
ReversibleReversible
Computing forComputing for

BeginnersBeginners

Marek Perkowski
Lecture 3.

Some slides from Hugo De
Garis, De Vos, Margolus,

Toffoli, Vivek Shende & Aditya
Prasad

Reversible Computing
• In the 60s and beyond, CS-physicists considered the
ultimate limits of computing, e.g.

• What is the maximum bit processing rate of a cubic
centimeter of material?
• What is the minimum amount of heat generated per
bit processed? etc.

• This led to the fundamental developments in computing
- reversible logic.

The Most ImportantThe Most Important
aspect of research isaspect of research is

MotivationMotivation
Why I have motivation to work on

Reversible Logic?

Reasons to work onReasons to work on
Reversible LogicReversible Logic

•Build Intelligent Robots

•Save Power

•Save our Civilization

•and supremacy of advanced
nations?

How to build extremely large finite stateHow to build extremely large finite state
machines with small power consumption??machines with small power consumption??

…and this leads us to the second reason…..…and this leads us to the second reason…..

Save our CivilizationSave our Civilization
Quantum Computers will be reversibleQuantum Computers will be reversible

Quantum Computers will solve NP-Quantum Computers will solve NP-
hard problems in polynomial timehard problems in polynomial time

If Quantum Computers will be not build,If Quantum Computers will be not build,
USA and the world will be in troubleUSA and the world will be in trouble

Motivation for this work:
Quantum Logic touches the future of

our civilization
• We live in a very exciting time.
• US economy grows, despite crisis
• World economy grows
• Thanks to advances in information-processing

technology.
• Usefulness of computers has been enabled

primarily by semiconductor-based electronic
transistors.

Moore’s Law
• In 1965, Gordon Moore observed a trend of increasing

performance in the first few generations of integrated-circuit
technology.

• He predicted that in fact it would continue to improve at an
exponential rate - with the performance per unit cost increasing by
a factor of 2 every 18 months or so - for at least the next 10 years.

• The computer industry has followed his prediction throughout for
45 years..

• Increased power of computers created a new civilization:
– communications, manufacturing, finance, and all manner of products and

services.

– It has affected nearly everything.

Questions.

• How long can Moore's law continue to hold?
• What are the ultimate limits, if any, to

computing technology?
• How will the technology need to change in

order to improve as much as possible?
• What will happen to our civilization if the

Moore Law will stop to work?

 Amazing thing
• A product that seems to get better in every

respect as you make it smaller and smaller.
• You can make it smaller as you improve the

fabrication process in a fairly methodical way.
• But, how long can this trend continue?
• There are a lot of fundamental physical limits that

will ultimately come to bear on the shrinkage of
transistors, and the improvement of computing
technology in general.

• Even beyond this, after not too many decades of Moore's
law, the entire transistor itself will approach the atomic
scale.

Problems in Reversible/Quantum Computing
• Building physically Reversible Gates in quantum, optical

or CMOS technologies (Fredkin, Feynman, Toffoli gates)
– this is done by physicists and material science people,
– requires deep understanding of quantum mechanics,
– big costs, expensive labs.

• Solving NP-hard problems in polynomial time using hypothetical
gates and computers (Deutsch)
– this is done by mathematicians and computer scientists in IBM,

Bell Labs, MIT and other top places.
– Does not require understanding of physics of quantum mechanics

but only its mathematics.

– We can do it if we learn more math !!

Problems in Reversible/Quantum Computing
• Building physically Reversible Computers from CMOS gates (MIT,

USC, Seoul Nat. Univ. Korea, De Vos - Belgium).
– this is done by EE scientists with background in CMOS design.
– Does not require understanding of quantum mechanics,
– we can do this.

• Designing new Reversible and Quantum gates . (De Vos, Kerntopf, Picton). This
requires elementary knowledge of logic synthesis. Topic of this lecture. We can do
this. Relatively easy.

• Designing logic synthesis theory for reversible and Quantum Logic
– this is done by mathematicians and computer scientists with no background in

logic synthesis
– Picton and other, weak results, few publications
– This is a virgin field waiting for pioneers.
– We should do this - see this lecture.

LandauerLandauer Principle Principle
andand

What is ReversibleWhat is Reversible
Logic Gate?Logic Gate?

Landauer’s Principle
In 1961, Landauer was considering the smallest amount of heat
generated per bit processed in computation.

He made several discoveries and innovations. He introduced the
distinction of logical and physical irreversibility. He noted that
a physical implementation of a logically irreversible process (defined
to be one that cannot be logically reversed, i.e. undone by reversing
the flow direction of computation) must be physically irreversible
(i.e. cannot be undone or reversed to its prior physical state).

