
Problem 1 .
1. Given is a Truth Table

full adder
X Y Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

1. Realize this function using
BDDs. Arbitrary order of variables

2. Realize this function using
Kronecker Functional Decision
Diagrams. Arbitrary order of
variables.

3. Show solution based on mapping
BDD or KFDD to arbitrary logic
gates. Draw a schematic and write
expressions.

4. Realize this function using
Feynman and Toffoli gates. Show
and explain your design stages.
Verify your solution.

In each of the above 3 sub-
problems, try to minimize the total
number of gates and verify your
solutions.

full adder
X Y Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

C
XY

00
01
11
10

0 1
0

0
0

0

1
1

1
1

XY

00
01
11
10

0 1
0

1
1

1

0
0

1
0

sum Carry out

0 1

X’

Y’

C’

X

YY Y’

C
C

C’

sum
0 1

X’

Y’

C’

X

Y
Y

Y’

C

C

carry

Binary
Decision
Diagrams

C
XY

00
01
11
10

0 1
0

0
0

0

1
1

1
1

XY

00
01
11
10

0 1
0

1
1

1

0
0

1
0

sum Carry out

0 1

1

1

1

X

Y

C

sum
0 1

1

1

1

X

Y
Y

1

C

C

carry

Realize this function
using Kronecker
Functional Decision
Diagrams. Arbitrary
order of variables.

3. Show solution based on mapping BDD or KFDD to arbitrary logic gates. Draw a
schematic and write expressions.
Replacing nodes of BDD with multiplexers we obtain a well known realization of
parity or exor sum of variables circuits

Another method to observe the expressions which leads to SUM = X⊕ Y ⊕ C realized
with two EXOR gates, and CARRY = XY ⊕ XC ⊕ YC = X(Y ⊕ C)⊕ YC

X

exor

Y C

CARRY SUM

Realize this function using Feynman and Toffoli gates.

Show and explain your design stages.

X

Y C

CARRY SUM

Y
C

0

*
*

X

Y ⊕ C

Y C

*

*

*

CARRY

*

Y

Y ⊕ C

X⊕Y⊕C

SUM

As this figure shows, a good multi-level circuit from 2-input AND and EXOR gates can
be often rewritten to a reversible circuit with approximately the same number of gates
as there are EXOR gates in the first circuit. AND/EXOR is replaced with Toffoli and
EXOR with Feynman gates. Sometimes Feynman gates are added for copying
arguments.

Problem 2.
Realize this function of 3 variables as a circuit with
MINIMUM number of NAND gates, each with 2 inputs.
Try to prove that your solution is minimum.

000 100
110

111
011

001 101
010010

• We draw a Kmap.
b c

a
0

1

00 01 11 10

1 1

1 1

00

00

We recognize a “Chess-Pattern” typical for linear (EXOR only) circuits.

a

b

c

Now we synthesize the EXOR gate using 2-input NAND gates and we replace
EXOR gates with their NAND realizations (macro-generation).

Since this is a linear circuit, there is no better decomposition to 2-input gates than to EXORs. Moreover the
decomposition is disjoint. This is not a formal proof, but it is very unlikely that a better solution exist to this
problem.

a

b

c

Problem 3
x1

x3 x3

x2

x4

0 1

0 1

0 1 0 1

0 1 0 1

0 1

x2

Find a better ordering
for this function or
show that it does not
exist.

Realize the function
from the improved
BDD using only
majority gates
(majority gate is
f=ab+ac+bc).
Minimize the number
of majority gates.
Verify the solution
using Kmap.

Find a better ordering for this function or show that it does not exist.

As always, first we have to draw the Kmap to understand what kind of
Boolean function we are dealing with here.

By analyzing paths from root note do node 1 the function is x1 x3 x2 +
x1 x3’ x2 + x1’x3 x4 + x1x3 x2’ x4 = x1 x2 + x3 x4

x3x4

x1x2

00

01

00 01 11 10

0 1

0 0

00

10

11
10

1

0 0 1 0

11 1

As we see, order of variables in BDD x1
x3 x2 x4 was not creating minimum SOP
because it was splitting , for instance,
Prime Implicant x1 x2 to two implicants.
Thus the order should be x1x2 x3 x4. In
essence, the variable x1 and x2 can be in
any order before variables x3 x4 in any
order.

