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® Set, Relations, and Functions
® Partial Orders

Boolean Functions
Don’t Care Conditions

Incomplete Specifications
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Set Notation

v LIV

v LIV
VI
stV
]
g’
U
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Set and Relations

Element v Is a member of set V

Element v 1s not a member of set Vv

Cardinality (number of members) of set
SetSisasubsetof V

The empty set (a member of all sets)

The complement of set S

The universe: S'=U —S




Set Notation

Set and Relations

Inclusion (0O)
Proper Inclusion ([)
Complementation
Intersection (n)
Union (O)
Difference
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Power Sets

Set and Relations

2V ={S|S OV}

oV The power set of set V (the set of all
subsets of set V

2V1=2Vl  The cardinality of a power set is a
power of 2

L ;ﬂ 3
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Power Sets

Set and Relations

vV ={01,2} 3-member set

2V ={, 1 subset with 0 members

{0} {8-.{2}, 3 su
{0,13,{0,2} {1,2}, 3su
{0,1,2}} 1 su

nsets with 1 members
nsets with 2 members

nset with 3 members

2V|=2M =23 =g

Power sets are Boolean Algebras

Computer Systems Lab.
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Cartesian Products

Set and Relations

The Cartesian Product of sets A and B Is denoted
A XB
Suppose A ={012}, B ={a,b},then

Ax B ={(0,a),(0,b),(1,a),(1,b),(2,a),(2,b)}

A ={0,1,2} Set Ais unordered
(1,b) () denotes Ordered Set

EEESSSSSSSS————— Hell
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Binary Relations

Set and Relations

® The Cartesian Product of sets A and B is denoted A x B
® A x B consists of all possible ordered pairs (a,b) such that

alJA and b [IB

® A subset R AxBIis called a Binary Relation

® Graphs, Matrices, and Boolean Algebras can be viewed as
binary relations
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Binary Relations as Graphs or Matrices

Set and Relations
E ={ab,cb,cd,cf} ] A& B
A={a,c} B={b,d, f}
< > b d f
O © a 1 0 0
() c 1 1 1
Bipartite Graph Rectangular Matrix

EEESSSSSSSS————— Hell
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Binary Relations as Graphs or Matrices

Set and Relations

E ={ab,ac,ad,bd,cd}1{aa,bb,cc,dd}] ¥ V
V ={a,b,c,d}

allll
b0101
c0011
d0001

Directed Graph Square Matrix

L 'i“" _;
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Properties of Binary Relations

Set and Relations

® A binary relation R[]\ V can be
" reflexive, and/or
" transitive, and/or

" symmetric, and/or

antisymmetric
® We illustrate these properties on the next few slides
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Notation for Binary Relations

Set and Relations

If R A< B, we say that A Is the domain
of the relation R, and that B Is the range.

If (a,b) IR , we say that the pair
IS In the relation R, or aRb.

E————— el
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Missing Figure 3.2, Page 80 3.1.3

Set and Relations

< 0 A= {1,234)

1 2
1 £ £ £ £
2 < £ <
3 < <
4 < 7
Graph View
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Example: “Less than or Equal”

Sel and Relations
01 2 3
0 [ < < < ..
= = 1 D= =S
A B {011121”'}’ 0 0 < <
ROA B= X 2 1000 <
3 :
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Example: "atimes b = 12"

Set and Relations

V={012,...},
ROW V= {(u,v)|lwx = 12}
R={(112),(2,6),(3,4),(4,3),(6,2),(12,1)}

i

L ;ﬂ 3
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Reflexive Binary Relations

Set and Relations

V ={a,b,c,d}

RLOW V
v LIV = VRv

A binary relation RV VIS
reflexive if and only If (v,v) R
for every vertex v LIV

o k o

o O T 2
o O = =
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Non-Reflexive Binary Relations Set and Relations

V ={a,Db,c,d}

RIOWw V
(VLI V+= VRV

Non-Reflexivity implies that
there exists v L1V such that
(v,v) LR . Hered issuchav.

o O T Q2
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Transitive Binary Relations

Set and Relations

@
If uv,wOV,and uRyv, \?
N

and VRw, then uRw. e
A

A binary relation is transitive If and only
If every (u,v,w) path is triangulated by a
direct (u,w) edge.

