Quantum Computing

Lecture on Linear Algebra

Sources: Angela Antoniu, Bulitko, Rezania, Chuang, Nielsen

Introduction to Quantum Mechanics

Review <u>Chapters 1 and 2</u> from Chuang and Nielsen

- Objective
 - To introduce all of the fundamental principles of Quantum mechanics
- Quantum mechanics
 - The most realistic known description of the world
 - The basis for quantum computing and quantum information
- Why Linear Algebra?
 - LA is the prerequisite for understanding Quantum Mechanics
- What is Linear Algebra?
 - ... is the study of vector spaces... and of
 - linear operations on those vector spaces

Linear algebra -Lecture objectives

- Review basic concepts from Linear Algebra:
 - Complex numbers
 - Vector Spaces and Vector Subspaces
 - Linear Independence and Bases Vectors
 - Linear Operators
 - Pauli matrices
 - Inner (dot) product, outer product, tensor product
 - Eigenvalues, eigenvectors, Singular Value Decomposition (SVD)
- Describe the standard notations (the Dirac notations) adopted for these concepts in the study of Quantum mechanics
- ... which, in the next lecture, will allow us to study the main topic of the Chapter: the postulates of quantum mechanics

Review: The Complex Number System

• It is the extension of the real number system via closure under exponentiation.

$$i \equiv \sqrt{-1}$$
 $c = a + bi$

The "imaginary" Re $[c] \equiv a$

unit Im $[c] \equiv b$

• (Complex) conjugate:

$$c^* = (a + bi)^* \equiv (a - bi)$$

• *Magnitude* or *absolute value*:

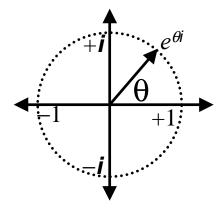
 $(c \in \mathbf{C}, a, b \in \mathbf{R})$

$$|c|^2 = c *c = a^2 + b^2$$

 $|c| = \sqrt{c^* c} = \sqrt{(a - bi)(a + bi)} = \sqrt{a^2 + b^2}$

Review: Complex Exponentiation

• Powers of *i* are complex units: $e^{\theta i} \equiv \cos \theta + i \sin \theta$



• Note:

$$e^{\pi i/2} = i$$

$$e^{\pi i} = -1$$

$$e^{3\pi i/2} = -i$$

$$e^{2\pi i} = e^{0} = 1$$

Recall: What is a qubit?

A qubit has two possible states

• Unlike bits, a quibit can be in a state other than

$$|0\rangle$$
 or $|1\rangle$

We can form linear combinations of states

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

A quibit state is a unit vector in a two dimensional complex vector space

Properties of Qubits

- Qubits are computational basis states
 - orthonormal basis

$$\langle i | j \rangle = \delta_{ij}$$

$$\delta_{ij} = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}$$

- we cannot examine a qubit to determine its quantum state
 - A measurement yields

0 with probability
$$|\alpha|^2$$

1 with probability $|\beta|^2$

where
$$|\alpha|^2 + |\beta|^2 = 1$$

Complex numbers

- A complex number $z_n \in C$ is of the form $a, b \in R$ where $z_n = a_n + ib_n$ and $i^2 = -1$
- Polar representation

$$z_n = u_n e^{i\theta_n}$$
, where $u_n, \theta_n \in R$

- With $u_n = \sqrt{a^2 + b^2}$ the modulus or magnitude

• And the phase
$$\theta_n = \arctan \left(\frac{b_n}{a_n} \right)$$

• Complex conjugate

$$z_{n} = u_{n}(\cos\theta_{n} + i\sin\theta_{n})$$

$$z_n = u_n(\cos\theta_n + i\sin\theta_n)$$

$$z_n^* = (a_n + ib_n)^* = a_n - ib_n$$

(Abstract) Vector Spaces

- A concept from linear algebra.
- A vector space, in the abstract, is any set of objects that can be combined like vectors, *i.e.*:
 - you can add them
 - addition is associative & commutative
 - identity law holds for addition to zero vector **0**
 - you can multiply them by scalars (incl. -1)
 - associative, commutative, and distributive laws hold
- Note: There is no *inherent* basis (set of axes)
 - the vectors *themselves* are the fundamental objects
 - rather than being just lists of coordinates