Let us draw BDD with
order x1x2x3x4

x1

x4

0 1

0
1

0 1

0 1

0 1

x3

x2

x1 x2 + x3 x4

• In some problems we assume that input
negations exist in some other we assume
that they do not exist, are not available to
the designer.
•Here you are requested to use only
majority functions.
•So we cannot create a negation using
majority.
•Thus, to design arbitrary function with
majority gates you have to assume that
input negations are available
• The only useful cofactors of majority
are two-input AND and OR gates
•We can build from them.
•In our function, which is positive unate,
we do not need negated arguments.
•See next slide..

a
b c

a=0
b c

Realization
of AND gate
bc with
majority

a=1
b c

Realization
of OR gate
b+c with
majority

0
MAJ

1
MAJ

0
MAJ

0
MAJ

1
MAJ

x3
x4

x1
x2

Problem 4

abcd+a’b’c’d+a’b’cd’+a’bc’d’+ab’c’d’

b’c’d+b’cd’+bc’d’ b’c’d’+bcd

c’d+cd’ c’d’ cd

d’ dd

0 1 1 0 0 1

0 0

a’ a

b’ b b’ b

c’ c c’ c c’ c

Realize the function expressed by this lattice diagram using only 2-input
gates (arbitrary). Minimize the number of used gates. Draw a Kmap of
this function and verify your solution.

• First we see that this is a
symmetric function S1,4(a,b,c,d).

•Thus our circuit is a Shannon
Lattice.

•Every Shannon Lattice can be
realized with mulitplexers only.

•Next we can transform
multiplexers to other gates with two
inputs.

cd
ab
00

01

00 01 11 10

1 0

1 1

00

00

11
10

1

1 0 0 0

00 0

a

AND

b

NAND

exor

c d c d
c d

Problem 5Problem 5

0 when of value the tosensitive is

xrespect towith

 of differenceBoolean called is

notis
x
fxf

xfxf
x
f

f
x
f

∂
∂

∂
∂

∂
∂

⊕=

Find two practical applications of the Boolean Difference operation defined as
above. Think about test generation and the condition for an input combination to
be a test.

How to realize this operation using Cube Notation? (Cube is a product of variables
and negated variables).

How to realize it using Truth Tables or Kmaps?

How to realize it using BDDs?

How to realize it using Functional Decision Diagrams (FDDs)?

Find two practical applications of the Boolean Difference operation defined as above.
Think about test generation and the condition for an input combination to be a test.

1. Function F depends on variable x if its Boolean Difference with respect to x is not
zero. Then we can check every variable x of a completely specified function and
these variables for which the derivative is zero can be removed from the set of
function variables. Thus the number of arguments is smaller in some cases.

2. If Boolean Difference of Function F for some signal x in a network (with one of
its outputs = F) with respect to x is one, then the change in this signal propagates to
the output F. Thus a condition to find all tests for stuck-at-zero fault in signal x is

Similarly a condition to find all tests for stuck-at-zero fault in
signal x is

x * df/dx Every minterm that satisfies this formula is
a test. Variable x=1 since it must be
opposite to stuck-at-fault value.

x’ * df/dx

Variable x=0 since it must be opposite to stuck-at-one value. Thus x’=1.

Every minterm that satisfies this formula is
a test for stuck-at-one fault in signal x

How to realize this operation using Cube Notation? (Cube is a product of variables and
negated variables).

Cube is a product of literals. Thus positive cofactor of a cube that includes literal x is
the product without this literal. If the cube does not include this literal, the whole cube
is omitted. Similarly negative cofactor is calculated. Example

a b c d
X 0 0 1
X 0 X 1
0 0 0 1
0 X 1 1
1 X 0 0
1 0 1 1

a b c d
X 0 0 1
X 0 X 1

X X 0 0
X 0 1 1

Positive cofactor
with respect to
variable a

a b c d
X 0 0 1
X 0 X 1
X 0 0 1
X X 1 1

Negative cofactor
with respect to
variable a

Now we perform union of these two arrays of cofactors and we
remove the repeated cubes.