This Is the case here, so R Is transitive.
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Non-Transitive Binary Relations

Set and Relations

RLUW V

WV such that @<i>
URvV,VRw, but =uRw

A binary relation Is not transitive If there
exists a path fromu to w,, through v that is not
triangulated by a direct (u,w) edge

Edge (a,e) Is

Here (a,c,e) Is such a path. L
missing

EEEES—————— el
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Symmetric Binary Relations

Set and Relations

ROW V
(u,v) UR= (v,u) LR
(URV = VRU)

A binary relation is
symmetric if and only

@) (3)
If every (u,v) edge is l T
reciprocated by a @ 7

(v.u) edge

i
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.
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Non-Symmetric Binary Relations

Set and Relations

ROW V
E(U,V)D R such that (V,Lm R Edge (C’a) IS
missing

A binary relation is L
non-symmetric if there 7
exists an edge(u,v) not @<.@\>?
reciprocated by an

p y C@

edge (v,u)




Antisymmetric Binary Relations Set and Relations

J(u,v)d R, (uURv,vRuU)= (v=u)

A binary relation Is anti-
symmetric if and only ©
if no (u,v) edge is \@

reciprocated by a (v,u)
edge v=u

Not antisymmetric if any such edge Is reciprocated .
here b-d,d-b
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Functions

Set and Relations

® A function f are binary relations from set A (called the
domain) to B (called the range)

But, it is required that each ain A be associated with
exactly 1bin B

For functions, it cannot be true that both (a,b) in R and
(a,c) In R, b different from ¢
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The Binary Relation

Set and Relations

The Binary Relation of Relations to Synthesis/Verification

*DC=don’t care

Partial
Orders

~ Combinational Logic (no DCs)
=> (0,1) Boolean Algebra

Equivalence
Relations

Combinational Logic (with DCs)
=> Big Boolean Algebras

Compatibility
Relations

Sequential Logic (no DCs)

[ — Sequential Logic (with DCs)

Computer Systems Lab.
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The Path Relation [I:ic Set and Relations

G=(\V,E
~ v ()\ a {a,b,c,d,e}
@‘)@ b {c,d,e}
\@l} ﬁ c< {c,e}
- d= {c.e}

This graph defines path
relation

Relation == Is sometimes called “Reachability”

B “ i
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Equivalence Relations

Set and Relations

Y8 o

Note R Is reflexive, symmetric, and transitive

Computer Systems Lab. YONSEI UNIVERSITY V¥



Equivalence Relations

Set and Relations

G:(V’E) —{(U ..............

@fi Gﬁ £@ e

6 | O e I

This graph defines path;,......:-"’ ~ —
relation = This graph defines R
NOT an equivalence An equivalence relati
relation: E on: R

S el
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Set and Relations

The Cycle Relation

G=(V,E) C={uV)V.= u}
(\ (\ (E:(V’ ?)
This graph defines path s ~ @9

relation HD]]*D_’ /

These are called the “Strongly
Connected Components” of G

B “ d
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Refinement

Set and Relations

® Given any set B a partition of B is a set of subsets B; [IB
with two properties

" BinBj=¢ foralli#]

OiBi=B

® Given two partitions P*and P> of aset S, Pis a
refinement of P? if each block B of P'is a subset of some
block of To
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Other Binary Relations

Set and Relations

e Partial Orders (Includes Lattices, Boolean Algebras)
*Reflexive
*Transitive
cAntisymmetric

« Compatibility Relations
*Reflexive
*Not Transitive--Almost an equivalence relation
eSymmetric

Computer Systems Lab. YONSEI UNIVERSITY V¥
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Functions

Set and Relations

® A function f from A to B written f: A - B is arule that
associates exactly one element of B to each element of A

" Arelation from A to B is a function if it is right-unique and if every
element of A appears in one pair of the relation

" Ais called the domain of the function

" Bis called the co-domain (range)

If y=Ff(x) : A - B,y isimage of X

" Given adomain subset C O A
IMG(f,C)={y OB |xOC Oy =f(x) }

" preimage of C under f
PRE(f,C)={x OA |y OC 0Oy =f(X)}

® A function f is one-to-one (injective) if x #y implies f(x) #

f(y)

® A function f is onto (surjective) if for every yIB, there
exists an element xJA, such that f(x) =y
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Algebraic SyStemS Partial Orders

