
Problem 1 Given is the cell of a cellular automaton
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Grey rectangles are D flip-flops,
clocks not shown.

a

a

b

b

c

c

The structure of cell
connections is shown below.
There are three cells as in left
and three cells rotated clockwise
by 180 degree

A). Analyze behavior of the system in which all cells
are in state 0. The state is a natural number
corresponding to binary signals in order o1,o2,o3, with
o3 as the least significant bit.

B). Analyze first two transitions of the system in which
all cells are in state 7.

C). Try to guess the initial state that will lead to the
longest cycle. Show your work.

D) Can you generalize these results to arbitrary size
CA of this type of cells and connection structure?



Solution to Problem 1Solution to Problem 1
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First we have to
understand how the
cells are connected
to be able to
analyze their
behavior. Here is
the network.
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0--> 0 in
Toffoli gate
so the circuit
remains in
state 00000
as shown
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111-->11 0 in
Toffoli gate.
We denote it
7-->6.
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Now it should be
obvious that if the
cells are initially in the
same state, nothing
interesting happens.
We have to try various
states of cells, like in
game of life.
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Let us assume that 001 is alive
and 000 is dead and let use
have an analogy with game of
life and shift register.

Now we obtained a
system with two states,
but it is still not
interesting. So perhaps
we should try a state in
Toffoli gate that is in a
longer cycle.
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Now three ones from this
cell went to different cells,
as shown.

In next slide we
will analyze
next state
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Thus we return to the initial state and we generated a
cycle of length three. This is just an example how to
analyze regular Boolean network dynamics. You can
now try other cycles, but remember that we are
interested in cyclic behavior, not just one long
sequence that terminates with a short cycle.
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Problem 2
• A) What is the inverse gate of the Fredkin Gate?
• B) Prove that the gate that you found is inverse to

Fredkin gate using the method of graphical
transformation in quantum notation.

• C) Do the same using truth tables of the gates.



Solution to Problem 2Solution to Problem 2
• A) What is the inverse gate of the Fredkin Gate?

– Fredkin Gate itself

• B) Prove that the gate that you found is inverse to Fredkin gate
using the method of graphical transformation in quantum notation.

..

Fredkin
from
Toffoli
and
Feynman

.

Fredkin
repeated

.
. . . .

First stage of
graphic method is
to draw a sequence
of gates.

Next we cancel two
gates that are
mirrors.

We repeat this three
times



Solution to Problem 2Solution to Problem 2

..

First
cancelled
pair of
gates

.

Second
cancelled
pair of
gates

.
. . . .

First stage of graphic method is to draw a sequence of gates.

Next we cancel two gates that are mirrors.

We repeat this three times. After the third removal three wires
remain which means identity. So the Fredkin gate is its own reverse.

Third
cancelled
pair of
gates



• Another grapical method is based on the
notation that Fredkin is a controlled swap.

Solution to Problem 2Solution to Problem 2

a
b
c

For a=0 For a=1

a=0
b
c

a
b
c

a=1
b
c

a
b
c

The two figures below prove that both
for a=0 and a=1 the circuit is
equivalent to three horizontal wires

P
Q
R



Solution to Problem 2Solution to Problem 2
• C) Do the same using truth tables of the gates.

a b c

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

P Q R

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 0 1
1 1 1

P Q R

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 0 1
1 1 1

a b c

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The truth tables of function F and F-1 are the same.
So Fredkin is its own inwerse.



Problem 3
A. Give an example of a gate that is reversible and conservative

B. Give an example of a gate that is reversible and not conservative.

C. Give an example of a gate that is conservative but not reversible.

Prove all your results. Verify.



Solution to Problem 3Solution to Problem 3
A. Give an example of a gate that is reversible and conservative

• Fredkin gate is reversible and is conservative as it can be
showed on previous slide since for every row of table it
preserves the number of symbols 1 in input and output vectors.

B. Give an example of a gate that is reversible and not conservative.

•Toffoli and Feynman gates are reversible and not conservative.

C. Give an example of a gate that is conservative but not reversible.

ab
00
01
11
10

PQ
00
10
11
10



Problem 4

• A) Realize the Fredkin Gate using Billiard
Ball Model.