Hilbert spaces

• A *Hilbert space* is a vector space in which the scalars are complex numbers, with an *inner product* (dot product) operation • : $H \times H \rightarrow \mathbf{C}$

– Definition of inner product:

$$x \cdot y = (y \cdot x)^*$$
 (* = complex conjugate)
 $x \cdot x \ge 0$

"Component" picture:

$$x \bullet x = 0$$
 if and only if $x = 0$

x•y is linear, under scalar multiplication and vector addition within both x and y Another notation often used:

$$x \bullet y \equiv \langle x | y \rangle$$
 "bracket"

Vector Representation of States

- Let $S=\{s_0, s_1, ...\}$ be a maximal set of distinguishable states, indexed by i.
- The basis vector v_i identified with the i^{th} such state can be represented as a list of numbers:

$$\mathbf{v}_{i} = (0, 0, 0, ..., 0, 1, 0, ...)$$

• Arbitrary vectors \mathbf{v} in the Hilbert space can then be defined by linear combinations of the \mathbf{v}_i :

$$\mathbf{v} = \sum c_i \mathbf{v}_i = (c_0, c_1, \ldots)$$

• And the inner product is given by:

$$\langle \boldsymbol{x} \, | \, \boldsymbol{y} \rangle = \sum_{i} x_{i}^{*} y_{i}$$

Dirac's Ket Notation

• Note: The inner product definition is the same as the matrix product of x, as a conjugated row vector, times y, as a normal column vector.

$$\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i} x_{i}^{*} y_{i}$$
"Bracket"
$$= \begin{bmatrix} x_{1}^{*} & x_{2}^{*} & \cdots \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \end{bmatrix}$$

- This leads to the definition, for state s, of:
 - The "bra" $\langle s |$ means the row matrix $[c_0 * c_1 * ...]$
 - The "ket" $|s\rangle$ means the column matrix \rightarrow
- The adjoint operator † takes any matrix M to its conjugate transpose $M^{\dagger} \equiv M^{T*}$, so $\langle s |$ can be defined as $|s\rangle^{\dagger}$, and $x \cdot y = x^{\dagger}y$.

Vectors

- Characteristics:
 - Modulus (or magnitude)
 - Orientation
- Matrix representation of a vector

```
|\mathbf{v}\rangle = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} (a column), and its dual |\mathbf{v}\rangle^{\tau} = \langle \mathbf{v} | = [z_1^*, \dots, z_n^*] (row vector)
```

Vector Space, definition:

- A vector space (of dimension *n*) is a set of *n* vectors satisfying the following axioms (rules):
 - Addition: add any two vectors v and v pertaining to a vector space, say Cⁿ, obtain a vector,

$$|\mathbf{v}\rangle + |\mathbf{v}'\rangle = \begin{bmatrix} z_1 + z_1 \\ \vdots \\ z_n + z_n \end{bmatrix}$$

the sum, with the properties:

• Commutative:
$$|\mathbf{v}\rangle + |\mathbf{v}'\rangle = |\mathbf{v}'\rangle + |\mathbf{v}\rangle$$

- Associative: $(|\mathbf{v}\rangle + |\mathbf{v}'\rangle) + |\mathbf{v}''\rangle = |\mathbf{v}\rangle + (|\mathbf{v}'\rangle + |\mathbf{v}''\rangle)$
- Any v has a zero vector (called the origin):
 To every v in Cⁿ corresponds a unique vector v such as v + 0 = v

$$|\mathbf{v}\rangle + (-|\mathbf{v}\rangle) = \mathbf{0}$$

Scalar multiplication: → next slide

Vector Space (cont)

■Scalar multiplication: for any scalar

 $z \in C$ and vector $|\mathbf{v}\rangle \in C^n$ there is a vector $|\mathbf{v}\rangle = \begin{bmatrix} zz_1 \\ \vdots \\ zz_n \end{bmatrix}$, the scalar product, in such way that $|\mathbf{v}\rangle = |\mathbf{v}\rangle$

- Multiplication by scalars is Associative:
 - $z(z'|\mathbf{v}\rangle) = (zz')|\mathbf{v}\rangle$

distributive with respect to vector addition:

$$z(|\mathbf{v}\rangle + |\mathbf{v}'\rangle) = z|\mathbf{v}\rangle + z|\mathbf{v}'\rangle$$