® The pair (V,<) is called an algebraic system
® V is aset, called the carrier of the system
®* < isarelationony x\ =\?2

(L, = are similar to<)

® This algebraic system is called a partially ordered set,
or poset for short
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Partially Ordered Sets

Partial Orders

® A poset has two operations, « and +, called
meet and join (like AND and OR)

® Sometimes written (V,<,Li)or (VZ,S,&)
even (V,[}),since < isimplied
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Posets and Hasse Diagrams Partial Orders

Integers (Totally Ordered):

Missing Figure 3.2

< 0 A= {1,2,34)

1 2 3 4 )
1 £ £ £ £
¢ 3
2 < £ <
3 < < 12
4 < °1
Matrix View Graph View Hasse Diagram

Hasse Diagram obtained deleting

arrowheads and redundant edges
Ot
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Posets and Hasse Diagrams
Partial Orders

(V<L) @'bfc, ckbag
V ={a,b,c,d}
<={(a,a),(a,b),(a,c),(a,d), Q{D
(b,b),(b,d), 3
(c,c),(c,d),(d,d)}
Relation < Hasse Diagram

< :distance from top

< IS refelxive, antisymmetric,
and transitive: a partial order

I Hell
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Meet

Partial Orders

Anelement m of aposet P Isalower bound of elements
aand b of P,ifm<aand m<b.

m IS the greatest lower bound or meet of elements a and b
If mis a lower bound of a and b and, for any m’ such
that m'<a and alsom’ <b,m’' <m.

b

a
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Join: the Dual of Meet Partial Orders

An element m of a poset P is a upper bound of elements a
andbof P,if a<mand b<m.

M is the least upper bound or join of elements a and b

if M is an upper bound of @ and b and, for any m’ such

thata<m'andalsob<m’, msm’'. m’

m

a b
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Meet (LJand Join (+)

Partial Orders

posets:

d d d
a a a a C

alb=a ch=a ch=a cla=?
a+b=b c+b=? c+b=d d+b=7?

Computer Systems Lab. YONSEI UNIVERSITY



POSET Properties Partial Orders

Theorem 3.2.1 If x and Y have a greatest
lower bound (meet), then

X=Xy X y
Similarly, If x and y have a least
upper bound (join), then

X<X+Y
Proof. Since meet exists, X = XLy by definition.
Also, since join exists, x<X+Yy by definition.

S el
Computer Systems Lab. YONSEI UNIVERSITY &Y



More POSET Properties Portial Orders

Theorem 3.2.2 x<y = x[yy =X

Proof (=): This means assume X<VY.
e x Isalower bound of x and y (by Def.)

e X IS also the meet of x and vy

y Proof: by contradiction. Suppose
X#XL. Then Onz x such that x< m
X where m=x0y. But sincemwas a lower
m bound of x and y, m<x aswell. Thus

m = x, by the anti-symmetry of posets.

Proof (LI ): From Definition of meet

S el
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Well-Ordered Partial Orders

® If all pairs of elements of a poset are comparable, then the
set is totally ordered
® If every non-empty subset of a totally ordered set has a
smallest element, then the set is well-ordered
" e.g.) Natural numbers

® Mathematical Induction
" Given, for all n ON, propositions P(n), if
% P(0) is true
Sfor all n>0, if P(n-1) is true then P(n) is true
" then, foralln ON, P(n)is true

I
Computer Systems Lab.
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Lattices Partial Orders

Lattice: a poset with both meet and join for every pair of
elements of the carrier set

Boolean Algebra: adistributed and complemented lattice

Every lattice has a unigue minimum element and a unique
maximum element
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Lattices and Not Lattices artin] Orders

d d d
d d d d C

alb=a clb=a clb=a cla="

a+b=b c+b=? c+b=d d+b=7?
(lattice) (lattice)

(Boolean algebra)

L ;Il 3
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Examples of Lattices Partial Orders

d=1 g3l e=1
e f

b C d oC od
b C

a=20 220 a=>0
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MO re NOtatiO n Partial Orders

e “There Exists a vin set V” is denoted by OV V

 The following are equivalent:
a-Dh (ab+a'b'")
a=>bandal b (@' +b)(a+b"))
a Is true If and only ifb iIs true
* Does (a'+b)(a+b")make sense in a poset?
No--Complement is defined for lattices but
not for posets