A process is logically reversible if knowing the binary input to a logic
gate, one can deduce the output and vice versa. (There is a 1 : 1
mapping between input bit string and output bit string (bijective ,math)
e.g. of a logically reversible gate is the NOT gate. An
example of a logically irreversible gate is the AND gate.

Knowing one has a 0 at the output of an AND gate does not allow
one to deduce what the input was. This gate is logically irreversible.

This is not surprising because there must be loss of information. The
AND gate has 2 input bits and only 1 output bit. Information (one bit’s
worth) has been destroyed!

Landauer discovered (rather surprisingly) that the heat coming from
computation was due to the destruction of information (wiping out
bits of information) and not to the processing of bits. This is
Landauer’s Principle.

Landauer thought that since computers used logically irreversible gates,
(I.e. typically NAND gates) that computing was inherently physically
irreversible, and hence inevitably gave off heat.

Landauer’s Principle

Classical gates are irreversible
– Conventional computers are built from basic building blocks, such as the
AND, NAND, OR, NOR, and XOR gates.

– Such tables are logically irreversible.

– This means that, if we forget the value of the input
(A, B), knowledge of the output P is not sufficient
to calculate backwards and to recover the value of
(A, B).

AND NAND OR NOR XOR

Logical irreversibility = physical
irreversibility.

• The NOT gate is reversible
• The AND gate is irreversible

– the AND gate erases information.
• the AND gate is physically irreversible.

Information is Physical
• Is a minimum amount of energy required

per computation step?

• Rolf Landauer, 1970: Whenever we use a logically
irreversible gate we dissipate energy into the
environment.

A

B
A XOR B

A

B

A

A XOR B
reversible

irreversible

Repeating input A on output makes this gate reversible

A B X Y

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Overview of Reversible Gates

• A reversible gate is one where
there is a one-to-one
correspondence between the inputs
and the outputs (i.e., if in the truth
table of the gate there is a distinct
output row for each distinct input
row).

• In Boolean algebra, such a function
is both one-to-one (or injective)
and onto (or surjective).

A B X Y

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Think about a gate as an
input/output constraint

A

B

A=X

A XOR B=Y
reversible

A B X Y

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

R(input, output) = R(<A,B>,<X,Y>)

R(<A,B>,<X,Y>) = Permute(2,3)

constraint

<0,0> ==> <0,0>

constraint

<1,0> <== <1,1>

constraint

<<1,0> , <1,1>> YES

<<1,1> , <0,1>> NO

Think about a gate as an
input/output constraint

constraint equation
Physical

process

Few ways to think about reversible gates

People in the 1970s started wondering if it might be possible to have
logically reversible gates that could be used to make a physically
reversible computer.

Logically Reversible Gates

A logically reversible gate must have the same number of inputs as
outputs (why?)! Two of the most famous such gates are the
Fredkin Gate and the Toffoli Gate, shown below.

The Fredkin Gate is a controlled swap gate, i.e. if the control bit C is 1,
then the two input bits A and B are swapped at the output. See the
figure and the corresponding truth table.

F
C
A
B

C
A’
B’

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 0 1
1 1 1

C A B C A’ B’

Truth table for the Fredkin Gate.
If C=1, A and B swap, otherwise
A and B go through unchanged.

The Toffoli Gate is often called a CCNot Gate, i.e. if the two
control input bits are both 1, then the 3rd input is reversed.
See the figure and its truth table on the next slide.

The Toffoli Gate is an important gate in quantum computing as
you know already.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1
1 1 0

C1 C2 A C1 C2 A’

T
C1
C2
A

C1
C2
A’

If the two control input bits C1 and C2
of a Toffoli Gate are both 1, then the
input bit A reverses, else all 3 bits go
through unchanged.

Both gates are computationally universal, i.e. they can be used
to generate AND, OR, NOT gates, which together form a
computationally universal set of gates (i.e. they can be used to
generate any Boolean function (i.e. a function that maps a set of
M-bit input strings into a set of N-bit output strings).

Ex. Show that these two gates are computationally universal.

Information is PhysicalInformation is Physical

•Charles Bennett,
1973:

• There are no unavoidable energy
consumption requirements per step in a
computer.

• Power dissipation of reversible computer,
under ideal physical circumstances, is zero.

If reversible logic gates are computationally universal, then one can
build computers based on them which should also be reversible,
contradicting Landauer’s original conclusion.

Bennet of IBM in 1973 discovered a way to make a reversible
Turing Machine (by adding a history tape that gets written on and
then unwritten (made blank) at the end.

Reversible computing implies no information is wiped out, hence
a history of all calculations is kept, then is reversibly restored
to its original state.

