
Force Directed Scheduling
for Behavioral Synthesis

Paulin & Knight, 1989
IEEE Transactions of Computer Aided Design

Itai M. Pines
EE298-2: Embedded Systems

10/22/98

Behavioral Synthesis & Scheduling

•Automatic synthesis requires several steps:
• Definition of Circuit Function (HDL)
• Translation to Graph Based Representation(CDFG)
• Operation Scheduling & Hardware Allocation

• Partitioning of operations into specific Control-steps
•Allocation of Functional Units (FU’s) to nodes of CDFG

• Data Path Synthesis
• Binding operations to resources

• Gate-Level Structural Synthesis
• Using predesigned templates or module generators

•State Graph and Controller

Scheduling Approaches for Synthesis
•Independent Scheduling & Allocation
•Interdependent Scheduling

•Concurrent Scheduling & Allocation

•Scheduling/Allocation by Stepwise Refinement
•Operations are clustered for max parallelism & unit sharing
•Scheduling is done to minimize necessary control steps
•Scheduler continually re-invoked till optimal solution reached
•Unscheduled operation included in calculations

Force Driven Scheduling
•Goal is to reduce hardware by balancing concurrency
•Iterative algorithm, one operation scheduled per iteration
•Information (i.e. speed & area) fed back into scheduler

Force Driven Scheduling Algorithm

•Determine ASAP & ALAP Schedules

•Determine Time Frame of each Op
•Length of box ~ Possible execution cycles
•Width of box ~ Probability of assignment
•Uniform distribution, Area assigned = 1

•Create Distribution Graphs
•Sum of probabilities of each Op type
•Indicates concurrency of similar Ops

DG(i) = Σ Prob(Op, i)

*

-
+

*
*

*
+ <

*
*
-

*

-

+* * *
+ <**

-

ASAP ALAP

DG for Multiply DG for Add, Sub, Comp

C-step 1

C-step 2

C-step 3

C-step 4

Time Frames

*

-

*

*

-

*

*
*

+ <

+

1/2

1/3

Conditional Statements

•Operations in different branches are mutually exclusive

•Operations of same type can be overlapped onto DG

•Probability of most likely operation is added to DG

DG for Add

-+
-

+
+

Fork

Join

+-
+

-+

Self Forces

•Scheduling an operation will effect overall concurrency
•Every operation has “self force” for every C-step of its time frame
•Analogous to the effect of a spring: f = Kx

•Desirable scheduling will have negative self force
•Will achieve better concurrency (lower potential energy)

Force(i) = DG(i) * x(i)
DG(i) ~ Current Distribution Graph value

x(i) ~ Change in operation’s probability

Self Force(j) = [Force(i)]∑
=

b

ti

Example

•Attempt to schedule multiply in C-step 1

Self Force(1) = Force(1) + Force(2)

 = (DG(1) * X(1)) + (DG(2) * X(2))

 = [2.833*(0.5) + 2.333 * (-0.5)] = +0.25

•This is positive, scheduling the multiply
in the first C-step would be bad

DG for Multiply

*

-

*

*

-

*

*
*

+ <

+

C-step 1

C-step 2

C-step 3

C-step 4
1/2

1/3

Predecessor & Successor Forces
•Scheduling an operation may affect the time frames of
other linked operations

•This may negate the benefits of the desired assignment
•Predecessor/Successor Forces = Sum of Self Forces of
any implicitly scheduled operations

*

-
+

*
*

*
+ <

*
*
-

Lookahead
•Temporarily modify the constant DG(i) to include the effect of the
iteration being considered

Force (i) = temp_DG(i) * x(i)
temp_DG(i) = DG(i) + x(i)/3

•Consider previous example:

Self Force(1) = (DG(1) + x(1)/3)x(1) + (DG(2) + x(2)/3)x(2)
= .5(2.833 + .5/3) -.5(2.333 - .5/3) = +.41667

•This is even worse than before

Minimization of Bus Costs

•Basic algorithm suitable for narrow class of problems
•Algorithm can be refined to consider “cost” factors
•Number of buses ~ number of concurrent data transfers
•Number of buses = maximum transfers in any C-step
•Create modified DG to include transfers: Transfer DG

Trans DG(i) = Σ [Prob (op,i) * Opn_No_InOuts]

Opn_No_InOuts ~ combined distinct in/outputs for Op

•Calculate Force with this DG and add to Self Force

Minimization of Register Costs

•Minimum registers required is given by the largest
number of data arcs crossing a C-step boundary

•Create Storage Operations, at output of any operation
that transfers a value to a destination in a later C-step

•Generate Storage DG for these “operations”
•Length of storage operation depends on final schedule

s

ss

d

d d

Storage distribution for S

ASAP Lifetime MAX Lifetime ALAP Lifetime

•[avg life] =

storage DG(i) = (no overlap between ASAP & ALAP)

storage DG(i) = (if overlap)

•Calculate and add “Storage” Force to Self Force

3
life][MAXlife][ALAPlife][ASAP ++

life][max
life][avg

[overlap]life][max
[overlap]-life][avg

−

7 registers minimum

ASAP Force Directed

5 registers minimum

Pipelining
•Functional Pipelining
•Pipelining across multiple operations
•Must balance distribution across groups
of concurrent C-steps

•Cut DG horizontally and superimpose
•Finally perform regular Force Directed
Scheduling

•Structural Pipelining
•Pipelining within an operation
•For non data-dependant operations, only
the first C-step need be considered

* * *

+

+
<

-
-

* * *

+

+
<

-
-

DG for Multiply

1
2
3, 1’
4, 2’
 3’
 4’

Instance

Instance’

Functional Pipelining

1
2
3
4

*
*

Structural Pipelining

Other Optimizations
•Local timing constraints

•Insert dummy timing operations -> Restricted time frames

•Multiclass FU’s
•Create multiclass DG by summing probabilities of relevant ops

•Multistep/Chained operations.
•Carry propagation delay information with operation
•Extend time frames into other C-steps as required

•Hardware constraints
•Use Force as priority function in list scheduling algorithms