• B) Realize the Swap Gate using the Billiard
Ball Model



 Switch Gate from lectures

Input output

A    B z1    z2    z3

0     0      0    0   0
0     1      1    0   0
1     0      0    0   1
1     1      0    1   1

1A

B

2

3

Z1 = NOT A * B

Z2 =  A * B

Z3 =  AA

B

Solution to Problem 4Solution to Problem 4
• A) Realize the Fredkin Gate using Billiard Ball Model.
• B) Realize the Swap Gate using the Billiard Ball Model



FredkinFredkin Gate from Switch Gates Gate from Switch Gates

Q

C

P

C

¬  CP+CQ

CP+ ¬  CQ

CP

¬  CP

CQ

¬  CQ

When input C is set to 1 the Fredkin gate realizes the
swap gate.



Problem 5
• A) Define what is Kronecker (Functional) Decision Diagram
• B) Derive such a diagram for functions F=A(C⊕  B) ⊕  CD, G= C⊕  B sharing as

much of the diagram for both functions together.
• C) Convert the diagram to a circuit with Inverter, Toffoli and Feynman gates. Show

all constant (if any) and garbage (if any) signals.
• D) Add the mirror and spy circuits in a standard way. Discuss the garbage in the

new circuit.



Solution to Problem 5Solution to Problem 5
• A) Define what is Kronecker (Functional) Decision Diagram

– This is an ordered decision diagram similar to BDD in which for every variable (level)
you can have only one type of expansion: Shannon (as in BDD), Positive Davio or
Negative Davio. Thus there exist 3n various Kronecker Diagrams for a given order of
variables. The rules of combining isomorphic nodes in the tree with S, pD and nD
expansion nodes are the same as for BDDs and can be find in lecture slides.  Here is an
example, this transformation applies to any type of nodes.

xi xi xi

gfgf



xi

xj xj

f g f g

Type S

Another type of KFDD transformationAnother type of KFDD transformation

xi

xj xj

0

f g f g

Type D



• B) Derive such a diagram for functions F=A(C⊕  B) ⊕  CD, G= C⊕  B sharing as
much of the diagram for both functions together.

S

F=A(C⊕  B) ⊕  CD

pD pD

pD

A

D

pD

pD

C

B

A A
CD

C⊕  B ⊕  CD

0

C

1 D
D

Function
represented
by the nodeExpansion

type

Expansion
variable

C⊕  B

1

1

1 C

B1

1 C
B

G



pD

F=A(C⊕  B) ⊕  CD

pD pD

A

D
1 A

CD
C⊕  B

G

Changing first
node to pD (this
is also a KFDD -
a special case

A

B
C

G this is output function

D

0
F this is output function

• C) Convert the diagram to a circuit with Inverter, Toffoli and Feynman gates. Show
all constant (if any) and garbage (if any) signals.

– Function has four input variables and five output variables. So it has one garbage. On the
other hand , because in this solution the potential garbage functions are input variables,
some authors do not categorize these outputs as garbages.

A this is input so not garbage

C this is input so not garbage

D this is input so not garbage



• D) Add the mirror and spy circuits in a standard way. Discuss the garbage in the
new circuit.

– The mirrors are added in order to create original variables at the output. This is useful in
quantum computing.

A

B
C
D

0

G

F

A
B

C

mirror

Observe that in this case the mirror is very
simple because of smart design.

0

D

Original
variables
restored
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g h
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c d

Problem 6
Given is cell
with 3 inputs
and 3 outputs.

0 1 0 1

X Y
A

0 1 0 1 0 1 0 1
B

0 1 0 1 0 1 0 1

C

A)Is this a reversible gate? If yes,
which gate?

B) Prove that arbitrary symmetric
function X(A,B,C) can be
realized with this structure?

C) Realize function X = AB⊕
AC ⊕  BC using this structure.

D) What is function Y in this
case when X is realized on top
left output?

0 1 0 1 0 1 0 1

Only constants on this level



0 1 0 1

g h

b
c d

Solution to Problem 6Solution to Problem 6

0 1 0 1

Y
A

0 1 0 1 0 1 0 1
B

0 1 0 1 0 1 0 1

C

C) Realize function X = AB⊕
AC ⊕  BC using this structure.

