Petri Nets

Sources

Gang Quan

"Petri Nets: Properties, analysis and applications", by T. Murata, 1989)

Review

• Finite State Machine

- What
- Representation
- Mealy/Moore
- NFSM
- Equivalence
- Minimization

Petri Net

- Introduction
- Modeling Examples
- Properties
- Petri Net Extensions

Introduction

- Originated from Carl Adam Petri's dissertation in 1962
- A graphical and mathematical modeling tool
- An effective and promising tool for capturing system concurrent, asynchronous, distributed, parallel, nondeterministic, stochastic characteristics.
- A bridge between the practitioners and theoreticians
- Various applications:
 - Performance evaluation
 - System verification
 - Communication protocols
 - Distributed database, etc

What is a Petri Net

- A directed, weighted, bipartite graph
- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$
 - Nodes (V)
 - places (shown as circles)
 - transitions (shown as bars)
 - Arcs (E)
 - from a place to a transition or from a transition to a place
 - labeled with a weight (a positive integer, omitted if it is 1)

What is a Petri Net (Cont'd)

• Marking (M)

- An m-vector (k_0, k_1, \dots, k_m)
 - m: the number of places
 - $k_i \ge 0$: the number of "tokens" in place p_i

• Modeling

- Places $\leftarrow \rightarrow$ Input/output data
- Transitions $\leftarrow \rightarrow$ Computation
- Arcs (E)
 - Place \rightarrow Transition: consume input data
 - Transition \rightarrow place: produce output data

What is a Petri Net (Cont'd)

• Firing rules

- An enabled transition
- An enabled transition may or may not fire
- A firing of an enabled transition

An Example

• $2H_2 + O_2 \rightarrow 2H_2O$

Formal Definition of Petri Net

• $PN = (P, T, F, W, M_0)$

- $P = \{p_0, p_1, \dots, p_m\}$: a finite set of places
- $T = \{t_1, t_2, \dots, t_n\}$: a finite set of transitions
- $F \subseteq (P \times T) \bigcup (T \times P)$: a set of arcs (flow relation)
- W: $F \rightarrow \{1, 2, 3, ...\}$ weight function
- $M_0: P \rightarrow \{0, 1, 2, ...\}$ initial marking - $P \cap T = \emptyset$ $P \cup T \neq \emptyset$

Formal Definition of Petri Net (cont'd)

Places: Transitions: Arcs: Weight: Initial marking:

Formal Definition of Petri Net (Cont'd)

Source transition and sink transition

- Pure petri net and ordinary petri net
 - Pure petri net: no self loop
 - Ordinary petri net: all the weights are 1's.
- Infinite/finite capacity petri net
 - K(p)

Formal Definition of Petri Net (Cont'd)

Strict/weak transition rule

- Strict: $K(p) < \infty$
- Weak: $K(p) = \infty$

• Theorem:

- For any pure finite-capacity net (N,M_0) with a strict transition rule, there must be another equivalent infinite-capacity net (N',M'_0) with a weak transition rule.

Equivalence

• Reachability Graph G=(V,E)

- V: markings
- E: firings

•Equivalence

Two petri nets (N,M₀) and (N',M'₀) are equivalent iff for any possible firing sequence in (N,M₀) same firing sequence can be found in (N',M'₀) and vice versa.

An Example

Parallel Activity

Sequencing

Synchronization

Parallel Activity (Cont'd)

Confusion (conflict + currency)

Finite State Machine

• A vender machine

- accepts 5, 10 cents
- sell candy bars worth
 15 or 20 cents
- maximum hold up coins = 20 cents

Data Flow Graph

• X = (a+b)/(a-b)

Communication Protocol

Synchronization Control

- k processes
- More than two can read simultaneously
- One is writing, no one can read
- One is reading, no one can write

Multiprocessor Systems

- 5 processors
- 2 buses
- 3 memories
- P1: running processes
- P2: available buses
- P3: access requests
- P4: access to the shared memory
- P5: processors requesting the same shared memory with that in P4

Properties

Behavioral Properties

- Properties hold only for the given initial marking
- Structural Properties
 - Independent of the initial marking
 - Depend on the topological structure of the nets

Behavioral Properties

- Reachability
- Boundedness
- Liveness
- Reversibility
- Coverability
- Persistence
- Synchronic distance
- Fairness

Reachability

A Marking M_n is reachable from marking M₀ if there exists a sequence of firings σ = t₁ t₂ ... t_n that transforms M₀ to M_n.

• **R**(**M**₀): all the reachable markings

Boundedness

• The net is *safe* if 1-bounded

Liveness

• From any reachable marking any transition can become fireable

Live Petri Net

Nonlive Petri Net

• Different levels of live: dead, L1-live, L2-live, L3-live, L4-live

Reversibility

• For any M_k in R(M_n), M_n is also in R(M_k)

- M_n: home state

Coverability

• Exist marking M' in $R(M_0)$ such that $M'(p_i) \ge M(p_i)$

- Closely related to liveness
 - E.g. Let M be the minimum marking needed to enable a transition t, then
 - t is dead ← → M is not coverable
 t can never be fired since no enough tokens are available
 - t is L1-live $\leftarrow \rightarrow$ M is coverable

t can be at least fired once since M' is reachable and can offer enough tokens

Persistence

• For any pair of enabled transitions, firing one will not disable another

• All the *marked graph* are persistent but *not* vice versa

• Marked graph: each place has single input and single output

Persistence (Cont'd)

Persistent, but not marked graph !

Synchronic Distance

The maximum possible difference between the numbers of times that two transitions fired

d12 = 1

d34 = 1

 $d13 \equiv \infty$

d₁₂ = max_σ | T(t1) – T(t2) |
 σ: a firing sequence starting from any marking M_n in R(M₀)
 T(t): the number of times that t is fired in σ

Fairness

Unconditional fairness

- A firing sequence is unconditional fair if every transition in the net can appear infinitely often.
- (N,M_0) is an unconditionally fair net if every firing sequence starting from M in $R(M_0)$ is unconditionally fair.

Properties

- Behavioral Properties
 - Properties hold only for the given initial marking
- Structural Properties
 - Independent of the initial marking
 - Depend on the topological structure of the nets

Structural Properties

- Structurally live
 - There exists a live initial marking for N
- Controllability
 - Any marking is reachable for any other marking
- Structural Boundedness
 - Bounded for any finite initial marking

Structural Properties (Cont'd)

- Conservativeness
 - The total number of the tokens in the net is a constant.

Structural Properties

Repetitiveness

- There exists a initial marking M_0 and a firing sequence from M_0 such that each transition can occur infinitely often.
- Consistency
 - There exists a initial marking M_0 and a firing sequence from M_0 back to M_0 such that each transition occurs at least once.

Petri Extensions

• Timed petri net

- Introduce time delays associated with transitions and/or places
 - Deterministic net
 - Delays are determined
 - Stochastic net
 - Delays are probabilistic
- Colored petri net
 - Tokens have different values (colors)

Summary

- Graphical interpretation
- Convenient for represent distributed, concurrency, synchronization, etc
- Properties
 - Behavioral
 - Structural
- Extensions