B “ -'3‘;
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Properties of Lattices Partial Orders

Meet, Join, Unique maximum (1), mi
nimum (0) element are always defin

ed
ldempotent: X+X =X XX =X
Commutative: X+Yy =Yy +X Xy =y X
Associative: X+(y+z2)=(x+y)+z x Iy @) =(x ) [
Absorptive: XX +y) =X X +(x [y) =x

Absorptive properties are fundamental to op
timization

Computer Systems Lab. YONSEI UNIVERSITY V¥



D U al I ty Partial Orders

Every lattice identity is transformed into another
identity by interchanging:

e +and [

e <and=z

e (pandl1

Example: x[(Xx+y)=Xx - X +(X ) =X
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Complementation

® If x+y=1 and xy=0 then x is the complement of y and vice

versa
® Alattice is complemented if all elements have a

complement
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Examples of Lattices Partial Orders

Complemented?

Ves Ves
d=1 e=1
. -
a=0 a=0

blc=a=0 bld=a=0 blc=a=0

b+c=d =1 b+cC b+c=e=1

Computer Systems Lab.



Distributivity

Partial Orders

Semi-distributivity:

Xy +2)S(x ) +(x )

X+(y2)s(x+y)lx +2)

Proof

1. XLy =X (def. of meet)

2. Xlysysy+z (def. of meet, join)

3. xy=sxUy+z) (def. of meet)

4. xZ2<xly+2z) (mutatis mutandis:y - 2)
5. x[ly+z)=>(xLy) +(x [2) (def. of join)

i ;“ *
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Distributivity

Partial Orders

e Boolean Algebras have full distributivity:

Xy +2)S(x T) +(x 2)

X+(y2)S(x +y) [x +2)

e Boolean Algebras are complemented. That is,
X=y' =>((xxLy=0)and (x+y =1)

must hold for every x in the carrier of the poset

I Hell
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Definition of Boolean Algebra

Partial Orders

® A complemented, distributive lattice is a Boolean lattice or
Boolean algebra

l[dempotent X+X=X XX=X
Commutative X+y=y+X XYy = yX
Associative X+(y+z)=(x+y)+z  x(yz) = (xy)z
Absorptive X(X+y)=x X+(Xy) = X
Distributive X+(yz)=(x+y)(x+z) x(y+z) = xy +xz

" Existence of the complement
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Are these Lattices Boolean Algebras?

Partial Orders

Complemented and distributed?
yes

d=1

a(b+c)=
ald+ald=a=0

Computer Systems Lab.



Fundamental Theorem of Boolean Algebras __
artial Orders

e Every poset which Is a Boolean Algebra has
a power of 2 elements In Its carrier

» All Boolean Algebras are isomorphic to the p
ower set of the carrier.

Example:

V=, 2" ={01x {01

B “ d
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Examples of Boolean Algebras

1 e(=1)
1-cube
v=m =& on 0 *EH)
V={0D, SO
v=opyy AT OHTY
-0y 0 1 2-cube
0%(= )

L ;Il 3
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Atoms of a Boolean Algebra Partial Orders

* A Boolean Algebra is a Distributive, Comple

mented Lattice
e The minimal non-zero elements of a Boolean

Algebra are called "atoms”
V|=2" < natoms 1

e1 l-atom
0 1 2-atoms

o0
0
Can a Boolean Algebra have 0 atoms? NO!
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Examples of Boolean Algebras

Partial Orders

A={a,b,c}

VvV =27
={A
{a,b}.{a,c}{b,c},
a,b,c, —3 atoms

L}
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Examples of Boolean Algebras Partial Ordlers

n=|A|=4 atoms, n+1 =5 levels, 2" =16 elts

A ={a,b,c,d}

VvV =24
Level 4--1 elt* ={A, o
Level 3--4 elts {a,b,c},{a,b,d}{a,c,d} {b,c,d}, Cj
Level 2--6 elts {a,b},{a,c} {a,d},{b,c},{b,d} {c,d} C3

Level 1--4 elts {a},{b},{c} {d} C!
Level 0--1elts [0} * “elt” = element Co

I el
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Boolean Algebras Partial Orders

Theorem 3.2.6 Complementation Is unique.
proof: Suppose x'and y are both complements

of X ( x+y=1, xy=0). Hence

y=y(x+x) =Xy +xy =x'y
=X'y+x'xX=x'(y+x)=x’

Note we . Similarly, we have
Theorem 3.2.7 (Involution): (X') =X

S el
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Properties of Boolean Algebra Partial Orders

® X+ Xy = x+y
® x(x+y) = xy
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Lemma: The Isotone Property ool Orcors
arti.