How to Compute Reversibly
1) Design a computer using reversible gates, to make it reversible.

2) Send in a bitstring on the LHS (see figure) to the reversible
 computer. The answer exits on the RHS.

3. Make a copy of the answer, keep it.

4. Send the answer from the RHS back into the computer, resulting
 in the original input bit string on the LHS. (As would be expected
 in a reversible computer).

I
N
P
U
T
0
0
0
0
0
0

I
N
P
U
T
O
U
T
P
U
T

C
O
M
P
U
T
E
R

C
O
P
Y

OUTPUT

r C
e O
v M
e P
r U
s T
e E
d R

I
N
P
U
T
0
0
0
0
0
0

copy
answer

1

2 then
reverse

garbage
 bits

Reversible computation.
• Charles Bennett, IBM, 1973.

– Logical reversibility of computation,
• IBM J. Res. Dev. 17, 525 (1973).

•This principle applies also
to combinational circuits
that we build.

•But is this a best way?

•No, this is extremely
wasteful

•New principles of logic
synthesis should be invented

Future of Reversible Computing

• Computer science has no choice.
• It must adapt itself to reversible computing, otherwise molecular
scale circuits (a consequence of Moore’s law over the next 20
years) will explode with the heat they generate.

• CS will have to use reversible gates, hence compute reversibly.
• This is not easy. All bits have to be stored and reversed. How to
do this in practice?

•Ongoing research, e.g. reversible high level computer language
“R” at MIT.
• Laptop designers are interested in (quasi)-reversible circuits for
laptops. Quasi-reversible circuitry generates less waste heat, hence
enhances battery life.

Landauer Theorem

• Whenever we use a logically irreversible gate we
dissipate energy into the environment.

A

B

A

A XOR B
reversible

• Reversible gate is a necessary but not sufficient
condition of losing no power

• In addition, we need at least an ideal switch.
• Can ideal switch be build?

Real-world ApplicationsReal-world Applications

• Digital signal processing
• Cryptography
• Computer graphics
• Network congestion

Links to QuantumLinks to Quantum
ComputationComputation

• Quantum operations are all reversible
• Every (classical) reversible circuit may be

implemented in quantum technology
• Certain quantum algorithms have “pseudo-

classical” subroutines, which can be
implemented in reversible logic circuits

Theoretical AdvantagesTheoretical Advantages
• Information, like energy, is conserved under the

laws of physics
• Thermodynamics can be used to tie the

irreversibility of a system to the amount of heat it
dissipates

• An energy-lossless circuit must therefore be
information-lossless

• Furthermore, there is evidence to suggest that
reversible circuits may be built in an energy-
lossless way

Landauer'sLandauer's principle principle
• Landauer's principle: logic computations that are not reversible,

necessarily generate heat:
– i.e. kTlog(2), for every bit of information that is lost.

 where k is Boltzmann's constant and T the temperature.

• For T equal room temperature, this package of heat is small, i.e. 2.9 x 10 -21 joule,
but non-negligible.

• In order to produce zero heat, a computer is only allowed to perform reversible
computations.

• Such a logically reversible computation can be `undone': the value of the output
suffices to recover what the value of the input `has been'.

• The hardware of a reversible computer cannot be constructed from the conventional
gates

• On the contrary, it consists exclusively of logically reversible building blocks.

A

B

A

A XOR B
reversible

• Tomasso Toffoli, 1980: There exists a reversible
gate which could play a role of a universal gate for
reversible circuits.

Fredkin and Toffoli
created the first (3,3)

universal gate

Q(3) :(x,y,z)==>(x,y,z⊕⊕⊕⊕ xy)
⊕⊕⊕⊕ denotes EXOR

Toffoli Gate

y

z

y

z ⊕⊕⊕⊕ xy

x x

• Important example of non-linear gate:
• 3-bit Toffoli gate, (3,3) Toffoli gate
• Called also controlled-controlled-NOTcontrolled-controlled-NOT

Non-linear Gate: Toffoli

It flips the third bit if the first two bits are 1 and does nothing else

Like the Toffoli gate, it is its own inverse (please prove these two
facts)

y

z

y

z ⊕⊕⊕⊕ xy

x x We already introduced this gate

earlier, now will be more detail

• Of course, a computer built of only this type of
gate, even using quantum technology, would have
the power of only classical computers

Sufficient motivation is also that reversible gatesreversible gates can
be realized in many other technologies that already

exist

But we can in addition to these gates construct

gates that are possible only in quantum

y

z

y

z ⊕⊕⊕⊕ xy

x x

What otherWhat other
Reversible Gates canReversible Gates can

exist?exist?

Width of Reversible GateWidth of Reversible Gate

• The number of output bits of a reversible logic
gate necessarily equals its number of input
bits.