•See constants at the bottom

D) What is function Y in this
case when X is realized on top
left output?

0 1 0 1 0 1 0 1

A)Is this a reversible gate? If
yes, which gate? Fredkin

B) Arbitrary symmetric function
X(A,B,C) can be realized with this
structure because it includes in itself
the binary tree of multiplexers. So
not only symmetric but arbitrary
function can be realized by
assigning constants to the lowest
level data  inputs

m0=0
m1=0 m2=0 m3=1 m4=0 m5=1 m6=1 m7=1

bc b+c

X=a’bc+a(b+c) Y=abc+a’(b+c)



Problem 7

• Realize Converter from Gray code to
Binary Natural Code using only reversible
gates. Try to minimize Garbage.

• Discuss the importance of work of Bennett
and Landauer related to reversible logic.

Problem 8



Solution to Problem 7Solution to Problem 7 • Realize Converter from Gray code to
Binary Natural Code using only reversible
gates. Try to minimize Garbage.

abcd
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

pqrs
0000
0001
0011
0010
0111
0110
0100
0101
1100
1101
1110
1111
1000
1001
1011
1010

inputs outputs

cd

0  0  0  0
0  0  0  0
1  1  1  1
1  1  1  1

0  0  0  0
1  1  1  1
0  0  0  0
1  1  1  1

ab
00
01
11
10

00 01 11 10

p q

r s

0  0  1  1
1  1  0  0
0  0  1  1
1  1  0  0

0  1  0  1
1  0  1  0
0  1  0  1
1  0  1  0

p = a

q = a⊕ b

r = a ⊕  b ⊕  c

s = a ⊕  b ⊕  c ⊕  d

a
b
c
d

p
q
r
s

...



• Discuss the importance of work of Bennett and Landauer related to
reversible logic.

Solution to Problem 8

Landauer’s Principle

In 1961, Landauer was considering the smallest amount of heat generated per bit processed in
computation. He introduced the distinction of logical and physical irreversibility. He noted that
a physical implementation of a logically irreversible process (defined to be one that cannot be
logically reversed, i.e. undone by reversing the flow direction of computation) must be physically
irreversible (i.e. cannot be undone or reversed to its prior physical state). A process is logically
reversible if knowing the binary input to a logic  gate, one can deduce the output and vice versa.
Landauer discovered (rather surprisingly) that the heat coming from computation was due to the
destruction of information (wiping out bits of information) and not to the processing of bits.
This is Landauer’s Principle which states:

• logic computations that are not reversible, necessarily generate heat:

–  i.e. kTlog(2), for every bit of information that is lost, where k is Boltzmann's constant
and T the temperature.

• For T equal room temperature, this package of heat is small, i.e. 2.9 x 10 -21 joule, but non-
negligible.  In order to produce zero heat, a computer is only allowed to perform reversible
computations.



Charles Bennett of IBM proved in 1973 in his famous paper “ Logical
reversibility of computation” that there are no unavoidable energy consumption
requirements per step in a computer. He discovered a way to make a reversible
Turing Machine (by adding a history tape that gets written on and then
unwritten (made blank) at the end. Thus, the  power dissipation of a reversible
computer, under ideal physical circumstances, is zero.

Reversible computing implies no information is wiped out, hence a history of all
calculations is kept, then is reversibly restored to its original state. The hardware
of a reversible computer cannot be constructed from the conventional gates. On
the contrary, it consists exclusively of logically reversible building blocks. If
reversible logic gates are computationally universal, then one can build
computers based on them which should also be reversible, contradicting
Landauer’s original conclusion. Reversible gate is a necessary but not sufficient
condition of losing no power. Therefore we have to learn how to design
arbitrary logic circuits from reversible gates and we have to build physically the
reversible gates. The research is on both.



Problem 9
• A) Realize ESOP for the

function shown in Kmap.
Minimize the number of gates
and inputs to gates.

• B) Write an equivalent Positive
Polarity Reed-Muller form for
this function.