X<Yy o XZ< Yz

Proof: By Theorem 3.2.2, X<Yy < X=Xy, SO
we get XZ = Xyz =xyzz =(xz)(yz). Note we used i
dempotence, commutativity, and associativity. Then
we use Theorem 3.2.2 again to prove the lemma.

Xz yz

I el
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Duality for Boolean Algebras Partial Orders

Every Boolean Algebra identity is transformed
Into another valid identity by interchanging:

e +and [

e <and >

e Oand 1

« ()'and () This rule not valid for lattices
Example: xX' =0 o xX'+x=1
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T h eorem Partial Orders

X<y e xy' =0

Proof: By the isotone property we have

XSY e XY SYW « xy'<0 < xy'=0
The second identity follows by duality.

I Hell
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Other Theorems Partial Orders

DeMorgan’s Laws
(X+y) =Xy
(xy) =x"+y’

consensus
Xy +X'2+yz =Xy +X'z

(X+Y)(X" +2)(y +2) =(X +y)(X" +2)

EEEES——— Hell
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Consensus Examples Partial Orders

1. a'bc +abd +bcd =abc +a'bd

3. abe +bce +bde +ac'd’
= abe +be(c +d) +a(c +d)" Note use of
=be(c +d) +a(c +d)’
=bce +bde +ac' d’

I Hell
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Consensus Example Partial Orders

5. Iswrong. Replace by
a'c’d+b'c'd +acd +bcd

=(a'bd)+a'c'd+b'c'd + +bcd
=a'bd+b'c'd +

Uphill Move: Note addition of redundant consensus
term enables deletion of two other terms by consensus
* This avoids local minima--a crucial part of the logic
minimization paradigm
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Functions and Boolean Functions

Boolean Functions

Ordinary functions of 1 variable:
f(X) DR < fOD R

Ordinary functions of 2 real variables:
F(X,y):DyXDy> R < T O(Dx DX R
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Functions and Boolean Functions

Boolean Functions
1

Boolean functions of n variables: N h
f(x;,...,%,):B" = B, B:{O,...,l}O

f(X,....,x ) O(B& -x B)x B
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Boolean Formulae

Boolean Functions

Boolean Formulae: Meets and Joins of
Variables and Constants

F =0
1 I I 1
Fr = XX + XX b
—_— I I a
F3 = XXX + X1X;
F; =ax; +b??? 0
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n-variable Boolean Formulae

Boolean Functions

B ={0,...,1}

. The elements of B are Boolean formulae.
e Each variableXy,..., X,, is a Boolean formula.
 If gand h are Boolean formulae, then so are
« g+
o QLN
¢ ('
o A string Is a Boolean formula if and only if
It derives from finitely many applications of
these rules.

Computer Systems Lab. YONSEI UNIVERSITY %a¥ 70



Distinct Formulas, Same Function

Boolean Functions

B ={0,a,b,1}
Truth Table for f:B2 > B

X1 0000 aaaa bbbb 1111
Xo Oabl Oabl Oabl Oabl

F =X +X, 0abl aall bilbl 1111
G =X *XX2 0abl aall blb1l 1111

B “ i
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Boolean Functions on Boolean Algebra

Boolean Functions

B={0,....1}
o f(X{,...,X,)=X; isaBoolean function
e f(Xq,...,X,)=eB isalso
 If g and h are Boolean, functions then so are
. g+h
. QLN
e 0

o A function is Boolean if and only If it derives
from finitely many applications of these rules.