Multiplication by vectors is distributive with respect to scalar addition:

$$(z+z')|\mathbf{v}\rangle = z|\mathbf{v}\rangle + z'|\mathbf{v}\rangle$$

A Vector subspace in an n-dimensional vector space is a non-empty subset of vectors satisfying the same axioms

Basis vectors

■Or SPANNING SET for Cⁿ: any set of n vectors such that any vector in the vector space Cⁿ can be written using the n base vectors

Example for C 2 (n=2):

$$|0\rangle$$
 corresponds to $\begin{pmatrix} 1\\0 \end{pmatrix}$

$$|1\rangle$$
 corresponds to $\begin{pmatrix} 0\\1 \end{pmatrix}$

$$\alpha_0|0\rangle + \alpha_1|1\rangle$$
 corresponds to $\alpha_0\begin{pmatrix}1\\0\end{pmatrix} + \alpha_1\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\alpha_0\\\alpha_1\end{pmatrix}$

which is a linear combination of the 2 dimensional basis vectors $|0\rangle$ and $|1\rangle$

Bases and Linear Independence

Spanning set: a set of vectors such that any vector in the space can be written as a linear combination of vectors in the set

$$\{|v_1\rangle,...,|v_n\rangle\} \longrightarrow |v\rangle = \sum_{j=1}^n a_j |v_j\rangle \text{ for any } |v\rangle$$

Linear independence: a set of vectors is linearly independent if there is no linear combination of them which adds to zero non-trivially

$$\sum_{j=1}^{n} a_{j} | v_{j} \rangle = 0 \quad \text{iff every } a_{j} = 0$$

Basis: a linearly independent spanning set

Always exists!

Quantum Notation

 z^* Complex conjugate of z

(Sometimes denoted by bold fonts)

 $|\Psi
angle$ Vector (a ket) -- this will represent a possible state of the discrete quantum system

 $\langle \psi |$ Vector dual to $|\psi \rangle$ (a bra)

 $\langle \psi | \varphi
angle$ Inner product of two vectors

 $|\psi
angle\otimes|arphi
angle$ Tensor product of two vectors

(Sometimes called Kronecker multiplication)

A matrix -- this will represent an operator which can modify a quantum state

 $\langle \psi | \mathbf{A} | arphi
angle$ _Inner product of $| \psi
angle$ and $| \mathbf{A} | arphi
angle$

Linear Operators

Physical operations on quantum states are represented by linear operators which act on the states

Linear operator: An operator which maps one vector space into another that is linear in its arguments is called a linear operator

$$\mathbf{A} \left(\sum_{j=1}^{n} a_{j} \middle| v_{j} \right) = \sum_{j=1}^{n} a_{j} \mathbf{A} \left(v_{j} \right)$$

Linear operators → matrices (matrix elements determined by specifying action on a basis)

Basis for V Basis for W
$$\mathbf{A}(|v_i\rangle) = \sum_{j} A_{ij} |w_j\rangle$$

Pauli Matrices

A useful set of matrices which acts on a 2-dimensional vector space are the Pauli matrices:

X is like inverter

$$\sigma_0 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\sigma_1 = \sigma_x = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma_2 = \sigma_y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 $\sigma_3 = \sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$\sigma_3 = \sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Properties: Unitary $(\sigma_{k})^{\tau} \sigma_{k} = I, \forall k$

$$(\mathbf{\sigma}_{_{k}})^{^{\tau}}\mathbf{\sigma}_{_{k}}=\mathbf{I},\,\forall k$$

and Hermitian $(\sigma_{k})^{\tau} = \sigma_{k}$

$$\left(\mathbf{\sigma}_{_{k}}\right)^{\!\scriptscriptstyle\mathsf{T}} = \mathbf{\sigma}_{_{k}}$$

Inner Products

Inner Product: A method for combining two vectors which yields a complex number $(|\psi\rangle, |\varphi\rangle) \equiv \langle \psi | \varphi \rangle \mapsto C$ that obeys the following rules

 \cdot (,) is linear in its 2nd argument

$$\left(\left|v\right\rangle, \sum_{k} a_{k} \left|w_{k}\right\rangle\right) = \sum_{k} a_{k} \left(\left|v\right\rangle, \left|w_{k}\right\rangle\right)$$