Function f
represented ad
ESOP array of
cubes

a b c d
X 0 0 1
X 0 X 1
0 0 0 1
0 X 1 1
1 X 0 0
1 0 1 1

a b c d
X 0 0 1
X 0 X 1

X X 0 0
X 0 1 1

Positive cofactor
with respect to
variable a

a b c d
X 0 0 1
X 0 X 1
X 0 0 1
X X 1 1

Negative cofactor
with respect to
variable a

a b c d
X 0 0 1
X X 1 1
X X 0 0
X 0 1 1

As you see, the derivative
does not depend on
variable a any more

How to realize it using Truth Tables or Kmaps?

We use Kmap folding method. Graphically perform EXOR of
mirror cells of the map. This is SOP, another function.

a b c d
X 0 0 1
0 X 1 X
1 1 X X

ab
00
01

11
10

00 01 11 10

1

0

1

0
1
0

11

0

10
1
1

0
1

1

cd

ab
00
01

11
10

00 01 11 10

10
1110
10

cd
ab

00

01
11
10

00 01 11 10

1

00

1

0

11
1

cd

⊕

ab
00
01

11
10

00 01 11 10

01
1100
01

cd

=

Perform in each cell
of the maps exor
operator on values 0
and 1

How to realize it using BDDs?
Create a BDD with the variable that you want to differentiate for at the
top. Now calculating of the negative and the positive cofactors is easy.
They are two BDDs that are pointed by 0-edge and 1-edge of the top
node in the BDD, respectively. Next do the EXOR of two cofactors. Use
APPLY operator on BDDs.

How to realize it using Functional Decision Diagrams
(FDDs)?

+
*

f

fx=0

x
fx=0 ⊕ f x=1

This node is a
Boolean difference
with respect to
variable x that is
on top of the FDD.

Variable
on top of
FDD

Positive Davio Node, as we know
only positive davio nodes are in FDDs

b

c’
WHAT?

a

b

c

a’ b’ c’

c d

b’ c’ d’

1. What is the function realized here? Show Kmap and
analyze all paths.

2. Realize this function with only multiplexers.

PROBLEM 6

By analyzing all
paths from point
X to point Y we
see that this is a
symmetric
function
S1,4(a,b,c,d)

X

Y

• Symmetric function S1,4(a,b,c,d) can be build either
using Shannon Lattice of a BDD. Both structures use
only multiplexers to realize Shannon nodes.

• Observe that this is the same function as in problem 4.

• So, a student who has enough experience with
diagrams and symmetric functions, can solve problems 4
and 6 very quickly.

The symmetric function can be mapped in to the lattice of multiplexers as shown in the
figure below. Can you prove that by replacing multiplexers with ARBITRARY other
gates we will be able still to realize arbitrary symmetric function. Control variables of
multiplexers are not shown here.

0 1 1 2 2 3 3 4

PROBLEM 7

The statement in the problem formulation says “ replacing multiplexers with
ARBITRARY other gates” which means that we have a choice of gates. If we will be
able to find some gate which will be playing the role equivalent to multiplexer in
Shannon Lattice, it will be ok. But we know from the class that there are three
expansions for a single variable – Shannon, Positive Davio and Negative Davio. They
all reduce the variable. Then we can select, instead of multiplexer that corresponds to
Shannon a Positive Davio gate that corresponds to Positive Davio expansion. Now we
have to prove that every symmetric function is realized in a rectangular (lattice)
structure of gates as above. This is called Davio Lattice or Reed-Muller Lattice and was
discussed in Homework 2 by some of you, also it was mentioned and analyzed in class.

?

? ?

? ??

Thus let us replace the question mark by Positive
Davio gate and see what happens

?

? ?

