Petri Nets

Sources

Gang Quan

Review

- Finite State Machine
 - What
 - Representation
 - Mealy/Moore
 - NFSM
 - Equivalence
 - Minimization
Petri Net

- Introduction
- Modeling Examples
- Properties
- Petri Net Extensions
Introduction

- Originated from Carl Adam Petri’s dissertation in 1962
- A graphical and mathematical modeling tool
- An effective and promising tool for capturing system concurrent, asynchronous, distributed, parallel, nondeterministic, stochastic characteristics.
- A bridge between the practitioners and theoreticians
- Various applications:
 - Performance evaluation
 - System verification
 - Communication protocols
 - Distributed database, etc
What is a Petri Net

- A directed, weighted, bipartite graph
- \(G = (V,E) \)
 - **Nodes** (\(V \))
 - places (shown as circles)
 - transitions (shown as bars)
 - **Arcs** (\(E \))
 - from a place to a transition or from a transition to a place
 - labeled with a weight (a positive integer, omitted if it is 1)
What is a Petri Net (Cont’d)

- **Marking (M)**
 - An m-vector (k_0, k_1, \ldots, k_m)
 - m: the number of places
 - $k_i \geq 0$: the number of “tokens” in place p_i

- **Modeling**
 - Places \leftrightarrow Input/output data
 - Transitions \leftrightarrow Computation
 - Arcs (E)
 - Place \rightarrow Transition: consume input data
 - Transition \rightarrow place: produce output data
Firing rules
- An enabled transition
- An enabled transition may or may not fire
- A firing of an enabled transition
An Example

- $2H_2 + O_2 \rightarrow 2H_2O$
Formal Definition of Petri Net

- **PN = (P, T, F, W, M₀)**
 - \(P = \{p₀,p₁,…,pₘ\} \): a finite set of places
 - \(T = \{t₁,t₂,…,tₙ\} \): a finite set of transitions
 - \(F \subseteq (P \times T) \cup (T \times P) \): a set of arcs (flow relation)
 - \(W: F \rightarrow \{1,2,3,…\} \) weight function
 - \(M₀: P \rightarrow \{0,1,2,…\} \) initial marking
 - \(P \cap T = \emptyset \quad P \cup T \neq \emptyset \)
Formal Definition of Petri Net (cont’d)

Places:
Transitions:
Arcs:
Weight:
Initial marking:
Formal Definition of Petri Net (Cont’d)

- Source transition and sink transition

- Pure petri net and ordinary petri net
 - Pure petri net: no self loop
 - Ordinary petri net: all the weights are 1’s.

- Infinite/finite capacity petri net
 - K(p)
Formal Definition of Petri Net (Cont’d)

- **Strict/weak transition rule**
 - Strict: $K(p) < \infty$
 - Weak: $K(p) = \infty$

- **Theorem:**
 - For any pure finite-capacity net (N,M_0) with a strict transition rule, there must be another equivalent infinite-capacity net $(N’,M’_0)$ with a weak transition rule.
Equivalence

- **Reachability Graph** $G = (V, E)$
 - V: markings
 - E: firings

- **Equivalence**
 - Two petri nets (N, M_0) and (N', M'_0) are equivalent iff for any possible firing sequence in (N, M_0) same firing sequence can be found in (N', M'_0) and vice versa.
An Example

(a)

(b)

(c)
Parallel Activity

Sequencing

Synchronization
Parallel Activity (Cont’d)

Concurrence

Choice (conflict)

Confusion (conflict + currency)
Finite State Machine

- A vender machine
 - accepts 5, 10 cents
 - sell candy bars worth 15 or 20 cents
 - maximum hold up coins = 20 cents
Data Flow Graph

\[X = \frac{a+b}{a-b} \]
Communication Protocol
Synchronization Control

- \(k \) processes
- More than two can read simultaneously
- One is writing, no one can read
- One is reading, no one can write
Multiprocessor Systems

- 5 processors
- 2 buses
- 3 memories

P1: running processes
P2: available buses
P3: access requests
P4: access to the shared memory
P5: processors requesting the same shared memory with that in P4
Properties

- Behavioral Properties
 - Properties hold only for the given initial marking

- Structural Properties
 - Independent of the initial marking
 - Depend on the topological structure of the nets
Behavioral Properties

- Reachability
- Boundedness
- Liveness
- Reversibility
- Coverability
- Persistence
- Synchronic distance
- Fairness
Reachability

- A Marking M_n is **reachable** from marking M_0 if there exists a sequence of firings $\sigma = t_1 \ t_2 \ldots \ t_n$ that transforms M_0 to M_n.

$$M_0 = (1,0,1,0) \ x \ M_n = (1,1,0,0)$$

- $R(M_0)$: all the reachable markings
The net is \textit{safe} if 1-bounded
Liveness

- From any reachable marking any transition can become fireable

![Live Petri Net](image1)
![Nonlive Petri Net](image2)

- Different levels of live: dead, L1-live, L2-live, L3-live, L4-live
Reversibility

- For any M_k in $R(M_n)$, M_n is also in $R(M_k)$
 - M_n: *home state*
Coverability

- Exist marking M' in $R(M_0)$ such that $M'(p_i) \geq M(p_i)$
 - Closely related to liveness
 - E.g. Let M be the minimum marking needed to enable a transition t, then
 - t is dead \iff M is not coverable
 - t can never be fired since no enough tokens are available
 - t is L1-live \iff M is coverable
 - t can be at least fired once since M' is reachable and can offer enough tokens
For any pair of enabled transitions, firing one will not disable another.

All the marked graphs are persistent but not vice versa.

- Marked graph: each place has single input and single output.
Persistence (Cont’d)

Persistent, but not marked graph!
The maximum possible difference between the numbers of times that two transitions fired

\[d_{12} = \max_{\sigma} | T(t1) - T(t2) | \]

- \(\sigma \): a firing sequence starting from any marking \(M_n \) in \(R(M_0) \)
- \(T(t) \): the number of times that \(t \) is fired in \(\sigma \)

\[d_{12} = 1 \]
\[d_{34} = 1 \]
\[d_{13} = \infty \]
Unconditional fairness

- A firing sequence is unconditional fair if every transition in the net can appear infinitely often.
- \((N,M_0)\) is an unconditionally fair net if every firing sequence starting from \(M\) in \(R(M_0)\) is unconditionally fair.
Properties

• Behavioral Properties
 – Properties hold only for the given initial marking

• Structural Properties
 – Independent of the initial marking
 – Depend on the topological structure of the nets
Structural Properties

- Structurally live
 - There exists a live initial marking for N
- Controllability
 - Any marking is reachable for any other marking
- Structural Boundedness
 - Bounded for any finite initial marking
Conservativeness

- The total number of the tokens in the net is a constant.
Structural Properties

- **Repetitiveness**
 - There exists a initial marking M_0 and a firing sequence from M_0 such that each transition can occur infinitely often.

- **Consistency**
 - There exists a initial marking M_0 and a firing sequence from M_0 back to M_0 such that each transition occurs at least once.
Petri Extensions

● Timed petri net
 – Introduce time delays associated with transitions and/or places
 ● Deterministic net
 – Delays are determined
 ● Stochastic net
 – Delays are probabilistic

● Colored petri net
 – Tokens have different values (colors)
Summary

- Graphical interpretation
- Convenient for represent distributed, concurrency, synchronization, etc
- Properties
 - Behavioral
 - Structural
- Extensions