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Introduction to Quantum Mechanics

 Review Chapters 1 and 2 from Chuang and Nielsen
 Objective

— To introduce all of the fundamental principles of Quantum
mechanics

e Quantum mechanics
— The most realistic known description of the world
— The basis for guantum computing and quantum information

* Why Linear Algebra?
— LA is the prerequisite for understanding Quantum Mechanics

* Whatis Linear Algebra?
— ... Is the study of vector spaces... and of
— linear operations on those vector spaces




Linear algebra -Lecture objectives

* Review basic concepts from Linear Algebra:

— Complex numbers

— Vector Spaces and Vector Subspaces

— Linear Independence and Bases Vectors

— Linear Operators

— Pauli matrices

— Inner (dot) product, outer product, tensor product

— Eigenvalues, eigenvectors, Singular Value Decomposition (SVD)

» Describe the standard notations (the Dirac notations)

adopted for these concepts in the study of Quantum
mechanics

e ... Which, in the next lecture, will allow us to study the

malin topic of the Chapter: the postulates of quantum
mechanics



Review: The Complex Number System

|t is the extension of the real number system via closure
under exponentiation.

i =4/-1 c=a+bi (cUC a,bR)

The “imaginary” Re [c]=a A+
unit Im [c]=b ”/
e (Complex) conjugate: _ > +
c* = (a + bi)* = (a - bi) ’LReaI axis
* Magnitude or absolute value: '\ ‘Imaginary”

axis
c|? = c*¢ = a?+b?

‘c‘ E\/z:\/(a—bi)(a +bi) =Ja? +b?




Review: Complex
Exponentiation

o Poweers of i are complex units: T
e’ =cos@+ising e

 Note:
emil2 = |
et = -1



Recall: Whatis a

e A qubit has two possible states [[ICIdEN

qubit?

o Unlike bits, a quibit can be in a state other than
0)or|1)

e \We can form linear combinations of states

) =alo)+ )

« A quibit state Is a unit vector in a two dimensional

complex vector space




Properties of Qubits

* Qubits are computational basis states

- orthonormal basis

5 :{Ofori;tj

i

1fori=j

- We cannot examine a qubit to determine its quantum state
- A measurement yields

0 with probability \a\z 1 with probability \,8\2

where \a\z +\,8\2 =1



Complex numbers

» A complex numberEZMBL is of the formEIZ ARl

where and i4=-1

 Polar representation
z =ue”,whereu ,0 [1R
o With /RERFEESE the modulus or magnitude

e And the phase
P - = arctan (b % )

 Complex conjugate

. . ] .
z =u (cos@ +isind Jllz = (an + lbn) —a —ib




(Abstract) Vector Spaces

e A concept from linear algebra.

« A vector space, In the abstract, is any set of objects that can be
combined like vectors, i.e.:

— you can add them
* addition is associative & commutative
* identity law holds for addition to zero vector 0

— you can multiply them by scalars (incl. —1)
e associative, commutative, and distributive laws hold
* Note: There IS no inherent basis (set of axes)

— the vectors themselves are the fundamental objects
— rather than being just lists of coordinates



Hilbert spaces

* A Hilbert space 1s a vector space in which the
scalars are complex numbers, with an inner
product (dot product) operatione : HxH - C

— Definition of inner product:
Xey = (Yo X)* (* = complex conjugate)
XeX =0
“Component” X*X =0 Ifandonlyif x=10

picture: Xey Is linear, under scalar multiplication

-...y and vector addition within both x and
Another notation often used:

xey=(x]y)

“bracket”




Vector Representation of States

Let S={sg, 51, ..} be @ maximal set of
distinguishable states, indexed by i.

he basis vector v, identified with the /" such state
can be represented as a list of numbers:

So 5182 515941
v.=(0,0,0,...,0,1,0,...)

Arbitrary vectors v in the Hilbert space can then be
defined by linear combinations of the v:

V= ZCiVi =(cys¢yy--2)
And the inner product is given by: (x| y)= Zj:xiy,-



Dirac’s Ket Notation

e Note: The inner product

defin_ition IS the same as the “Bracket”
matrix product of x, as a o
conjugated row vector, times  ~ [xl X2

y, as a hormal column vector.

e This leads to the definition, for state s, of:

— The “bra” (s| means the row matrix [c,* ¢,
— The “ket” |s) means the column matrix -

* The adjoint operator T takes any matrix M
to its conjugate transpose MT = MT™*, so
{s| can be defined as |s)T, and xey = x'y.