• We will call this number the `logic width' of
the gate.

Quantum Reversible Gates
• In designing gates for a quantum computer,

certain constraints must be satisfied.
• In particular, the matrix of transition amplitudes

must be unitary, which implies, roughly
speaking, that it conserves probability:

• The sum of the probabilities of all possible
outcomes must be exactly 1.

• A consequence of this requirement is that any
quantum computing operation must be
reversible:

Quantum Reversible Gates

• quantum computing operation must be
reversible:
– You must be able to take the results of an operation

and put them back through the machine in the
opposite direction to recover the original inputs.

• Standard gates do not obey this rule, since
information is irretrievably lost when two input
bits are condensed into a single output bit.

• The study of reversible computing has gotten a lot of
attention lately.

• This is because of quantum computing but also because it
was found that reversible computation can be done also in
CMOS, optically and in nano-technologies.

• It consumes very little power, and power reduction is
becoming the most important design objective of
computers.
– a reversible computer can perform any computation and can do

so with arbitrarily low energy consumption (Charles H. Bennett
and Rolf Landauer of IBM)

Universal Classical and Quantum
Reversible Gates

• A reversible (3,3) gate devised by Tommaso Toffoli of MIT is a
"universal" classical gate:

• A computer could be built out of copies of this gate alone

•• DeutschDeutsch has shown that a similar gate is universal for quantum has shown that a similar gate is universal for quantum
computerscomputers

• Both the Toffoli and the Deutsch gates have three inputs and three
outputs, but more recently two-qubit (2,2) gates have also proved
universal for quantum computations

• I believe that (2,2) gates can be constructed in MVL and I am
working on this.

Universal Classical and Quantum
Reversible Gates

• Practical quantum technologiesquantum technologies are years or decades away.
• Few implementation schemes are already under discussion.
• The idea closest to existing electronic technology relies on
• ”Quantum dots” are closest to existing electronic

technologies
• We will discuss them in one of next lectures

– They are isolated conductive regions within a semiconductor
substrate.

– Each quantum dot can hold a single electron, whose presence or
absence represents one qubit of information. (qubit is quantum
bit, it will be much more on it).

Quantum Dots

• Hypothetical polymeric molecule in which the individual
subunits could be toggled between the ground state and an excited
state

• David P. DiVincenzo of IBM has described a mechanism by
which isolated nuclear spins would interact -- and thereby compute --
when they are brought together by the meshing of microscopic gears

• Others will be also discussed

Another Quantum Circuits

Reversibility in Logic Gates

• A logic gate is reversible if
– It has as many input as output wires
– It permutes the set of input values

• Some examples include
– An inverter (the NOT gate)
– A two-input, two-output gate which swaps the values

on the input wires (the SWAP gate)
– An (n+1)-input, (n+1)-output gate which leaves the first

n wires unchanged, and flips the last if the first n were
all 1 (the n-CNOT gate)

Reversibility in Logic Circuits

• A combinational logic circuit is reversible if
– It contains only reversible gates
– It has no FANOUT
– It is acyclic (as a directed multigraph)

• It can be shown that a reversible circuit has
as many input wires as output wires, and
permutes the set of input values

••Reversible LogicReversible Logic
reversible gatereversible gate

invertible invertible functionfunction

Terminologies are not yet consistent, be aware

Linear ReversibleLinear Reversible
GatesGates

Second Example:Second Example:
Feynman Feynman GateGate

Quantum XOR
•Controlled NOT
•Quantum XOR
•Reversible XOR
•QCF
•Feynman gate

Quantum XOR
• How do we build up a complicated reversible

computation from elementary components -
– what constitutes a universal gate set?

• We will see that one-bit and two-bit reversible
gates do not suffice; we will need three-bit gates for
universal reversible computation.

• Of the four 1-bit --> 1-bit gates, two are reversible;
the trivial gate and the NOT gate.

• Of the (2 4) 2 = 256 possible 2-bit--> 2-bit gates, 4!
= 24 are reversible.

Quantum XOR

• Of special interest is the controlled-NOT or
reversible XOR gate:

 XOR : (x; y) ==> (x, x ⊕⊕⊕⊕ y);

by ⊕⊕⊕⊕ we denote EXOR (modulo-2 sum)
x

y

x

x ⊕⊕⊕⊕ y

These notations were introduced by physicists and they are

inconsistent with standard electrical engineering notations,

however it will be convenient for us to use both notations.

Swapping bits using XOR cascade

cascade

Of importance in quantum, quantum dot, but not CMOS

With the circuit

Constructed from three Quantum XORs, we can swap two bits:

(x,y) ==> (x,x ⊕⊕⊕⊕ y) ==> (y,x ⊕⊕⊕⊕ y) ==> (y,x)

Conclusion: in quantum logic you pay for crossing wires!!!

