j| \quad$ where $|j\rangle$ and $|\hat{j}\rangle$ are any two distinct orthonormal bases for the vector space V, such that $\mathbf{U}|j\rangle=|\hat{j}\rangle$
Note:

$$
\left.(\mathbf{U}|v\rangle, \mathbf{U}|w\rangle)=\langle v| \mathbf{U}^{\tau} \mathbf{U}|w\rangle=\langle v \mid w\rangle=(v\rangle,|w\rangle\right) \begin{gathered}
\begin{array}{c}
\text { (preserves inner } \\
\text { product) }
\end{array}
\end{gathered}
$$

Positive: \mathbf{B} is positive if $(v\rangle, \mathbf{B}|v\rangle) \geq 0$ for every $|v\rangle$ in V (no negative eigenvalues!)
If $(v\rangle, \mathbf{B}|v\rangle)>0$ for every $|v\rangle$ in $V \Rightarrow \mathbf{B}$ is positive definite (all positive eigenvalues!)

A tensor product is a larger vector space formed from two smaller ones simply by combining elements from each in all possible ways that preserve both linearity and scalar multiplication

If V is a vector space of dimension n
\& W is a vector space of dimension $m \quad|w\rangle$
then $\mathrm{V} \otimes \mathrm{W}$ is a vector space of dimension $m n|v\rangle \otimes|w\rangle$ egg.
$|0\rangle \otimes|0\rangle=|00\rangle \quad|1\rangle \otimes|1\rangle=|11\rangle \quad$ are elements of $\mathrm{V} \otimes \mathrm{V}$ and so is $|00\rangle+|11\rangle \Longrightarrow$ qualitatively new feature: entangled states!

More on Tensor Products

$z(|v\rangle \otimes|w\rangle)=(z|v\rangle \otimes|w\rangle)=\| v\rangle \otimes z|w\rangle) \quad$ scalar multiplication
$\left.|v\rangle \otimes\left(w_{1}\right\rangle+\left|w_{2}\right\rangle\right)=|v\rangle \otimes\left|w_{1}\right\rangle+|v\rangle \otimes\left|w_{2}\right\rangle$
$\left(\left|v_{1}\right\rangle+\left|v_{2}\right\rangle\right) \otimes|w\rangle=\left|v_{1}\right\rangle \otimes|w\rangle+\left|v_{2}\right\rangle \otimes|w\rangle$
\mathbf{A} acts on $|v\rangle \quad \mathbf{B}$ acts on $|w\rangle$
$(\mathbf{A} \otimes \mathbf{B})(|v\rangle \otimes|w\rangle)=\mathbf{A}|v\rangle \otimes \mathbf{B}|w\rangle$
linearity
e.g. $\begin{aligned} X & =\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \\ Y & =\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]\end{aligned} \quad X \otimes Y=\left[\begin{array}{ll}0 \bullet Y & 1 \bullet Y \\ 1 \bullet Y & 0 \bullet Y\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right]$

Functions of Operators

Can define the function of an operator from its power series:

$$
\begin{aligned}
f(x) & =\sum_{n} a_{n} x^{n} \Rightarrow f(\mathbf{A})=\sum_{n} a_{n} \mathbf{A}^{n} \\
\text { e.g. } \exp (\theta X) & =I+\theta X+\frac{1}{2!}(\theta X)^{2}+\frac{1}{3!}(\theta X)^{3}+\cdots \\
& =I+\frac{1}{2!} \theta^{2} I+\cdots+\left(\theta+\frac{1}{3!} \theta^{3}+\cdots\right) X \\
& =I \cos \theta+X \sin \theta
\end{aligned}
$$

For normal operators, can go beyond this using their spectral decomposition:

$$
\mathbf{A}=\sum_{j} \lambda_{j}|j\rangle\langle j| \Rightarrow f(\mathbf{A})=\sum_{j} f\left(\lambda_{j}\right)|j\rangle\langle j|
$$

Trace and Commutator

Trace: $\operatorname{tr}(\mathbf{A})=\sum A_{i j} \quad$ (sum over the diagonal elements)

$$
\operatorname{tr}(\mathbf{A} \mathbf{B})=\operatorname{tr}(\mathbf{B} \mathbf{A}) \quad \operatorname{tr}(z \mathbf{A}+\mathbf{B})=z \operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})
$$

Commutator: $\quad[\mathbf{A}, \mathbf{B}] \equiv \mathbf{A B}-\mathbf{B} \mathbf{A}$
Anti-commutator: $\{\mathbf{A}, \mathbf{B}\} \equiv \mathbf{A B}+\mathbf{B} \mathbf{A}$
Simultaneous Diagonalization: Two Hermitian operators \mathbf{A} and \mathbf{B} are diagonalizable in the same basis if and only if $[\mathbf{A}, \mathbf{B}]=0$

Polar

Decomposition

For any linear operator acting on a vector space we can write

$$
\mathbf{A}=\mathbf{U} \sqrt{\mathbf{A}^{\tau} \mathbf{A}}
$$

(left polar decomposition)
where \mathbf{U} is a unitary matrix -- it is unique if \mathbf{A} has an inverse
Alternatively

$$
\mathbf{A}=\sqrt{\mathbf{A} \mathbf{A}^{\tau}} \mathbf{U}^{\prime} \quad \text { (right polar decomposition) }
$$

Singular-value decomposition:
For all square matrices, can write $\mathbf{A}=\mathbf{U D U}^{\prime}$ where \mathbf{D} is a diagonal matrix

Bibliography \& acknowledgements

- Michael Nielsen and Isaac Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2002
- R. Mann,M.Mosca, Introduction to Quantum Computation, Lecture series, Univ. Waterloo, 2000 http://cacr.math.uwaterloo.ca/~mmosca/quantumcou rsef00.htm
- Paul Halmos, Finite-Dimensional Vector Spaces, Springer Verlag, New York, 1974