* ]

X[y)=2,x,

i

]

Jﬁ
g,




Vectors

e Characteristics:
— Modulus (or magnitude)
— QOrientation

o Matrix representation of a vector

Zl
v) :[ : ] (a column), and its dual

Zﬂ

v) =(v|=[z],---,2] (row vector)



Vector Space, definition:

« A vector space (of dimension n) Is a set of n vectors
satisfying the following axioms (rules):

— Addition: add any two vectorsMand pertaining to a
vector space, say Cn, obtain a vector,

the sum, with the properties :

« Commutative: V) + [V =) +|v)

o Associative:  ((v)+|v))+|v") =|v)+(v)+|v)

. Any‘v> has a zero vector (called the origin):

* Toevery \v> in C™ corresponds a unique vector - such as \V> +0= \V>

v)+(-|v))=0

— Scalar multiplication: - next slide



Vector Space (cont)

Scalar multiplication: for any scalar

zC and vector |v)OC" there is a vector

ZZ4
z|v) :{ : } YEREIET IR IEA in such way that ~ 1v)=|v)

zZ

n

Multiplication by scalars is Associative:
2(z]v))=(zz}v)
distributive with respect to vector addition:
z(v)+|V')) =2[v) +2|V)
Multiplication by vectors is

distributive with respect to scalar addition: [EEESEAEEAIEEANY

A Vector subspace in an n-dimensional vector

space is a non-empty subset of vectors satisfying the same
axioms



Basis vectors

Or SPANNING SET for C": any set of n vectors such that
any vector in the vector space C" can be written using the n
base vectors

Example for C?(n=2):

O

1
|0} corresponds to [O]
1) corresponds to (1]

d|0) + |1} corresponds to %[é}r a1[0]: [0&0]

1 o

which is a linear combination of the 2 dimensional
basis vectors |0)and |1



Bases and Linear
Independence

Spanning set: a set of vectors such that any vector in the
space can be written as a linear combination
of vectors in the set

v)

v)=Y a,
J=1
Linear independence: a set of vectors is linearly independent
if there is no linear combination of them which
adds to zero non-trivially

Z a’f !

V > =0 1iff everya, =0
=1

v}.) for any

Basis: a linearly independent spanning set  Always exists!



Quantum Notation

e

. S ti d ted by bold font
Z  Complex conjugate of z LUmCE U L s

‘W} Vector (a ket) -- this will represent a possible state
of the discrete quantum system

(',U‘ Vector dual o |¥) (a bra)

(W‘@) Inner product of two vectors

(Sometimes called Kronecker

‘W) ®\§0) Tensor product of Two vectors  multiplication)

A A matrix -- this will represent an operator which
can modify a quantum state

(w‘A‘@ Inner product of ‘W) and A‘qf?)




Linear Operators

Physical operations on quantum states are represented by
linear operators which act on the states

Linear operator: An operator which maps one vector space
into another that is linear in its arguments is
called a linear operator

$ub) - Eonl)

Basis for V Basis for W

Linear operators<+— matrices / /

(matrix elements determined A(Jvi.))= Y A wj.>
j

by specifying action on a basis)




Pauli Matrices

A useful set of matrices which acts on a 2-dimensional
vector space are the Pauli matrices:

_1 0_
0'0 :I:
_O 1_
0
GZZO-*.?:YZ .
' [

Properties: Unitary (o, ) o, =

—1

0

and Hermitian

(0.) =0,

X 1s like inverter

0 1"

_1 O_
I 0
0 -1




Inner Products

Inner Product:

A method for combining two vectors which

yields a complex number (v).|¢))=(v|¢)~C

that obeys the following rules

+(, ) is linear in its 2nd argument

w,))

19, Eae) |- Zal)

H H
((wl"”’wn)’(zl !!!!! En)):wlzl_l_"'wn:n



Eigenvalues and Eigenvectors

More on Inner Products

Hilbert Space: the inner product space of a quantum system

Orthogonality: |w) and [} are orthogonal if {vw)=0

Norm: |[v)|= i) ynit: l:—‘}‘) is the unit vector paraliel to |v)

Orthonormal basis: : a basis set {|H> L) } where (v, \v"?) =4,

Gram-Schmidt Orthogonalization: an algorithmic procedure
for finding an orthonormal basis |j) from a given basis