Structures

cascade

Only linear
circuits with
linear gates

No No branchingsbranchings!!!!

Structures

cascade

Constants are possible

Rules for creating Structures
••Do not generate the waste ofDo not generate the waste of

outputsoutputs

••Create constants rather thanCreate constants rather than
functions on outputsfunctions on outputs

••Create re-usable functionsCreate re-usable functions
(repeating inputs by branching(repeating inputs by branching

may be useful)may be useful)

The QCF gate is not complete

• The QCF gate is not enough to build a
complete quantum computer

• like NOT gates are not enough to build a classical
computer.

• Performing useful calculations requires gates
that process more than one bit (or qubit in case
of quantum logic) at a time.

• For example, AND gates in conventional
computers.

Linear Gates
• To prove that one-bit and two-bit gates are not universal, it can be

observed that they are linear.
• Composition of linear gates is always linear, and there exist of course

non-linear functions (by linear we mean a circuit that satisfies
superposition, as in control theory)

• Each reversible two-bit gate has an action of the form:









+








=








→









b
a

y
x

M
y
x

y
x

'
'

Linear Gates
Where the constant

takes one of four possible values, and the matrix M is one of the six
invertible matrices










b
a


















































10
11

,
11
01

,
11
10

,
01
11

,
10
01

,
01
10

All additions are performed in modulo-2 (EXOR)

Combining the six choices for M with the four possible constants,

we obtain 24 distinct gates, which exhausts all the reversible

2==> 2 gates

• Since the linear transformations are closed under
composition, any circuit composed from reversible 2 ==> 2
and 1 ==> 1 gates will compute a linear function x ==>
Mx+a

• As shown by Toffoli gate (controlled-controlled-Not , Q
(3)) there are (3,3) gates that are non-linear.

• We will investigate such gates for n>= 3
• Linear gates will still remain very important because of

their special properties.
• EXOR forests used in BIST are linear circuits, they can

be modified to reversible logic.

Linear Gates

Gates of logic width 3

• Fredkin and Toffoli:

– demonstrated that three inputs and three
outputs is necessary and sufficient in order
to construct a reversible implementation of
an arbitrary boolean function of a finite
number of logic variables.

• Thus, from the fundamental point of view, reversible logic
gates with a width equal to three have a privileged
position.

How many reversible gates exists?

• The truth table of a logic gate of width w consists of 2w

lines, each containing two w-bit numbers: the w-bit input
(A, B, C, ...) and the w-bit output (P, Q, R, ...).
– For convenience, all possible inputs, ranging from (0, 0, 0, ...) to

(1, 1, 1, ...), are ordered arithmetically.

• Such a gate is reversible if-and-only-if all 2w output
numbers form a permutation of the 2w input
numbers.

• Hence, there exist exactly (2w)! different reversible
gates of width w.

How many reversible (3,3) gates exists?

• In particular, there are 8! = 40,320 reversible gates
with 3-bit width.

• We will investigate which of these 40,320 gates
fulfil the role of universal building block, and
which fulfil this job more efficiently than the others.

• In order to tackle the problem, we will successively
study the reversible gates with w = 1, w = 2, and
w = 3.

 Single bit Reversible Gates

• There exist only four different truth tables with one bit input
and one bit output.

• Two of them are logically irreversible: the resetter (P = 0)
and the setter (P = 1).

• The two others are reversible: the follower (P = A) and the
inverter (P = NOT A).

– If, for example, we have `forgotten' the
value of A, knowledge of the value of the
inverter's output P suffices to recover it.

 Single bit Reversible Gates

• Note that among the 1-bit reversible gates, the NOT gate is a
`generator'.
– This means we can make any reversible gate of width 1 by combining a finite

number of this particular gate.

• Indeed, a follower can be fabricated by the sequence of two
inverters.

• The opposite is not true: one cannot fabricate an inverter by cascading
followers.

follower followerfollower

follower inverter inverter

Reversible Gates with two bits
• There are 44 = 256 different truth tables with two inputs (A, B) and

two outputs (P, Q).
• Among them, only 4! = 24 are reversible.
• However, some of these twenty-four truth tables fall apart into two

separate 1-bit reversible tables.
– Table a decomposes into one follower Q = A (Table 2b) and one inverter P

= NOT B (Table c).

Table : Falling apart of a
truth table.

follower

inverter

 Calculation with two bits
• On the contrary, truth Table GATES b is an example of a 2-bit

reversible table that cannot be reduced to two separate 1-bit reversible
tables, and therefore is called a true two-bit reversible gate.

