FUNDAMENTAL PROBLEMS
AND
ALGORITHMS

Graph Theory and Combinational

© Giovanni De Micheli
Stanford University

Shortest/Longest path problem

e Single-source shortest path problem.

Model:

— Directed graph G(V, E) with N vertices.
— Welights on each edge.

— A source vertex.

Single-source shortest path problem.
— Find shortest path from the source to any vertex.

— Inconsistent problem:
* Negative-weighted cycles.

Shortest path problem

Bellman’s equations: G(V, E) with N vertices

e Acyclic graphs:
— Topological sort O(N 2).

s =min (s +w 1.;); =1,2,..., N
I k< (s k’j) J

« All positive weights:
— Dijkstra’s algorithm.

Dijkstra’s algorithm

DIJKSTRA(G(V, E, W)) G(V, E) with N vertices
{
S o =0;
for (1 =11to N)
Si=Wyi,
repeat {
select unmarked Vq such that S, IS minimal;
mark Vg ;

foreach (unmarked vertex v ;)
s;=min{s;, (s, +W o ;)},

}

until (all vertices are marked)

Bellman-Ford’s

BELLMAN_FORD(G(V, E, W)) algorithm

{
st,=0;
for i=1toN)
STi=Wg i
for (j =1 to N){
for (i=1to N){
sili=min{si;, (si +wy;)}
} k#i
if (si*1.==si. i) return (TRUE) ;
¥
return (FALSE)

Longest path problem

e Use shortest path algorithms:
— by reversing signs on weights.

e Modify algorithms:
— by changing min with max.
e Remarks:

— Dijkstra’s algorithm is not relevant.

— Inconsistent problem:
 Positive-weighted cycles.

Example — Bellman-Ford

Use shortest path algorithms:
6 by reversing signs on -6
weights.

—

e Iteration 1:1,=0,1,=3,1,=1,1; =co.
e |teration 2:1,=0,1,=3,1,=2,1,=5.
e Iteration3:1,=0,1,=3,1,=2,1;=6.

LIAO WONG(G(V, EL F, W)) - 9
{ Liao-Wong's
for(i=1toN "
ey algorithm
for(j=1to|F|+1){
foreach vertex v,
| i*1. = longest path in G(V, EW ¢) ;
flag = TRUE;
foreach edge (v ,, v ;) OF {
if (1, < 1t +w H
flag = FALSE; /
E=-EQO (vo,vq)withweight(lj+1p+w
¥

adjust

p,q)

}
If (flag) return (TRUE) ;

}
return (FALSE)

Example — Liao-Wong

Looking for longest path Only positive (b) adjusted by
adding longest
from node O to node 3 edges from (a) sath from node

0 to node 2

(a) (b) (c)
e lteration1:1,=0,1,=3,1,=1,1;=5.
» Adjust: add edge (v 4, vV ;) with weight 2.
e Iteration2:1,=0,1,=3,1,=2,1;=6.

Vertex cover

e Given agraph G(V, E)
— Find a subset of the vertices
e covering all the edges.

 Intractable problem.

e Goals:
— Minimum cover.

— Irredundant cover:
e No vertex can be removed.

o)

<C

Example
3

() @

@

Heuristic algorithm vertex based

VERTEX COVERV(G(V; E))
{
C=10,;
while (E # [0) do {
select a vertex v 1 V;
delete v from G(V, E) ;
C=CU{f.};
¥

Heuristic algorithm edge based

VERTEX COVERE(G(V, E))
{
C =01,
while (E #) do {
select an edge {u, v} L E;
C=C U {u, v},
delete from G(V, E) any edge incident
to eitheru or v ;

}

Graph coloring

* Vertex labeling (coloring):
— No edge has end-point with the same label.

 Intractable on general graphs.

* Polynomial-time algorithms for chordal (and
Interval) graphs:

— Left-edge algorithm.