• C) Draw a reversible cascade in
quantum notation in which
function F(g,b,c,d) is one of
outputs, and other outputs are
arbitrary. Decrease the width of
this cascade. Minimize Garbage.

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

1 1
1

0
0 0

11 11
0000 11

00

00 00

11 11

gb
cd



Solution to Problem 9
• A) Realize ESOP for the

function shown in Kmap.
Minimize the number of gates
and inputs to gates.

• B) Write an equivalent Positive
Polarity Reed-Muller form for
this function.

• C) Draw a reversible cascade in
quantum notation in which
function F(g,b,c,d) is one of
outputs, and other outputs are
arbitrary. Decrease the width of
this cascade. Minimize Garbage.

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

1 1
1

0
0 0

11 11
0000 11

00

00 00

11 11

gb
cd

b’c

g’

bd

For A)

From groups we have
ESOP=g’ ⊕  bd⊕ b’c

For B)

From ESOP we have PPRM=(g
⊕ 1) ⊕  bd⊕ (b ⊕ 1)c=g⊕ 1⊕
bd⊕ bc ⊕ c



Solution to Problem 9
• C) Draw a reversible cascade in quantum notation in which function

F(g,b,c,d) is one of outputs, and other outputs are arbitrary.
Decrease the width of this cascade. Minimize Garbage.

From ESOP = g’ ⊕  bd⊕ b’c we directly can draw this quantum
circuit

g
b
c
d

ESOP = g’ ⊕  bd⊕ b’c

b
c
d

Original
inputs
restored

This NOT gate is not
mandatory when
inputs are not
required to be
restored

No garbage, shortest width. In
other variant g is also available
but width is 5 and all 4 inputs are
restored, try to find it.
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Problem 10

cba

000
001
011
010
110
111
101
100

1 - - 1

0 0

0 0

0 0

1 1

1 1

1 1

0 0

-

- -

- -

-

- -

--

- -

- -

A) Groups shown in the map
correspond to prime terms of
an  SOP. Draw a BDD of this
function.

f=a’b+bz+b’ay

B) Groups shown in the map
correspond to product terms
of an  ESOP. Draw a KFDD
of this function that uses only
Positive Davio gates.

 f=a’b ⊕  bz ⊕  b’ay

C) Write the Positive Polarity
Reed Muller form and ESOP
expression.



Solution to Problem 10 A) Groups shown in the map correspond
to prime terms of an  SOP. Draw a BDD
of this function.

f=a’b+bz+b’ay

0 1

a’ a

b’ b b’ b

a’b

z’
z

b+bz=b bz+b’y

z

y

y’ y

ab’y

abz

Remember to
verify always a
BDD as shown
here by finding
all paths and
comparing with
initial
description.
Observe that
a’bz is included
in first path a’b



Solution to Problem 10

0 1

1 a

1
b

1 b

1
z

b ⊕  bz b ⊕  y ⊕  by

y

1 y

B) Groups shown in the map correspond to product terms of
an  ESOP. Draw a KFDD of this function that uses only
Positive Davio gates.

C) Write the Positive Polarity Reed Muller form and ESOP
expression.

f=a’b ⊕  bz ⊕  b’ay = (1 ⊕
a)b ⊕  bz ⊕  (1 ⊕  b)ay = b
⊕  ab ⊕  bz ⊕  ay ⊕  aby

fa’= (b ⊕  ab ⊕  bz ⊕  ay ⊕
aby)|a=0 = b ⊕  bz

fa= b ⊕  b ⊕  bz ⊕  y ⊕  by
= bz ⊕  y ⊕  by

fa’ ⊕  fa= b ⊕  y ⊕  by
1 ⊕  z= z’

1 ⊕  y

1y

It can be verified that the same RM form is obtained from paths of the KFDD
and from the formula on top.



Problem 11

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

A)  How to recognize a symmetric
function in a Karnaugh Map?

B) How to recognize a linear function
in a Karnaugh Map?

C) Give an example of Kmap of 4
variable function that is both linear and
symmetric?

D) Can you give an example of
function that is linear but not
symmetric? If not, why?

E) Realize function S 0,1,3,5

(A,B,C,D,E) in the most efficient way.