• Among the 24 reversible 2-bit tables, only 16 are true 2-bit tables.

Table GATES: Feynman's truth tables: (a) NOT, (b) CONTROLLED NOT,
(c) CONTROLLED CONTROLLED NOT.

P=A

Q=A ⊕⊕⊕⊕ B

CONTROLLED NOT by Feynman

• All reversible true 2-bit gates can be fabricated from the same building block,
combined with an inverter before and/or an inverter after.

• Indeed, Table 3b together with the inverter (Table 3a) forms a set of two building
blocks with which we can synthetize an arbitrary reversible 2-bit gate.

• Truth Table 3b is called the CONTROLLED NOT by Feynman

• Its logic operation looks like this:

 P = A

 Q = A ⊕⊕⊕⊕ B ,

 where XOR is the abbreviation of the
EXCLUSIVE OR function.

• The gate is the reversible form of the
classical (irreversible) XOR gate.

Table GATES: Feynman's truth tables: (a) NOT, (b) CONTROLLED NOT,
(c) CONTROLLED CONTROLLED NOT.

• Figure gives a representative example of a 2-bit reversible gate,
realized by combining NOT and CONTROLLED NOT gates.

The synthesis of a 2-bit reversible gate:
(a) truth table, (b) three different implementations combining NOTs

and CONTROLLED NOT.

• Whereas output Q
simply equals input B,
output P can be
described in three
different ways:

• P = NOT (A ⊕⊕⊕⊕ B)

• P = A ⊕⊕⊕⊕ (NOT B)

• P = (NOT A) ⊕⊕⊕⊕ B .

Controlled NOT gate
• These three boolean expressions are identical, but lead to different physical realizations.

• We note, however, that these implementations not only make use of the 1-bit NOT function and the 2-bit
CONTROLLED NOT function, but also of the 2-bit exchanger, i.e. the gate that interchanges two logic
variables (realizing P = B as well as Q = A).

• This is an example of a general property: the EXCHANGER, the NOT, and the CONTROLLED NOT
form a natural `generating set' for the twenty-four 2-bit reversible gates.

• More precisely, each reversible 2-bit gate can be synthesized by taking one or zero CONTROLLED
NOTs and adding one or zero EXCHANGERs and one or zero NOTs to the left and to the right of it.

Table 4: The three
generators of the 2-
bit reversible gates:
(a) EXCHANGER,
(b) NOT, (c)
CONTROLLED

NOT.

• Note that:

– neither the
EXCHANGE
R nor the
NOT is a true
2-bit gate,

– but the
CONTROLL
ED NOT is
one.

• See Table 4

Converter of binary to
Gray code

0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000

abcd xyzv

cd

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1

ab
00
01
11
10

00 01 11 10

x y

z v

0 0 1 1
1 1 0 0
1 1 0 0
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

x = a

y = a⊕ b

z = b ⊕ c

v = c ⊕ d

a
b
c
d

x
y
z
v

...

Example from Literature

• Reversible half and full adders as given by
De Vos (1999). We use the following gates:
– The CONTROLLED NOT described by:

P = A and Q=A ⊕⊕⊕⊕ B

– The CONTROLLED CONTROLLED NOT
described by:

P = A, Q = B, and R = (A AND B) ⊕⊕⊕⊕ C

Implications of Reversibility:
Additional Inputs

• Reversibility criteria may require us to add
inputs to a given function. Take a 2-input
OR function:

– Note that we have some degrees of freedom in
how we fill out the columns C, G, and H

A B F
0 0 0
0 1 1
1 0 1
1 1 1

A B C F G H
0 0 0 0 0 0
0 1 0 1 0 1
1 0 0 1 1 0
1 1 0 1 1 1
+ + + + + + (?)

Implications of Reversibility:
Additional Inputs

• Intuitively, the need for extra inputs has to
do with the number of original inputs as
well as the degree of balance of the output
function(s) (ratio of 0s and 1s).

• It would be good to derive the
mathematical basis of this property.

Implications of Reversibility:
Additional Inputs

• For example, a 2-input XOR can be made
reversible by simply adding an output to the
original gate

A B F
0 0 0
0 1 1
1 0 1
1 1 0

A B F G
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Implications of Reversibility: Additional Inputs

• All n-input XOR functions can be made reversible
by adding n-1 outputs.

• Linearly Independent gates such as Galois Addition
or MODSUM have the same property

• Similarly, it seems that reversible versions of OR
and AND gates always require us to add one input to
the original list of inputs. But more must be done to
create such reversible gates

• Negations of inputs or outputs simply permute the
rows (so analysis for NAND gates is same as for
AND gates)

Implications of Reversibility: Additional Inputs

• Conclusion:
– We may need to add a number of inputs and outputs

to a given specification of a function to make it
reversible.

