Force Directed Scheduling
for Behavioral Synthesis

Paulin & Knight, 1989

IEEE Transactions of Computer Aided Design

Itai M. Pines
EE298-2: Embedded Systems
10/22/98

Behavioral Synthesis & Scheduling

e Automatic synthesis requires several steps:
* Definition of Circuit Function (HDL)
 Translation to Graph Based Representation(CDFG)

» Operation Scheduling & Hardware Allocation

e Partitioning of operations into specific Control-steps
Allocation of Functional Units (FU’s) to nodes of CDFG

e Data Path Synthesis

* Binding operations to resources
o Gate-Level Structural Synthesis

* Using predesigned templates or module generators
«State Graph and Controller

Scheduling Approaches for Synthesis

Independent Scheduling & Allocation
|nterdependent Scheduling

«Concurrent Scheduling & Allocation

*Scheduling/Allocation by Stepwise Refinement

*Operations are clustered for max parallelism & unit sharing
«Scheduling is done to minimize necessary control steps
«Scheduler continually re-invoked till optimal solution reached
sUnscheduled operation included in calculations

Force Driven Scheduling

*Goal Is to reduce hardware by balancing concurrency
e|terative algorithm, one operation scheduled per iteration
Information (i.e. speed & area) fed back into scheduler

Force Driven Scheduling Algorithm

P PIG @G

*Determine ASAP & ALAP Schedules % & ®@

® ®
Q/ Q@ ®®
© ®E

ASAP ALAP

*Determine Time Frame of each Op

C-step 1 * * i i
L_ength of box ~ Possible execution cycles st " % LE
*\Width of box ~ Probability of assignment E A e
C-step 3
sUniform distribution, Area assigned = 1 : w2]| |
C-step 4
Time Frames T
Create Distribution Graphs 0 1 2 3 4 0 1 2 3 4
«Sum of probabilities of each Op type I |
eIndicates concurrency of similar Ops — -_
DG(i) = = Prob(Op, i) 4 E——

DG for Multiply DG for Add, Sub, Comp

Conditional Statements

*Operations in different branches are mutually exclusive
*Operations of same type can be overlapped onto DG

Probability of most likely operation is added to DG

1
|

- HH[o =

—No

DG for Add

Self Forces

«Scheduling an operation will effect overall concurrency
*Every operation has “self force” for every C-step of its time frame
*Analogous to the effect of a spring: f= KX

Force(i) = DG(i) * x(i)
DG(i) ~ Current Distribution Graph value

X(1) ~ Change in operation’s probability

Self Force(j) =2 [Force(i)]

b
1=t

*Desirable scheduling will have negative self force

*Will achieve better concurrency (lower potential energy)

Example

« Attempt to schedule multiply in C-step 1
Self Force(1) = Force(1) + Force(2)

=(DG(1) * X(1)) + (DG(2) * X(2))

= [2.833*(0.5) + 2.333 * (-0.5)] = +0.25

*This Is positive, scheduling the multiply
In the first C-step would be bad

C-step 1
C-step 2
C-step 3

C-step 4

DG for Multiply

Predecessor & Successor Forces

«Scheduling an operation may affect the time frames of
other linked operations

*This may negate the benefits of the desired assignment
*Predecessor/Successor Forces = Sum of Self Forces of
any implicitly scheduled operations

® ®
@

@
O @
CORNC

£
®

Lookahead

«Temporarily modify the constant DG(I) to include the effect of the
Iteration being considered

Force (1) = temp _DG(1) * x(1)
temp_DG(1) = DG(1) + x(1)/3

eConsider previous example:

Self Force(1) = (DG(L) + x(1)/3)x(1) + (DG(2) + x(2)/3)x(2)
= 5(2.833 + .5/3) -.5(2.333 - .5/3) = +.41667

*This is even worse than before

Minimization of Bus Costs

*Basic algorithm suitable for narrow class of problems
*Algorithm can be refined to consider “cost” factors
Number of buses ~ number of concurrent data transfers
Number of buses = maximum transfers in any C-step
Create modified DG to include transfers: Transfer DG

Trans DG(i) = 2 [Prob (op,1) * Opn_No_InOuts]
Opn_No_InOuts ~ combined distinct in/outputs for Op

eCalculate Force with this DG and add to Self Force

Minimization of Register Costs

Minimum registers required is given by the largest
number of data arcs crossing a C-step boundary

Create Storage Operations, at output of any operation
that transfers a value to a destination in a later C-step

*Generate Storage DG for these “operations”
L_ength of storage operation depends on final schedule

= w N

1TQSY Q8 Q

: QO] QT Q\ ©
s Q@ Q QA
Q. /. Q. Qf
5 O jof jof

ASAP Lifetime

MAX Lifetime

ALAP Lifetime

Storage distribution for S

[ASAP life] + [ALAP life] + [MAX life]

[avg life] =

3
i [avg life]
storage DG(I) = [max life] (no overlap between ASAP & ALAP)
: [avg life] - [overlap] _
storage DG(I) = [max life] ~[overlap] (if overlap)

«Calculate and add “Storage” Force to Self Force

7 registers minimum

Force Directed

e

e
@

5 registers minimum

Pipelining
Functional Pipelining
*Pipelining across multiple operations
*Must balance distribution across groups
of concurrent C-steps
«Cut DG horizontally and superimpose

Finally perform regular Force Directed
Scheduling

«Structural Pipelining
*Pipelining within an operation
For non data-dependant operations, only
the first C-step need be considered

Functional Plpelining

' FHGE
'+.
- |
-

Instance

[+]

Instance’

01234

13_
2, 4 IS

DG for Multiply

Structural Pipelining

2 *

Other Optimizations

L_ocal timing constraints
Insert dummy timing operations -> Restricted time frames

eMulticlass FU’s
«Create multiclass DG by summing probabilities of relevant ops

*Multistep/Chained operations.
«Carry propagation delay information with operation
*Extend time frames into other C-steps as required

eHardware constraints
*Use Force as priority function in list scheduling algorithms