Solution to Problem 11 YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

A)  How to recognize a symmetric function in a Karnaugh
Map?

For every cell described by k ones the values are the
same or don’t cares, k=0 to 4. See the sets of cells with
the same index(number of ones in argument) marked by
the same color.

B) How to recognize a linear function in a Karnaugh Map?

It is an exor of a set of literals, looks like a chess pattern.
Some are shown here.

Four
ones Three

ones
Two
ones

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10
w ⊕ x ⊕  y ⊕  z

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10
w ⊕ x ⊕  y



Solution to Problem 11
C) Give an example of Kmap of 4 variable function that is
both linear and symmetric?

D) Can you give an example of function that is linear but not
symmetric? If not, why?

The function w ⊕⊕⊕⊕ x ⊕⊕⊕⊕  y is linear but is not a symmetric function
of 4 variables. It is however a symmetric function of 3 variables
from definition.

E) Realize function S 0,1,3,5 (A,B,C,D,E) in the most efficient
way.

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

S 1,3(A,B,C,D)

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

YZ

WX 00 01

00

01

0 1

54

3 2

67

11 10

412

8 9 11 10

141513

11

10

AB
CD E=0 E=1

AB
CD



S 0,1,3,5 (A,B,C,D,E)= S 2,4 (A,B,C,D,E) each of them can be realized 

0    1
A

B

C

D

E

S0=0 S1=0 S2=1 S3=0 S4=1 S5=0

Some muxes can be removed and variables E and E’ added.
Check it! This is only one solution. You can also use Davio
Lattice, Reed-Muller Lattice or ESOP.



Problem 12
• Given is a circuit described by equations:

– A = ab+cd’+aef
– B = ab + cef + (d ⊕  f)
– C = acd’ + (a’ fg + (bd’) * (c + fd))

A) Draw a reversible realization of this circuit with arbitrary gates.
B) Prove that your circuit is reversible
C) Find an inverse circuit

Problem 13
Realize Margolus gate with a minimum number of Toffoli and
Feynman gates (and inverters).



Solution to Problem 12
• Given is a circuit described by equations:

– A = ab+cd’+aef
– B = ab + cef + (d ⊕  f)
– C = acd’ + (a’ fg + (bd’) * (c + fd))

A) Draw a reversible realization of this circuit with arbitrary gates.
B) Prove that your circuit is reversible
C) Find an inverse circuit

This is a rather big function, it has 6 ariables. So the only
method that you can  practically apply is approximate,
especially that intentionally you  were not asked to minimize
the circuit. We cannot find known parts of reversible gates
either. So we just convert the circuit using Toffoli, Feynman
gates and many constants and garbages.



Solution to Problem 12
• We get equations:

– A = ab+cd’+aef
– B = ab + cef + (d ⊕  f)
– C = acd’ + (a’ fg + (bd’) * (c + fd))

a
b
0

c
d
0

e
f
0

a

1 A

garbages

B

c
e
f
0

d 1

Now you understand the method and you can realize also
function C similarly.

f

Garba
ges



Solution to Problem 12

B) Prove that your circuit is reversible
The circuit is composed from reversible gates and satisfies axioms (no
fan-out, no loops) of reversible circuit. So it is reversible. Of course,
with a lot of constants and garbages.
C) Find an inverse circuit
This can be achieved remembering that Toffoli is its own inverse, so
you have just to draw a mirror circuit by mirroring your circuit to
restore original inputs and constants. Use Feynman as spy circuit - as
shown in class.



Solution to Problem 13 Realize Margolus gate with a minimum number of
Toffoli and Feynman gates (and inverters).

Margolus:  P=a’b+ac, Q=b’c+ba, R=c’a+cb - observe the shift property
of this circuit. We do not call it symmetry, because this function is not
symmetric, but we can expect certain kind of “regularity” or “symmetry”
(not in Boolean sense) since of the cyclic place of signals a, b and c in
the equations P, Q and R.
It would be easy to assume one garbage in each function and use
standard ESOP method, like this:

a
b
c
0
0
0

P
Q
R



We have however enough knowledge to design this gate in a much
smarter way, decreasing the width and the length.