Graph coloring heuristic algorithm

VERTEX COLOR(G(V, E))
{
for (1=1to|V|){
c=1
while ([Ja vertex adjacent to v,
with color c¢) do {
C=CcC+l];
color v ; with color c ;

}

EXACT_COLOR(G(V, E), k) Graph
{

repeat § coloring
NEXT VALUE(K) : exact
(¢ ==0) algorithm
return ;
if (k==n)
c Is a proper coloring;
else

EXACT COLOR(G(V, E), k+ 1)
}

Graph

?IEXT VALUE(k) coloring
repeat { exa_ct
c,=cCp+1: algorithm

If (there iIs no adjacent vertexto v
with the same color c)
return ;
}until (¢, =<maximum number of colors) ;
cC,=0;

Interval graphs

e Edges represent interval intersections.

e Example:

— Restricted channel routing problem with no
vertical constraints.

 Possible to sort the intervals by left edge.

Example

0 1 2 3 4 5 6 7 8

P11

£

(D)

-
v

0 1 2 34 5 6 7 8

5

(b)

=
-

Example

(d)

|_eft-edge

LEFT EDGE(1) algorithm
{

Sort elements of | in a list L with ascending order of [, ;

c=0;

while (Some interval has not been colored) do {
S=01;
repeat {

s = first element in the list L whose left edge
| s 1s higher than the rightmost edge in S.
S=S0{s};
}until (an element s is found);
c=cCc+1;
color elements of S with color c;
delete elements of S from L;

Clique partitioning and covering

A clique partition Is a cover.

A clique partition can be derived from a cover by
making the vertex subsets disjoint.

Intractable problem on general graphs.

Heuristics:
— Search for maximal cligues.

Polynomial-time algorithms for chordal graphs.

CLIQUEPARTITION(G(V, E)) Heuristic

{ .
. algorithm
while (G('V, E) not empty) do {

compute largest clique CV in G(V, E) ;
=0 C;
delete C from G(V, E) ;
}
¥

CLIQUE(G(V,E))
{
C = seed vertex;
repeat {
select vertex v OV , v C
and adjacent to all vertices of C;
If (no such vertex is found) return

C=CU{v};

Covering and Satisfiability

Covering problems can be cast as satisfiability.
Vertex cover.

—ExLi(X3+X,) X2+ X3) (Xg+X,) (X4+X5)

— EX2: (X3 + X4) (X X3) (Xg +X5) (X +Xy) (X4 + Xs)
Objective function:

Result:

-Exl:x,=1,x,=1

-Ex2:x1=1,x,=1

Covering problem

Set covering problem:

— A set S.

— A collection C of subsets.

— Select fewest elements of C to cover S.

Intractable.

Exact method:
— Branch and bound algorithm.

Heuristic methods.

(a)

Example

vertex-cover of a graph

A3 48
p— p_— p— O
2 3 4 S
o e O
2 3 4 o
O—e—O—e
2 3 4 5
o o o O

o

®°

Example
edge-cover of a hypergraph

I
NN =T

a . @
o

a ;
b b
I il
c =
d d

(a) (b)

Matrix representation

Boolean matrix: A.
Selection Boolean vector: x.

Determine x such that:
- Axz=21.
— Select enough columns to cover all rows.

Minimize cardinality of x.

Branch and bound algorithm

* Tree search of the solution space:
— Potentially exponential search.

 Use bounding function:

— If the lower bound on the solution cost that can be
derived from a set of future choices exceeds the cost of
the best solution seen so far:

— Kill the search.
e Good pruning may reduce run-time.

BRANCH_AND BOUND{
Current best = anything;
Current cost = 1;
S=s,;
while (S6 = ;) do {
Select an element in s 2S;
Remove s from S ;
Make a branching decision based on s
yielding sequences fsi;i=1; 2; ..., mg
for(i=1tom){
Compute the lower bound b ; of s ;
if (b1 Current cost) Kill s ;
else {
If (s ;1s acomplete solution) {
Currentbest=s,,
Current cost = cost of s ;

}
else
AddsitosetS;

}

Branch and
bound
algorithm

Example

F i Y
F A
L 1
F i L 1

F) b 1
F i LY
F i L Y

F 1

(b)

b Bound =6

Killed subtree