\v>=§:;,,u>
\w>=;;w>

(inner product of 2 vectors

is equal to inner product
(V ‘W> ZVJ Wi of the matrix reps of

the 2 vectors)



Outer Products

Let |w) be a vector in the vector space W

Let |v) be avector in the vector space V

Outer product: [w)(v| is the outer product of |w)and |v)
It is a linear map from V into W defined by

)| (v))=lw)lv|v'

Completeness relation: Let |j) be a basis for V. It is easy to
show that Af
JINI|=1
¥liNi

1.€. Z‘ ;)(;M v)): ‘ v) for every ‘v}



Eigenvalues and Eigenvectors

i 7 FEigenvalue obtain by finding all
A‘ 1f> =A, ‘ p) = 1;‘ v,;) roots to the egn
Eigenvector -7 det (A — /'LI) =0

Diagonalizable: A matrix A is diagonalizable if it can be

writtenas , _ Z;Lf" ;)( -

i
e.g. F 0 j ¥ orthonormal basis
Z =

o | Flool-

Degeneracy: when two {(or more) eigenvalues are equal
In this case the eigenspace is larger than one dimension



Hermitian Operators

Adjoint: A'is the adjoint of A if (A7w).|w))={(),A|lw)) forall
vectors |v),|w}in the vector space V

Properties: A*=A7 (Af=A  (AB)=B°A°
V=0
Hermiticity: A is Hermitian if A"=A

* . ] .
eg. P= ;‘ e EEEJST:JELZG”Y vector into a k-dim'l

Normal: A is Normal if A'A =AA’

can show: Normal +— Diagonalizable (spectral decomposition)



Unitary and Positive
Operators

Unitary: U is unitary if U'U=1I

can write: [ = Z‘ j)(i‘ where | j) and ‘J> are any two
F distinct orthonormal bases for
the vector space V, such that

Note: Ul j)=|7}
(U‘ v>, U‘ w}): (1,-. U™U w) _ <w‘ w> _ (T“’M w)) (preserves inner

product)
Positive: B is positive if (v),B|v))>0for every |v) inV
{no negative eigenvalues!)

If (v),B|v))> 0 for every |v) in V =B is positive definite
{all positive eigenvalues!)




Tensor Products

A tensor product is a larger vector space formed from two
smaller ones simply by combining elements from each in all
possible ways that preserve both linearity and scalar
multiplication

If V is a vector space of dimension n v)
& W is a vector space of dimension m W)
then VeW is a vector space of dimension mn |v)®|w)
e.g.
0)®[0y=|00) |H®|1)=|11} are elements of VeV

and so is ‘00}+‘11> =) qualitatively new feature:
entangled states!



More on Tensor
Products

()] w))= () ® w))= () ® | w)

V)@ (w )+ w, ) =) ©|w )+ ®|w,)

(v)+la))elw)=[v ) @lw)+],) ©|w)

A acts on ‘v} B acts on | w}

(A ®B)(»)®|w))= A|») @B|w)

{D 1:| 0 0 0 —i
Y — .
DeY 1le¥ O 0 ¢ 0O
€9 Lo ) XY= = |
0 _; ley OeY| |0 —i 0 O
Y = .
L n} i 0 0 0

scalar multiplication

> linearity

o

\

- tensor product of operators




Functions of
Operators

Can define the function of an operator from its power series:

f)=) ux" =f(A)=) u,A"

M M

_ Lov v Loy
e.g. exp(ex)_f+9x+2! (6x) T 6x) +

_r+ Ll +---+(9 i Lg +---]X
2! 3!

'

=fcosf@+ X sind

For normal operators, can go beyond this using their
spectral decomposition:

A=Y 1| iXil= rA)=Y @) )i



Trace and
Commutator

Trace: tr(A) = Z A, {sum over the diagonal elements)

tr(AB)= HEBA) tr(zA +B)= .;,tr(A)+ tr(B)

Commutator: |JA,B|=AB-BA
Anti-commutator: {A,B}=AB+BA

Simultaneous Diagonalization: Two Hermitian operators A and
B are diagonalizable in the same basis if and
only if |[A,B]|=0



Polar
Decomposition

For any linear operator acting on a vector space

we can write
A=UVA"A (left polar decomposition)

wherelU is a unitary matrix -- it is unique if A has an inverse

Alternativel
Y A =+vAAU (right polar decomposition)

Singular-value decomposition:
For all square matrices, can write A=UDU’
where D is a diagonal matrix
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