•
$$(v), |w\rangle = (w), |v\rangle^*$$

•
$$(|v\rangle, |v\rangle) \ge 0$$

Example: Cⁿ

$$((w_1,...,w_n),(z_1,...,z_n))=w_1^*z_1+\cdots w_n^*z_n$$

Eigenvalues and Eigenvectors

More on Inner Products

Hilbert Space: the inner product space of a quantum system

Orthogonality: $|w\rangle$ and $|v\rangle$ are orthogonal if $\langle v|w\rangle = 0$

Norm: $\|v\| = \sqrt{\langle v|v\rangle}$ Unit: $\frac{|v\rangle}{\sqrt{\langle v|v\rangle}}$ is the unit vector parallel to $|v\rangle$

Orthonormal basis: \downarrow a basis set $\{|v_1\rangle,...,|v_n\rangle\}$ where $\langle v_i|v_j\rangle = \delta_{ij}$

Gram-Schmidt Orthogonalization: an algorithmic procedure for finding an orthonormal basis $|j\rangle$ from a given basis

$$\frac{|v\rangle = \sum_{j=1}^{n} v_{j} |j\rangle}{|w\rangle = \sum_{j=1}^{n} w_{j} |j\rangle} \longrightarrow \langle v | w\rangle = \sum_{j=1}^{n} v_{j}^{*} w_{j}$$
 (inner product of 2 vectors is equal to inner product of the matrix reps of the 2 vectors)

Outer Products

Let $|w\rangle$ be a vector in the vector space W Let $|v\rangle$ be a vector in the vector space V

Outer product: $|w\rangle\langle v|$ is the outer product of $|w\rangle$ and $|v\rangle$ It is a linear map from V into W defined by

$$|w\rangle\langle v|(v'\rangle)=|w\rangle\langle v|v'\rangle$$

Completeness relation: Let $|j\rangle$ be a basis for V. It is easy to show that $\sum_i |j\rangle\!\langle j| = \mathbf{I}$

i.e.
$$\sum |j\rangle\langle j|(v\rangle) = |v\rangle$$
 for every $|v\rangle$

Eigenvalues and Eigenvectors

Eigenvector Eigenvalue obtain by finding all roots to the eqn
$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Diagonalizable: A matrix \mathbf{A} is diagonalizable if it can be written as $\mathbf{A} = \sum_{j} \lambda_{j} |j\rangle\langle j|$ e.g. $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|$ orthonormal basis

Degeneracy: when two (or more) eigenvalues are equal In this case the eigenspace is larger than one dimension

Hermitian Operators

Adjoint: \mathbf{A}^{τ} is the adjoint of \mathbf{A} if $(\mathbf{A}^{\tau}|v\rangle, |w\rangle) = (|v\rangle, \mathbf{A}|w\rangle)$ for all vectors $|v\rangle, |w\rangle$ in the vector space \mathbf{V}

Properties:
$$\mathbf{A}^{\tau} = \mathbf{A}^{*T}$$
 $\left(\mathbf{A}^{\tau}\right)^{\tau} = \mathbf{A}$ $\left(\mathbf{A}\mathbf{B}\right)^{\tau} = \mathbf{B}^{\tau}\mathbf{A}^{\tau}$ $|\nu\rangle^{\tau} = \langle \nu|$

Hermiticity: A is Hermitian if $A^{\tau} = A$

e.g.
$$P = \sum_{j=1}^{k} |j\rangle\langle j|$$
 Projects any vector into a k-dim'l subspace

Normal: A is Normal if $A^{\tau}A = AA^{\tau}$

can show: Normal - Diagonalizable (spectral decomposition)

Unitary and Positive Operators

Unitary: U is unitary if $U^TU = I$

can write:
$$\mathbf{U} = \sum_{j} |\hat{j}\rangle\langle j|$$

where $|j\rangle$ and $|\hat{j}\rangle$ are any two distinct orthonormal bases for the vector space V, such that $\mathbf{U}|j\rangle=|\hat{j}\rangle$

Note:

$$(\mathbf{U}|v\rangle, \mathbf{U}|w\rangle) = \langle v|\mathbf{U}^{\tau}\mathbf{U}|w\rangle = \langle v|w\rangle = (|v\rangle, |w\rangle)$$
 (preserves inner product)

Positive: **B** is positive if (v), $\mathbf{B}|v\rangle \ge 0$ for every $|v\rangle$ in V (no negative eigenvalues!)