Computer Systems Lab. YONSEI UNIVERSITY t



Cofactors

Boolean Functions

Positive Cofactor WRT X f, = f(1,X5,...,Xp)
Negative Cofactor WRT X;: f)@: f(0,X,,...,Xn)

e

Note: prime denotes
complement

f = T X, %) = T
fx; = 1(0,%,,...,%X,) = fxlzo

I Hell
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Cofactors

Boolean Functions

Positive Cofactor WRT X¢: f, = f(1,X5,...,Xp)
Negative Cofactor WRT X;: f,, = f(0,X,,...,X,)

This term drops

Example: ﬂ/ .
| L out when @ Is

f =abc'd +a'cd’ +bc replaced by

f, = bc'd + bC\ o
This term is

fy = + cd’ +hc

unaffected

S el
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Cofactors

Boolean Functions

B={0,a,b1}, f(x):B"+—B
fy=a = T(a,X2,..., %)
fy, = T(1, X0, %)
Example:
f =ax;+bx,
fy,=a =@8" +bX; =0 +bx; =bX;

S Hell
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Boole’s Expansion Theorem

Boolean Functions

f (X, X000, X)) =
Xi fxi + X fxi' :[Xi + 1:xi] [I.]X; + fxi]

Example: f =ax{ +bx,,
fxl — a0+bX2 :bXZ’ fxi =al +bX2 =d +bX2

Sum form: f =X (bxy) +x7(a+bx,)

B “ b
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Variables and Constants

Boolean Functions

* In the previous slide a and b were constants, and
the Xq,..., X, were variables.

« But we can also use letters like @ and b as variables,
without explicitly stating what the elements of the Bo
olean Algebra are.
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Boole's Expansion (Sum Form)

Boolean Functions

f =abc'd +a'cd' +bc
f, = bc'd + bc
f= + cd' +bc

f =af, +a'f,, = a(bc'd +bc)+a'(cd’ +bc)

E————— el
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Boole's Expansion (Product Form)

Boolean Functions

f =abc'd +a'cd’ +bc
f=la+f,][a + 1]
= [a+(cd’' +bc)][a’ +(bc'd +bc)]
—aa' +a(bc'd +bc)+a’(cd' +bc) +

(cd’ +bc)(bc'd +bc) /Note application
—abc'd +a'cd’ +bcd’ Fbhc  of absorptive law

—abc'd +a'cd’ +bc

e el
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Minterm Canonical Form

Boolean Functions

The minterm canonical form is a canonical, or st
andard way of representing functions. From p10
0, f =X+Yy'4g represented by millions of
distinct Boolean formulas, but just 1 minterm
canonical form. Note

f=x+y +z=(x'yz")
Thus some texts refer to f as {0,1,3,4,5,6,7}

f=X'y7Z +xX'yz+Xx'yz+xy'z+--
(0, 1, 3, 4,--)

I el
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Minterm Canonical Form

Boolean Functions

N levels of recursive cofactoring

f(X,X5,..., X
(1%, n) create 2" constants

=Xy + % Ty

X X5 o F XX B 4 X X5 fxlx2 + XX, fxlx2 |
These elementary functions

are called minterms

XX

I
X1 Xy

= X+ X[ fXJ

TXXp - Xy 1:x‘|x2-~xn
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Minterm Canonical Form

Boolean Functions

Thus a Boolean function is uniquely determined by
Its values at the corner points 0---0,0---01,...,1:--1

(X %5000 %0) These 2" constants are aptly
=X T+, called discrimants

X1 X5 o + XX Ty + X + XX, f

XX XX

X1 X5

= X{++ X f -

+X1 Xy X

Computer Systems Lab.



Minterm Canonical Form

Boolean Functions

f:B°—~ B B={0,a,b,1}
I =ax +bxy, Ty =a+bxy, fy =bx;

= Xy Xoa + X{ X, (& +b) + x50 + X x50
This function is Boolean (from Boolean Formula)

X1 0000 aaaa bbbb 1111

Xo  0Oabl Oabl Oabl Oabl

F =ax; +bX, aall 00bb aall 00bb

X1 Xo8 + X1X, + X1 X,0  aall 00bb aall OOob

1] [

Thus all 16 cofactors match--not just discriminants

i ;“ *
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Now Suppose Truth Table is Given Boolean Functions

* Here we change 15th cofactor, but leave
the 4 discriminants uh¢hanged

 Since the given function doesn’t match
at all 16 cofactors, F is not'Boolean

N\

X1 | 0000 |aaaa |bbbby1111
Xo | Oabl [Oabl Oabl\ba
F [aall|[00bb|aall|0

X1 Xo8 + X1X5 + X1 X,0 | aall | 00bb|aall |0

L L] L

EEEES—————— el
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Boolean Functions