? ??
+

*

This is Positive Davio gate

a

f

f0 f0 ⊕ f1

f= a’ f0 ⊕ a f1 = (1 ⊕ a) f0 ⊕ a f1 = f0 ⊕ a (f0 ⊕ f1)

+
*

+
*

+
*

a

b

B0 B1 B2

Let us analyze
the Positive
Davio lattice for
2 variables

Let us analyze all functions
that can be created. They are
created by assigning values 0
and 1 to coefficients Bi

There are 2*2 * 2 = 8 possible
assignments.

• So let us analyze how many symmetric functions of two variables exist.

1
1 1

1
1

1

1
1
1 1

1 1
1 1

11

• It is easy to show that all functions created by the PDavio Lattice are symmetric and
their number is the same as for Shannon Lattice.

• Now by induction one can prove that this is also true for three variables in PDavio
Lattice.

• In another variant one can prove directly by counting functions in PDavio Lattice
• In one more variant one can prove by transforming Bi coefficients to standard Si

coefficient of a symmetric function.
• If you show that every Si coefficient can be transformed to a combination of Bi

coefficients then every symmetric function is realizable with Bi coefficients.
• These are simple mathematical exercises that you can do, but the above observations

were sufficient to get maximum points.

Problem 8
Mirror image function of any symmetric function is symmetric for
same negated variables for which original function is symmetric.

For example :

ab

cd

00
01

11
10

00 01 11 10

1 1
1

1
1

F=abc+abd+acd+bcd

00
01

11
10

00 01 11 10

ab

cd

=
1 1 1

1

1

FG=abc’+abd+c’db+c’da

both are symmetric functions
Use this observation to create a more general definition of symmetry and a regular
structure to realize all generalized symmetric functions according to your definition.
Show solution to function FG, using only multiplexers and negations.

For example :

ab

cd

00
01

11
10

00 01 11 10

1 1
1

1
1

F=abc+abd+acd+bcd

00
01

11
10

00 01 11 10

ab

cd

=
1 1 1

1

1

FG=abc’+abd+c’db+c’da

Observe that the function FG is a symmetric function in a classical sense on variables a, b, x and
d if we replace literal c’ with new variable x. Thus we can apply any synthesis methods for
symmetric function to function FG(a,b,x,d) (which has the same Kmap as function F but the
variables in it are a,b,x and d) and next replace the new variable x with the literal c’ again. This
method can be applied to any regular structure like lattices.

We draw thus a lattice of function F using variables a,b,x and d and next replace variable x with
negation of variable c. As we know lattice can be built from only multiplexers, and we add one
negation to create c’=x. In fact, instead of adding the negation as a control variable to a
multiplexer, it is enough to change the order of data inputs and having the same control input
variable c.

F(a,b,x,d) = S34(a,b,x,d)

A more general definition of symmetry:

A function F(y1,y2,….yn) is symmetric in a generalized sense if for some subset
(possible empty or all) of its variables yi there exist variables xi being their negations
and the function of variables xi and yi is symmetric in a classical sense.

c
x

S0=0 S1=0 S2=0 S3=1 S4=1

Problem 10. Definitions and ideas.

• 1. Give definitions of prime implicant, prime implicate,
essential prime implicant

• 2. Give a definition of a maximum clique of a graph.
• 3. Define Shannon and Davio expansions and show gates for

them.
• 4. What the applications of gates and expansions from point 3?
• 5. What are vacuous variables. Give examples.
• 6. Give example of Pareto Minimization.
• 7. Discuss satisfiability versus complementation versus

tautology. How you can use a satisfiability solver to check
tautology. Show how to do complementation algorithmically
using SOP and POS formulas, not Kmaps.

Problem 9. removed.

• 1. Give definitions of prime implicant, prime implicate, essential prime implicant
• Implicant g of function f is any function that implies function f. That is, any subset of ones and don’t

cares in the Kmap of f.
• Product implicant is an implicant that is a product of literals.
• Prime implicant is a product implicant that by removing ANY literal from it, it is no longer an implicant.