– I would like to be able to characterize the conditions
under which this is needed and the nature of what
we’re adding.

– This problem may already have been tackled
elsewhere in Mathematics (how to turn a non-
invertible function into an invertible one)

Implications of Reversibility:
Additional Inputs

• Completing a given specification for a
function with additional inputs and/or
outputs may constitute the first step of our
quest to synthesize an arbitrary function
into a reversible circuit.

Implications of Reversibility:
Fan-out operation

• In regular binary logic, we cannot
“combine” two wires into one.

• Since we want our circuits to be reversible,
any branching of a signal looked at in
reverse will appear as combining signals.

Implications of Reversibility:
Fan-out operation

• Moreover, as Fredkin and Tofolli (1981)
point out, duplication of signals from a
physical viewpoint is far from trivial.

• We will therefore need to use gates anytime
we wish to duplicate a signal.

• In minimizing a given function reversibly,
we cannot assume free fan-out.

Operation of the Fredkin gate

A
0
B

A
B
1

A
0
1

C
A
B

C
AC’+BC
BC’+AC

A
AB

A’B

A
A+B

A
A
A’

0
A
B

1
A
B

0
A
B

1
B
A

A’+B

Note new notation for Fredkin gate.

Note that it is a controlled swap gate.

A 4-input Fredkin gate
X
A
B
C

0
A
B
C

A
B
0
1

1
A
B
C

X

AX’+CX
BX’+AX
CX’+BX

0
A
B
C

1
C
A
B

A
A+B
AB
A’

Width of cascade. Length of cascade.
Garbage. Input constants.

 General Cascade of Kerntopf, Toffoli
and Fredkin Family Gates

f 2

A

C
B

0
1

0 * ⊕⊕⊕⊕

g 2

⊕⊕⊕⊕
1

h 2

0

0
1

1

A
B
C

ψ1

ψ2

Generalized FredkinGeneralized ToffoliGeneralized Kerntopf

 Example of multi-output FPRM cascade
of Toffoli family gates

A

C
B

1
⊕⊕⊕⊕

1

A

B

C

ψ1

ψ2

⊕⊕⊕⊕

⊕⊕⊕⊕

*

*

⊕⊕⊕⊕

*

⊕⊕⊕⊕

ψ1 = 1 ⊕ C ⊕ A’BC ⊕ A’ B

ψ2 = 1 ⊕ C ⊕ A’ B

 Example of multi-output ESOP cascade of
Toffoli family gates

A

C
B

1
⊕⊕⊕⊕

1

A

B

C

ψ1

ψ2

⊕⊕⊕⊕

⊕⊕⊕⊕

*

*

⊕⊕⊕⊕

*

⊕⊕⊕⊕

ψ1 = 1 ⊕ C ⊕ ABC ⊕ A’ B

ψ2 = 1 ⊕ C ⊕ A’ B

AC ⊕ BC ⊕ AB

A

B

C
+

+

+

+*
i

A⊕ B

A⊕ C

g

+ h

Optimal Solution to Miller Function

AB C

00

01

11

10

0 1

1

1
1

AB C

00

01

11

10

0 1

11

11

AB C

00

01

11

10

0 1

1

1 1
1

AB C

00

01

11

10

0 1

1
1

1
1

AB C

00

01

11

10

0 1

1
1
1

1

AB C

00

01

11

10

0 1

1

1

1

AC ⊕ BC ⊕ AB

A

B

C
+

+

+

+*
i

A⊕ B

A⊕ C

g

+ h

Optimal Solution to Miller Function

AB C

00

01

11

10

0 1

1

1
1

AB C

00

01

11

10

0 1

11

11

AB C

00

01

11

10

0 1

1

1 1
1

AB C

00

01

11

10

0 1

1
1

1
1

AB C

00

01

11

10

0 1

1
1
1

1
AB C

00

01

11

10

0 1

1

1 1

g = AC ⊕ BC ⊕ AB = majority(A,B,C) EquationsEquations
for Millerfor Miller

GateGateh = AC’ ⊕ BC’ ⊕ AB = majority(A,B,C’)
i = AC ⊕ B’C ⊕ AB’ = majority(A,B’,C)

Exors in these
equations can
be replaced by

ORs

 CMOS Notation for Full Adder
realized using Composition

To Fe

C

0
B

A A
B

A

A⊕ B
A⊕ B⊕ C

(A⊕ B)C⊕ AB

C C

A⊕ B

No garbageNo garbage

one input constantone input constant

4 gates, optimum solution4 gates, optimum solution

To Fe

 Quantum Notation for Full Adder realized
using composition

C

A

B

0

A⊕ B

AB C(A⊕ B) ⊕ AB

Width 4 Optimum quantum solution?