2-Variable Boolean Functions

Minterms 2-variable functions
4 fP=1
3 fH =y + Vi, X' +y,X+y' x+y
2 20 =Xy X YL XY XY, XY+ XY
1 f17 =Xy xy Xy, xy
0 =0
Note that the minterms just depend on the number

and names of the variables, independent of the
particular Boolean Algebra

ESSSS———— el
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Boolean Function Algebras

Boolean Functions

The notation Fn(B) means “the Boolean Algebra whose ca
rrier is the set of all n-variable Boolean Functions” which
map B into Fn(B): Bn |[-> B minterms Fn(B)Z B" s B

if B = {0,1}the atoms of Fn(B) are its n-variable

B is called the “Base Algebra” of the Boolean Function al
gebra

The atoms of B are called Base Atoms
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Large Boolean Algebras?

Boolean Functions

* \When you design an optimal circuit, each gate
must be optimized with respect to its Don't Cares
« Because of Don’t Cares, 4 functions of (X, Y) are
equivalence preserving replacements for gate 9

o Optimal Design: pick best such replacement

f 7 ?
v j)” E }_z Xy oy sy X

Gives D% Gives D7
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Boolean Algebra

F({0,a,b,1})

Level (= # of atoms) atoms of F {0,a,b,1}) are

Boolean Functions

3 xta xa  xb v Each element has 3 Atoms
2a wnb x  x xwea > Each element has 2 Atoms

1w «w = w» Eachelementhas 1 Atom
- Note: base atoms act like 2
extra literals a=y, a' =b=y’

IS nO?‘;
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Boolean Algebra

Boolean Functions

F,({0,1}) poset: {f °. f15}

) flafl o
IA:eveI (= # of atOﬁT\S) minterms(f ' ) O minterms(f | )

3 oo e ey 3 minterms (3 atoms)

X 2 minterms (2 atoms)

Xy xy  x» '  1minterm (1 atom)
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Boolean Algebra

Boolean Functions

Boolean Algebra F({0,a,b,1}) of

1-Variable Functions
e atoms of F{0,a,b,1}) are

~ base atomsninterms
xha  xta xb xib 3 AtOMS

W v w1 Atom

~, Subalgebras are incompletely specified
Boolean Functions (most important)
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Boolean Subalgebra

Boolean Functions

Boolean Subalgebra: Interval of 2-Variable Function
Lattice

The 3-Atom element
X+y =Xy +xy+x'y
IS ONE of subalgebra

Xl+y Xl+yl X+yl

~\/ ™ 2-Atom elements are
v  xy  x x  atomsof subalgebra

ZERO of subalgebra __
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More On Countin 0 Boolean Functions

| evel (: # of atOmS)

3 x'+a x+a

2 a xat+x'b x

Computer Systems Lab.

x'b

An algebra (or subalgebra)
with n+1 levels has exactly
2" elements, because n +1

levels implies n atoms

xth  x'+b

x! xb+x'a b

YONSEI UNIVERSITY ¥a¥



A larger Subalgebra

Boolean Functions

Interval of 2-Variable Function Lattice

7 ONE of algebra (4-Atoms) Is
also one of this subalgebra

2-Atom elements are
atoms of subalgebra

1-Atom element Is
ZERO of subalgebra
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Counting Elements of F,(B)

Boolean Functions

® For each of the 2" minterms, the discriminant can be

chosen as any of the|B|elements of B.

® Therefore, the number of elements oan(B)is

®* Examples

B2 = (2ABI@) = p(AB)2")
B ={0,1}, |A(B)|=1

n=2=|B[?)=2% =2* =16

n=3=|B|?) =22 =28 =256
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Counting Elements of Fn(B)

Boolean Functions

Examples with B ={0,a,b,1}, A(B) ={a,b}
n =2 = 20ABIZY = 22" = 516

n = 3= 2(AB)R") _ 922" _ 532

® Examples with

|A(B)|=4

® Note 2(4) base atoms act like 1(2) extra variables

n=2-— 2(|A(B)|[2”) — 24[23 — 232

n=73— 2(|A(B)|[2”) — 24[24 — 264

E————— el
Computer Systems Lab. YONSEI UNIVERSITY Y@&¥



Boolean Difference (Sensitivity)