(if by removing some literal it is still a product implicant than it was not a prime implicant)
• Implicate g of function f is any subset of zeros and don’t cares in Kmap of f
• Sum implicate is an implicate that is a sum of literals
• Prime implicate is a product implicate that by removing any literal is no longer an implicate of f
• Essential prime implicant is a prime implicant that it covers certain minterm that is covered only by this

prime implicant.

• 2. Give a definition of a maximum clique of a graph.
• Clique of a graph is any set of nodes such that there exist an edge between any two of the

nodes from this set.
• Maximum clique of the graph is a clique that is not included in any other clique of the graph

• 3. Define Shannon and Davio expansions and show gates for them.
• Shannon : f = x’ f(x=0) + x f(x=1) = x’ fx=0 + x fx=1 = x’f0 + x f1
• Mux is the gate to realize Shannon expansion.

•Positive Davio : f = x’f0 + x f1 = (1 ⊕ x) f0 ⊕ x f1 = f0 ⊕ x(f0 ⊕ f1)

•Negative Davio : f = f1 ⊕ x’(f0 ⊕ f1)

+
*

+
*

f

fx=0

x
fx=0 ⊕ f x=1

Positive Davio Gate

Negative Davio Gatex

f

fx=0 ⊕ f x=1

• 4. What is the applications of gates and expansions from point 3?
• Multiplexers: multi-level logic synthesis, data path synthesis for arguments of operations and data

transfers.
• Positive and Negative Davio – Kronecker Functional Decision Diagrams, Pseudo-Kronecker Decision

diagrams, Kronecker Lattices, Reed-Muller Lattices, FPGA – especially Fine Grain FPGAs such as from
Concurrent Logic and ATMEL. Generalizations of multiplexers and Shannon expansion in many design
methods and theories. Creation of canonical forms and diagrams.

• 5. What are vacuous variables?. Give examples.
• Vacuous are variables that seem to describe the function, but in reality

function does not depend on them. Here is an example

ab
00
01

11
10

00 01 11 10

-

0

1

-
1
-

0-

0

-0
-
-

-
-

-

This function can be minimized to
variable b, then variables a,c,d are
vacuous (redundant, non-essential).

This function can be minimized
to variable d, then a,c,b are
vacuous.

cd

Then variables a and c are always vacuous.
This can be also verified using the Kmap
folding method from class.

• 6. Give example of Pareto Minimization.

•7. Discuss satisfiability versus complementation versus tautology.

delay

area

**** *

*

Pareto
point P1

All solutions here
are excluded because

of solution in Pareto

point P1

Satisfiability is checking if there exists X that F(X) = 1

Tautology is checking if for all X it holds that F(X) = 1
(satisfiability is checking if there is a single “1” in Kmap)

(tautology is checking if all cells in a Kmap have value of “1”)

SAT(F) = NOT { TAUTOLOGY(F’) }

A predicate A predicate

Therefore, if you have a SAT
solver and complementer you can
solve tautology. Similarly if you
have a complementer and
tautology solver, you can solve
SAT.

How you can use a satisfiability solver to check tautology.

SAT(F) = NOT { TAUTOLOGY(F’) }

Show how to do complementation algorithmically using SOP
and POS formulas, not Kmaps.

TAUTOLOGY (F) = NOT { SAT (F’) }

1. Complement function F to obtain function F’
2. Check if F’ is satisfied
3. If F’ is satisfied then Tautology (F) is not satisfied.

And vice versa.

I am showing on an example, using de Morgan twice.

(ab’ + b’c’d’ + c e)’ = (ab’)’ (b’c’d’)’ (ce)’ = (a’+b) (b+c+d) (c’+e’)

Since the result should be in SOP form again, you need to multiply
or use the branching method to find all products of literals that
satisfy the right side.

Problem 11. Algorithms.
• 1. List all known to you methods to solve the covering problem.
• 2. What is the difference of Binate and Unate Covering
• 3. Boolean equations and Petrick Functions. Show examples.
• 4. Color the graph from Figure A and prove that this coloring is minimal
• 5. Assuming that this graph is a compatibility graph, draw the incompatibility graph

and its clique covering.