C⊕ A⊕ B

outputs

Not garbage
since these
are primary
inputs

 Quantum Notation for Full Adder realized
using ESOP

C

A

B

0

CB⊕ AB ⊕ AC

Width 5, six gates, two constant, not optimal but easy to find

C⊕ A⊕ B outputs

0

New Backtracking idea for Adder Realization

A

B

C

0

*

+

+

+

+

*

A

A ⊕ B ⊕ C=X ⊕ C

C

(A ⊕ B)C ⊕
AB=XC ⊕ Y

AB

A⊕ B

Observe that variable B is no longer useful since
output functions can be expressed only in terms of
functions X=A ⊕ B and Y= AB

Red are input wires and blue are output wires. Normally in the past you assumed that every wire is
always red or always blue. Now we can have a new type of wires which change from red to blue

New Backtracking idea for Adder Realization

A
B

C

0

*

+

+

+

+

*

A
A ⊕ B ⊕ C

C

(A ⊕ B)C ⊕ AB

AB

A⊕ B

Add gates starting from input level

Backtrack to previous part of circuit if you are not successful

Count how much of
the circuit is already
realized (usually only

a prediction)

A Reversible Circuit & Truth Table

011111
111011
001101
101001
010110
110010
000100
000000
c’b

’
a’cba

This is called quantum notation

Toffoli CNOT or Feynman Not

a
b
c

a’
b’
c’

Reversible Circuits & Permutations

• A reversible gate (or circuit) with n inputs
and n outputs has 2n possible input values,
and the 2n possible output values

• The function it computes on this set must,
by definition, be a permutation

• The set of such permutations is called S2n

Basic Facts About Permutations

• Permutations are multiplied by first doing
one, then the other

• Every permutation can be written as the
product of “transpositions”, that is,
permutations which switch two indices and
leave the rest fixed

Even Permutations

• For a fixed permutation, the parity of the
number of transpositions in such a product
is constant

• The permutations which may be written as
the product of an even number of
transpositions are called even

Known Facts

• Any reversible circuit with n+1 inputs and
n+1 outputs, built from gates which have at
most n inputs and n outputs, must compute
an even permutation

• Any permutation may be computed in a
circuit using the CNOT, NOT, and
TOFFOLI gates, and a sufficient amount of
temporary storage

Zero-Storage Circuits

• We can show that every even permutation
can be computed in a circuit composed of
CNOT, NOT, and TOFFOLI gates which
uses no temporary storage

• For an arbitrary permutation, at most one
line of temporary storage is necessary

Zero-Storage Circuits

• Roughly, the proof proceeds as follows
– Pick an even permutation, and write it as the

product of an even number of transpositions
– Pair these up
– Explicitly construct a circuit to compute an

arbitrary transposition pair
• The proof is constructive, and may be used

as a synthesis heuristic

Reversible De Morgan’s Laws

• De Morgan’s Laws allow all inverters
in an irreversible circuit to be pushed
to the inputs

• The same may be done for a reversible
circuit containing only CNOT, NOT,
and TOFFOLI gates

Reversible De Morgan’s Laws

• Similar rules exist for interchanging
TOFFOLI and CNOT gates

• However, it is not always possible to push
all the CNOT gates to the inputs

• Oddly enough, using different methods, it is
possible to push all CNOT gates to the
middle of the circuit!

Optimality

• The cost of a circuit is its gate count
– first approximation

• A reversible circuit is optimal if no circuit
with fewer gates computes the same
permutation

• Any sub-circuit of an optimal circuit must
be optimal;
– otherwise, the sub-optimal sub-circuit could be

replaced with a smaller one

IDA* Search

• Checks all possible circuits of cost 1, then
all possible circuits of cost 2, &c.

• Avoids the memory blowup of a BFS
• Still finds optimal solutions
• Checking circuits of cost less than n takes a

small amount of time relative to that spent
checking cost n circuits

IDA* Search

• Must provide a subroutine to check all
circuits of cost n, for arbitrary n

• Only need to check locally optimal circuits

Circuit Libraries

• Store small, locally optimal circuits
– Index by permutation
– Use STL hash_map

• Recursively build larger circuits

Grover’s Search

• A quantum search algorithm
• Runs in time O(sqrt(N))
• Requires a subroutine that changes the

phase of any basis states which match the
search criteria

Pseudo-classical Synthesis

• Adding a qubit initialized to |0> - |1>
changes this into a problem in classical
reversible circuit synthesis

• This can be solved by our methods