If
$$(v)$$
, $B|v\rangle$ > 0 for every $|v\rangle$ in $V \implies B$ is positive definite (all positive eigenvalues!)

Tensor Products

A tensor product is a larger vector space formed from two smaller ones simply by combining elements from each in all possible ways that preserve both linearity and scalar multiplication

If V is a vector space of dimension n $\begin{pmatrix} |v\rangle \\ w \end{pmatrix}$ & W is a vector space of dimension m $\langle w\rangle \\ w \end{pmatrix}$ then V \otimes W is a vector space of dimension mn $\langle v\rangle \otimes |w\rangle$

e.g.

$$|0\rangle\otimes|0\rangle=|00\rangle$$
 $|1\rangle\otimes|1\rangle=|11\rangle$ are elements of V \otimes V

and so is $|00\rangle + |11\rangle$ \Longrightarrow qualitatively new feature: entangled states!

More on Tensor Products

$$z(v)\otimes |w\rangle)=(z|v\rangle\otimes |w\rangle)=(|v\rangle\otimes z|w\rangle)$$

scalar multiplication

$$\frac{|v\rangle\otimes \big(|w_1\rangle+|w_2\rangle\big)=|v\rangle\otimes |w_1\rangle+|v\rangle\otimes |w_2\rangle}{\big(|v_1\rangle+|v_2\rangle\big)\otimes |w\rangle=|v_1\rangle\otimes |w\rangle+|v_2\rangle\otimes |w\rangle} \quad \text{linearity}$$

A acts on $|v\rangle$ **B** acts on $|w\rangle$ $(\mathbf{A} \otimes \mathbf{B})(|v\rangle \otimes |w\rangle) = \mathbf{A}|v\rangle \otimes \mathbf{B}|w\rangle$

tensor product of operators

e.g.
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

e.g.
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 \longrightarrow $X \otimes Y = \begin{bmatrix} 0 \bullet Y & 1 \bullet Y \\ 1 \bullet Y & 0 \bullet Y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix}$

Functions of Operators

Can define the function of an operator from its power series:

$$f(x) = \sum_{n} a_{n} x^{n} \Rightarrow f(\mathbf{A}) = \sum_{n} a_{n} \mathbf{A}^{n}$$

e.g.
$$\exp(\theta X) = I + \theta X + \frac{1}{2!} (\theta X)^2 + \frac{1}{3!} (\theta X)^3 + \cdots$$

$$= I + \frac{1}{2!} \theta^2 I + \cdots + \left(\theta + \frac{1}{3!} \theta^3 + \cdots \right) X$$
$$= I \cos \theta + X \sin \theta$$

For normal operators, can go beyond this using their spectral decomposition:

$$\mathbf{A} = \sum_{i} \lambda_{j} |j\rangle\langle j| \Rightarrow f(\mathbf{A}) = \sum_{i} f(\lambda_{j}) |j\rangle\langle j|$$

Trace and Commutator

Trace:
$$tr(A) = \sum_{j} A_{jj}$$
 (sum over the diagonal elements)
 $tr(AB) = tr(BA)$ $tr(zA + B) = ztr(A) + tr(B)$

Commutator:
$$[A,B] \equiv AB - BA$$

Anti-commutator: $\{A,B\} \equiv AB + BA$

Simultaneous Diagonalization: Two Hermitian operators A and B are diagonalizable in the same basis if and only if $[A,B]\!=\!0$

Polar Decomposition

For any linear operator acting on a vector space we can write

$$\mathbf{A} = \mathbf{U} \sqrt{\mathbf{A}^{\tau} \mathbf{A}}$$

(left polar decomposition)

where \mathbf{U} is a unitary matrix -- it is unique if \mathbf{A} has an inverse

Alternatively
$$A = \sqrt{AA^{\tau}U'}$$

(right polar decomposition)

Singular-value decomposition:

For all square matrices, can write A = UDU'where \mathbf{D} is a diagonal matrix

Bibliography & acknowledgements

- Michael Nielsen and Isaac Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2002
- R. Mann, M. Mosca, Introduction to Quantum Computation, Lecture series, Univ. Waterloo, 2000 http://cacr.math.uwaterloo.ca/~mmosca/quantumcoursef00.htm

• Paul Halmos, Finite-Dimensional Vector Spaces, Springer Verlag, New York, 1974