1

2

Figure A

3

45

6

• 1. List all known to you methods to solve the covering problem.
• METHOD 1. Based on Covering Table (Covering Matrix) write the Petrick Function and

solve it using a branching method, integer programming method, Boolean multiplication
method or any of the methods similar to modern SAT solvers.

• METHOD 2. Based on Covering Table, directly find solution to it using Backtracking or any
search algorithm such as A*, Depth First, Breadth First etc

• 2. What is the difference of Binate and Unate Covering
• In Unate covering the Decision Function (called Petrick Function) is a PRODUCT of

variables in positive polarity. Because the Decision function is Positive Polarity (Unate) the
problem is called Unate Covering.

• 3. Boolean equations and Petrick Functions. Show examples.
• Method of using Boolean Equations comes from Boole himself as an adaptation of Decartes

Method (Cartesius). It can be simplified this way:
• A. Reduce the problem to a set of sub-problems – formulate an equation for each sub-

problem.
• B. Convert every equation for a sub-problem to a Boolean equation. For instance, you can

convert it to a sum of products, Product of sums, or sum of literals. But sometimes these
equations can still have implication operators (like in AND/OR trees) or EXOR operators
(like in Helliwell function).

• C. Make a Boolean Product of all the equations. Sometimes you could try to convert the final
formula (decision function) to a POS. If yes, you can use standard SAT solvers that are very
efficient. If converting to POS would create too many variables or terms, you have to check
satisfiability on your formula as it is. This makes the method less efficient, but still very
useful to solve many logical problems.

• Petrick function for Covering Table illustrated by an example.
For each column create a sum term. Make product for all columns.

1 2 3 4 5 6 7

A
B
C
D
E

1 0 0 1 1 0 0
0 1 0 0 1 1 0
1 1 0 1 0 0 1
0 0 1 1 0 0 1
1 0 0 1 0 1 1

(A+C+E)
(B+C)

Row A or Row C or
Row E must be
taken to cover
column 1

Row B or Row C
must be taken to
cover column 2

PETRICK FUNCTION

= 1 =

(A+C+E)(B+C)(D)(A+C+D+E)(A+B)

(B+E)(C+D+E)

• 4. Color the graph from Figure A and prove that this coloring is minimal
• 5. Assuming that this graph is a compatibility graph, draw the incompatibility graph and its

clique covering.

Figure A

1

2

3

45

6

a
b

c

1. Since nodes 1,2,3 are a clique, then
the coloring as shown in red is the
only one possible with accuracy to
isomorphism.

2. Now node 6 can be colored with b

3. Now node 5 can be colored with a.

4. Now node 4 cannot be colored
with a, cannot be colored with b
and cannot be colored with d.

5. So 4 colors is minimum. It can be
also proven formally by
backtracking and illustrating the
backtracking problem by a graph
as was done in class.

b

a
d

1

2

3

45

6

Incompatibility graph is shown in red, this is
a complement graph to compatibility graph.
The union of both graphs is a full graph.

1

2

3

45

6 1

4

5 2

6

3

• It is obvious that all other clique partitionings will be
isomorphic to the one shown above.

• Thus the minimum number of independent sets of
incompatibility graph is four

• Thus the minimal number of colors (chromatic number)
of the compatibility graph is four, as we found earlier.

Problem 12
1. Find the minimal ESOP circuit.
2. Draw its schematic
3. Verify graphically that your solution is correct.
Use the concept of incomplete tautology.

All other cells are don’t cares
cd

ab

00
01

11
10

00 01 11 10

0 1
1

1
1

1 10

ab

cd

00
01

11
10

00 01 11 10

1

1

1 10

101

(a’b’+ab) ⊕ cd=a’ ⊕ b ⊕ cd

c d a’
b

00
01

11
10

00 01 11 10

1
1

1 11

11
1 1
1
1 1

1
1 11
1

1

1
1

00
01

11
10

00 01 11 10

1
1

1 10

1

0
1
0 0

1 0
1

Odd # =1

Even #=0

00 0

Verification. Those with green
color are the same. So functions F
and G are an incomplete tautology

F

G