P=a’b+ac, Q=b’c+ba, R=c’a+cb

Fredkin

a
b
c

a
a’b+ac
a’c+ab Fredkin

a’b+ac=P
ac’+bc=R

Thus at least
one output is
realized. This
was a guess.

(a’b+ac)’a + (a’b+ac) (a’c+ab) =
after standard De Morgan and
Boolean algebra = ac’+bc

We see that our guess was good with
accuracy to output signal permutation.
Let us now check the last signal.

(a’b+ac) a + (a’b+ac)’ (a’c+ab) = after standard De
Morgan and Boolean algebra = ab+b’c=Q so our
guess was good. We just need swap gates.

Q=b’c+ba



P=a’b+ac, Q=b’c+ba, R=c’a+cb

Fredkin

a
b
c

a
a’b+ac
a’c+ab Fredkin

a’b+ac=P
ac’+bc=R

Q=b’c+ba

swap

Now we can rewrite to quantum notation

a
b
c

Can be removed

Similarly even
better solution
can be found
using
permutation of
Fredkin
inputs/outputs



Problem 14
• A) Convert non-deterministic machine to a

deterministic one.
• B) Realize the non-deterministic (Mealy)

machine using standard one-hot code realization
shown in class.

A/B

A/C

1 2

3

A’/D
A’/D

A/B

A/C

A/B



Solution to Problem 14
• A) Convert non-deterministic machine to a deterministic one.

A/BC

A,
A’/-

{1}

{2,3}

A’/-

A’/D

A/B

A/BC
{2}

A’/D

{3}

A/BC



Solution to Problem 14• B) Realize the non-deterministic
(Mealy) machine using standard
one-hot code realization shown in
class. A/B

A/C

1 2

3

A’/D
A’/D

A/B

A/C

A/B
A 1

start

I located FFs in such positions that
you can compare with the graph.

2

3

B C
Goes to nowhere which
creates trap state encoded by
000. Of course this AND gate
can be removed

D



Problem 15 A  ternary function with inputs Z and X and
outputs U and V that is specified by the map

Z
X0     1      2

0

1

2

U,V

2,2  2,0 2,1

0,0  0,1  0,2
1,1  1,2  1,0

A)  Is this function symmetric?

B)  Is this function reversible?

C)  Draw this function using the
minimum number of ternary
reversible gates.

D)Using this function, draw a
realization of a 3-qubit ternary linear
function with the minimal number of
gates.

E) Extend the concept of binary
controlled gate to the concept of
ternary controlled gate and show two
examples of such gates.



Solution to Problem 15Solution to Problem 15
Z

X0     1      2
0

1

2

U,V

2,2  2,0 2,1

0,0  0,1  0,2
1,1  1,2  1,0

A)  Is this function symmetric?

• Function U is not symmetric, Function V is symmetric.

B)  Is this function reversible?

•Yes, by inspection of its Kmap or truth table.

C)  Draw this function using the minimum number of ternary
reversible gates.

Z

X

U

V
Z

X0     1      2
0

1

2

0    1       2
1    2       0

2    0       1

Modulo 3
addition of Z
and X

•Thus we created a ternary
counterpart of Feynman
Gate.

•It uses modulo-3 and not
modulo-2 addition



Solution to Problem 15Solution to Problem 15
D)Using this function, draw a realization of a 3-qubit ternary linear
function with the minimal number of gates.

B

C U

VA

X=A +3 B

U = C +3 B

V = A +3 C +3 B

All
functions
are ternary
and linear



Solution to Problem 15Solution to Problem 15
E) Extend the concept of binary controlled gate to the concept of
ternary controlled gate and show two examples of such gates.

B

C U

X=B

U = C if B=0

U = F(C) if (B=1 or B=2)

FF

B 0     1      2
0

1

2

0    1       2
1    2       0

1    2       0

U

C

In this case, F = C +3 1



Problem 16
• Realize a ternary swap gate with arbitrary gates that are

generalizations of binary gates. Prove that it really works as a
swap of arbitrary ternary signals.



Solution to Problem 16Solution to Problem 16
• Realize a ternary swap gate with arbitrary gates that are generalizations of binary

gates. Prove that it really works as a swap of arbitrary ternary signals.

