
SourcesSources
Gang Gang QuanQuan
UnivUniv. of. of Notre Notre Dame Dame

Finite State MachinesFinite State Machines

ReviewReview

� Data Flow Graph
– data dependency

� Control/Data Flow Graph
– control dependency

� How about a reactive system?

Finite State MachineFinite State Machine

� What ?

If the driver turns on the key, and does not
 fasten the seat belt within 5 seconds
then
 an alarm beeps for 5 seconds,
 or until the driver fastens the seat belt,
 or until the driver turns off the key

Key_on/Start timer

Key_off
/Stop timer

Timer>5Timer>10, or
belt_on, or
key_off
/Stop timer

Wait

Alarm
On

Alarm
Off

Alarm
Off

An FSMAn FSM

An FSM (Cont’d)An FSM (Cont’d)
• States

• Alarm off, Alarm on, Wait
• Initial State

• Alarm off
• Inputs

• Turn on/off the key, fasten the seat belt, timer reads
• Outputs

• Start/stop the timer
• Start transitions

• Alarm off + Turn on the key ���� Wait
• Output

• Alarm off + Turn on the key ���� start the timer

Finite State MachineFinite State Machine

� FSM = (S, I, O, s0, ,)
– S = {s0,s1,…,sk}
– I = {i1,i2,…,im}
– O = {o1,o2,…,on}
– : S x I ���� S (Transition function)
– : S x I ���� O (Output function)

� Given an input sequence, an output sequence is
produced which is depended on s0, ,and .

δ λ

δ
λ

δ λ

RepresentationRepresentation

• States
• Alarm off (s0), Alarm on (s1), Wait (s2)

• Initial State
• Alarm off (s0)

• Inputs
• Turn on/off the key (i0/i1), fasten the seat belt (i2),
timer > 5 (i3), time > 10 (i4)

• Outputs
• Start/stop the timer (o0/o1)

• Given

Transition GraphTransition Graph
i0/o0

i1/o1

i2
(i1+i2+i4)/o1

S1

S2

Alarm
OffS0

Transition FunctionTransition Function

• Transition Function
 s1 = s0 * i0 s0=s1*i1
 s2=s1 * i3 s0=s2*(i1+i2+i4)
• Output Function
 O0 = s0 * i0 O1=s1*i1
 O1=s2*(i1+i2+i4)

Transition TableTransition Table

S0XXi4

XXXi3

S0S2Xi2

S0S0Xi1

XXS1i0

S2S1S0

o1--i4

---i3

o1--i2

o1o1-i1

--o0i0

S2S1S0

State Output

X: don’t care

Mealy Machine and MooreMealy Machine and Moore
MachineMachine

� Mealy Machine
– The output is a function of both the current

state and the input
� Moore Machine

– The output is only a function of the current
state

Transition Graph For MooreTransition Graph For Moore
MachineMachine

Key_on

Key_off

Timer>5Timer>10, or
belt_on, or
key_off

Wait

Alarm
/Start Alarm

Init/stop timer
stop alarm

Timer
/Start Timer Timer<=5

Mealy/Moore MachineMealy/Moore Machine

� An FSM can be realized either by Mealy or
Moore machine

� Mealy machine may use less flip-flops and
output signals are immediately after the
transition

� Moore machine may use more flip-flops
and output signals valid except during the
transition

NondeterministicNondeterministic FSM FSM

� Deterministic FSM
– Given a state and input, there is exactly one next state

� Nondeterministic FSM (NFSM)
– Given a state and input, there maybe more than one

next state, or a state can transform from one state to
anther without any input, or for some given input there
no next state at all

� For any NFSM, there is always one equivalent
FSM

NondeterministicNondeterministic FSM FSM

� For unknown/unspecified behavior
� Less states, more compact
� Useful for

– Optimization
– Verification

� Can be refined
� For any NFSM, there is always one

equivalent DFSM

NFSM and FSMNFSM and FSM

i0/o0

i1/o1

i2(i1+i2+i4)
/o1

S1

S2

S0

i0/o0

i1/o1

i2i1/o1

S1

S2

S0

i2/o1

i4/o1

i0/
i3/

i1/i2/

i3/

i4/

i0/
i2/

i4/

EquivalenceEquivalence

� Two FSMs are equivalent iff for any given
input sequence, identical output sequences
are produced

EquivalenceEquivalence

1/1

1/1

S1

S2

S0

S3

0/0 0/0

0/0

1/1

1/1

0/0

1/1 S1S0

0/0 1/1

0/0

MinimizationMinimization

� What
– Given an FSM, find the equivalent FSM with a

minimum number of states
� Two states s1 and s2 in an FSM are equivalent iff

each input sequence beginning from s1 yields an
output sequence identical to that obtained by starting
from s2

� How

Minimization(Moore Machine)Minimization(Moore Machine)
 For each pair of the states (si,sj)
 If si and sj have different output
 Mark si and si as not equivalent
 End for
 Do
 for each unmarked pair
 for each input, si and sj are transferred to states which
 are not equivalent
 Mark si and sj as not equivalent
 end for
 end for
 until no mark is possible
 Unmarked pairs are equivalent

MinimizationMinimization

S0/0

S2/1 S3/1

S1/11

1

1

1

0

0

0

0

(s0, s1) (s0,s2) (s0,s3) (s1,s2) (s1,s3) (s2,s3)

MinimizationMinimization

S0/0

S2/1 S3/1

1

1
0

0,1 0

(s0, s1) (s0,s2) (s0,s3) (s1,s2) (s1,s3) (s2,s3)