Boolean Functions

A Boolean function f depends ona if
and only if f; # f,, . Thus

of /9a=f, 0 f

o
IS called the Boolean Difference, or
Sensitivity of f with respect to a

IS el
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Boolean Difference (Sensitivity)

Boolean Functions

f =abc +a'bc

Example:
of /oa=f,
of /ob = f,

f.= (bc)] (bs) O
f,= (ac)] (a'c)=c

Note the formula depends on a, but the
Implied function does not

i
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Don’t Care

Don't Cares

® Aninterval [L, U] in a Boolean algebra B is the subset of B
defined by [L,U]={xOB:L<sx<U}

® Satisfiability don’t cares
® Observability don’t cares
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Intervals and Don’t Cares

Incomplefe Specifications

N

o
S

D = pObs . pSat _ X'y’

B
[

g-D=¢gD’

= (X'y +xy")(x+y)=(xy+xy')=g
U=9g+D=(XYy+xy)+xy

= X'+y'
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Don’t Cares Don't Cares

R AEERET xy OD°® if and only if
f*=x, fY=y=0z/0w=0
i | E ]

}x ¢ 7 forall possible XY.

w .
ey xy 0D if and only if local

Input Output  jnnut xy never occurs

Filter Filter

The complete don't care set for gate g Is

Dg — DSat + DObS

i ;“ *
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Don’t Cares

Don't Cares

Local inputs
uL / }tjﬁ X=u+V', y=v
— T (y=0)=(x=1)

! ~\

vf xpg w

W

For this circuit, local input combinations
X'y (x=0,y=0)

do not occur. That is, the local minterm

X'y is don’t care.

B “ d
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Don’t Cares

Don't Cares

Z=wW' +t’

d0z/ow=z, Uz,

Vf L =t'01

For this circuit, global input combination 10 sets
t'=uv' =1

which makes z Insensitive tow. However, local

input pair 10 (xy) is NOT don'’t care, since u'v’

also gives Xy, and in this case t,, =1.

EEEES—————— el
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Computing ALL Don’t Cares

Don't Cares

u vi([(x ylw t z 0z/ow

u’ 0 0|1 0|1 10 1
0 1(1 1|0 1 1 1
1 0(1 0[1 01 O
.- 1 1/0 1|1 1 0 1

xy OD>*if and only f*(u,v) =x and fY(u,v)=y
does not occur for any row u,v in the truth table.
Here, D> = x'y’ (00 does not occur)
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Computing ALL Don’t Cares

Note these differ!

| u Vv
u’ 0 0

0 1

1 0
V.

| 1 1

X

y W

0

O || |k

P O |

e =

t
1
1
0
1

Don't Cares
Z/ow
0 1
1 1
1 0
0 1

Similarly xy 0D°® if and only for every row u,v such

that f*(u,v)=x and fY(uv)=y,
oz/ow=z,Uz,~ O

Here 10 (xy) is NOT don’t care since gz/ow=1 In

the first row.

Computer Systems Lab.
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Computing ALL Don’t Cares Don't Cares

Note these differ!

‘ ‘ u v x y w t Z [ ow
u' 2 o ¢t 0 0|1 O[1]1]0\ |1
T B 01110 11\1
x g 1 01 0/1/0/1 |0
vV | w

?D 1101110 1

Dg — DSat + DObS :XIyI
g=xy +x'y (+xy') - X" +y’

Thus the exclusive OR gate can be replaced by a NAND
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Don’t Cares and Function Subalgebras

Don't Cares

Suppose we are given a Boolean Function f and
a don’t care set D. Then any function in the
Interval (subalgebra)

[f, fy]=[fD", f + D]

IS an acceptable replacement for f in the environment
that produced D. Here fD' is the O of the
subalgebraand f + D isthe 1.

EEEES—————— el
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Incompletely Specified Functions

Incomplefe Specifications

Suppose we are given a Boolean Function g and
a don't care set D. Then the triple

(f,d,r)

where f =gD; d =D, and r=(f +D)" iscalled
an Incompletely specified function.

Note f+d+r=gD'+D+(g+D) =1 .

B “ -'2:_
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