• We solve this problem by analogy with binary swap that is done using Feynman
gates:

a

b a mod2 b

a mod2 b mod2 a = b
For binary

a

b a mod3 b

2a mod3 b mod3 a = b = 3a mod3 b = b
For ternary

This gate multiplies by two



• In binary we are adding mod2 b to the bottom line.
• Thus to complete the ternary swap circuit we have to add 2b to the bottom line

a

b a mod3 b

b

a mod3 b mod3 b mod3 b = a



Problem 17
• Assuming that you have a generator of probability 1/2 and arbitrary

logic gates and flip-flops, realize the following probabilistic state
machine.

A’ prob=1/4A’ prob=3/4

A prob=1/2A prob=1/2

1 prob=1/8

1 prob=1/8 1 prob=3/4

1prob=1

1prob = 1

Means transition
with A=0 input that
has probability 1/4

1
2

3

4



A’ prob=1/4A’ prob =3/4

A prob=1/2A prob =1/2

1 prob=1/8

1 prob=1/8 1 prob=3/4

1prob=1

1prob = 1

1
2

3

4
We use the one-hot coding method, because the problem is similar to a non-
deterministic automaton and to save time, but any standard synthesis method
for automata can be used.

Solution to Problem 17

3

2

4

1
A

1/2

1/2

1/2

1/2

1/2

1/2



Problem 18
• Given is a graph.
• Show and explain a

backtracking algorithm that
finds the exact minimal
coloring to this graph.

• Or, if you do not know the
backtracking tree-searching
algorithm show any other
algorithm to find the minimum
coloring for arbitrary graphs.

• You may use trees to explain
operation of your algorithm.

1

2

3
4

5

6

7

8



Solution to Problem 18Solution to Problem 18

1
2

3 4

5
6

7
8

1a,2b,3c

4a 4d

Colors={a,b,c,d,e,f,g,h}
4e

4h
…...

a
b

c a

1a,2b,3c,4a

1a,2b,3c,
4a,5c

5c

c

1a,2b,3c,
4a,5c,6a

6a

a
b

1a,2b,3c,4a
,5c,6a,7b

7b

1a,2b,3c,4a,5
c,6a,7b,8c

c

•With this 3-coloring we can stop since the number of colors cannot be
smaller than 3, having clique with 3 nodes.

•However, this will not work in general. What we can always do is to
remove from the graph all hanging nodes that have colors other than a,b,c.
These are denoted by color red in the tree.

•When node at depth 6 is reaches all nodes with arrows labeled with
colors d,e,f,g,h are removed.

•This backtrack to node on depth 5 finds that there are no more
possibilities to investigate since all arrows going out are red. Backtrack to
node at level 4. Again all arrows going out are red so we backtrack

•Level 3. There is arrow 6b that is not red. We expand the tree in depth,
see next slide.

8c
8d

8h

7d 7h

6b 6d
6h

…..

…..

…..

5d 5h

Level 1Level 1

Level 2Level 2

Level 3Level 3

Level 4Level 4

Level 5Level 5

Level 6Level 6



1
2

3 4

5
6

7
8

1a,2b,3c

4a 4d

Colors={a,b,c,d,e,f,g,h}
4e

4h
…...

a
b

c a

1a,2b,3c,4a

1a,2b,3c,
4a,5c

5c

c

1a,2b,3c,
4a,5c,6a

6a

b
a

1a,2b,3c,4a
,5c,6a,7b

7b

1a,2b,3c,4a,5
c,6a,7b,8c

c

8c

6b

5d 5h

Level 1Level 1

Level 2Level 2

Level 3Level 3

Level 4Level 4

Level 5Level 5

Level 6Level 6

1a,2b,3c,
4a,5c,6b

1a,2b,3c,4a
,5c,6a,7a

7a

8c8b

1a,2b,3c,4a,5
c,6b,7a,8b

1a,2b,3c,4a,5
c,6b,7a,8b

•Searching in depth of the tree we
find solution and next solution

All other arrows are red so
backtracking to levels 3, 2
and 1 will not cause creating
next processes of  searching
the tree to depth, and the
returned solutions (in
circles) are optimal


