General Sequential Design

So far we have, we have looked at basic latches, FFs and
common sequential building blocks.

All of these can be represented by a general block diagram:

m

Inputs " , Outputs
7 » Combinational —>
Logic
—> Circuit
k-bit k-bit
Present State Next State
Value Memory Element Value
2 <
k k

Slides from Bob
Reese BR 8/99

LD _. s :
DIN_. . S ;
: 1 Y :
EN /ﬁ g v |
: » EN Y, 0 i
: > / N > > :
. — >IN .
i |ncrementer |
1./ NextState |
Present State | /N E
/N |
i C < : Counter drawn
: ' asgeneral
i R . sequential
Memory: DFF CLK . System.

BR 8/99 2

Describing Sequential Systems

So far we have used Truth Tables to describe
sequential systems

Can also use Bubble Diagrams and Algorithmic
State Machine Charts (ASM) to describe a
sequential system.

Another name for a sequential system is a Finite
State Machine (FSM).

A sequential system with N flip-Flop has 2N
possible states, so the number of possible states Is
FINITE.

BR 8/99

DFF as a Finite State Machine

A DFF is a finite state machine with two possible states.
Lets call these states SO and S1. (state enumeration).

Furthermore, lets say when the Q output = “0’, then we are
In State SO, and that when Q output = “1’, we are In State
S1. This is called the State Encoding.

.
Bubble Diagram: States represented by bubbles. State
transitions represented by arrows. Labeling on arrows

represent input values (in this case, the D-input!).
Labeling inside bubbles represent output values.

BR 8/99

Algorithmic State Machine Chart for DFF

BR 8/99

A Finite State Machine
(FSM) can be described
via either a Bubble
diagram or an ASM
chart.

ASM charts are better
for complex FSMs. We
will use ASM charts In
this class.

State SO iIs usually the
asynchronous Reset
state.

Algorithmic State Chart (ASM)

 An ASM chart can be used to describe FSM
behavior

Only three action signals can appear within an ASM chart:

State box. Each box represents a state.
Outputs within a state box Is an
UNCONDITIONAL output (always asserted
In this state).

<> Decision box. A condition in this box

will decide next state condition.

Q Conditional output box. If present, will

always follow a decision box; output

within it i1s conditional.
BR 8/99 6

Algorithmic State Machine Chart for JKFF

BR 8/99

Finite State Machine Implementation

Given an Algorithmic State Machine chart that describes a Finite

Step #1: Decide on the State Encoding (how many Flip Flips
do | use and how what should the FF outputs be for EACH
state). The problem definition may decide the state encoding
for you.

Step #2: Decide what kind of FFs to use! (We will always
use DFFs in this class, but you could use JKFFs or TFFs if
you wanted to).

Step #3: Write the State Transition Table.

Step #4: Write the FF input equations, and general output

equations from the state transistion table.
BR 8/99 8

Problem Definition
Design a Modulo three counter. The count sequence Is:
“00” - “01” - “10” - “00” - “01” - “107, etc.

There is an “en” input that should control counting (count
when en=1, hold value when en=0). Assume ACLR line
used to reset counter to “00”.

How many states do we need? Well, we have three unique
output values, so lets go with three states.

> EN
»CLK Y[1:0] >

»ACLR

BR 8/99

ASM Chart for Modulo Three Counter

Y=00 k—x—

1
@ Y =01

>

BR 8/99

10

State Transition Table

State transition table shows next state, output values for
present state, input values.

Inputs(EN) Present State Next State Y
0 SO SO 00
0 S1 S1 01
0 S2 S2 10
1 SO S1 00
1 S1 S2 01
1 S2 SO 10

BR 8/99

Decisions

 State encoding - will be based on number of FFs
we use.

— Three states means the minimum number of FFs we
can use two FFs (log,(3) = 2).
o If we use two FFs, then could pick a state
encodings like:
— S0: 00, S1:01, S2: 10 (binary counting order)
— S0: 01, S1:01, S2: 11 (gray code - may result in less
combinational logic)
e Could also use 1 FF per state (3 FFs) and use one
hot encoding

— S0:001, S1: 010, S2: 100 (may result in less

combinational logic)
BR 8/99 12

Decisions (cont.)

 What type of FF to use?

« DFF - most common type, always available In
programmable logic

« JKFF - sometimes available, will usually result in
less combinational logic (more complex FF means
less combinational logic external to FF)

L_ets use two FFs with state encoding S0=00, S1=01,
S2=10.

Lets use DFFs.

BR 8/99 13

New State Transition Table
Modify State Transition table to show what FF inputs
need to be in order to get to that state. Also, use actual
state encodings

Inputs(EN) Present Next DI1D0 Y
State State
(Q1Q0) | (Q1Q)*
0 00 00 00 00
0 01 01 01 01
0 10 10 10 10
1 00 01 01 00
1 01 10 10 01
1 10 00 00 10

For DFFs, D inputs are simply equal to next state!!!!

BR 8/99

D-input Equations, Y equations

Unoptimized equations:

DO= EN’ Q1’Q0 + EN Q1°Q0’
D1= EN’ Q1 Q0 + EN Q1’ QO

YO0 = QO
Y1=01

The output Y is simply the DFF outputs! Here is one case
where state encoding is affected by problem definition
(does not make much sense to use a different state
encoding, even though we could do It).

BR 8/99

15

DFF Implementation

EN
» DO= EN’QI'Q0 + ENQ1'Q0" |
% :.' D1= EN’ Q1 Q0+ EN Q1’ Q0
YO 00 . DO 1
| & 0 D
c<"—
5
Y1 1 D1
Q o D |«
Lo—
CLK ACLR

P

BR 8/99

16

What 1If we used JKFFs?

Need to change State Transistion table to reflect JK input values.

Inputs Present Next J1IK1 JOKO Y

EN State State
(Q1Q0) | (Q1Q0)*

0 00 00 00X 00X 00
0 01 01 0 X X0 01
0 10 10 X0 0 X 10
1 00 01 0 X 1X 00
1 01 10 1X X1 01
1 10 00 X1 0 X 10

JK FF Q transitions: 0-0 (J=0, K=X); 051 (J=1, K=X);
1-1 (J=X,K=0); 1-0 (J=X, K=1);

BR 8/99 17

JK Input Equations, Output Equations

Unoptimized equations

J0= EN Q1’ QO’ KO =EN Q1’ QO
J1=EN Q1’ QO K1=EN Q1 Q0’
YO0 = QO
Y1=0Q1

Using JK FFs will mean simpler external optimized
combinational logic because FFs are more complex

(provide more functionality).
BR 8/99

18

EN

JK FF Implementation

——J0= EN Q1’ Q0’ KO=ENQ1’QO0 [
—>
f J1=ENOQ1’ Q0 K1=ENQ1Q0 —*
YO<—I> 2 Q Jr* J0 1
| ——
c< K0 |
Y1 . K™
—Q@¢— Q Q J < Jl 4
(e Kl

ACLR input to
JKFFs not shown.

BR 8/99

19

3 DFFs and One Hot Encoding
State encoding: SO =001, S1 =010, S2 =100

Inputs Present Next D2D1D0 Y

EN State State
(Q201Q0) [(Q201Q0)*

0 001 001 001 00
0 010 010 010 01
0 100 100 100 10
1 001 010 010 00
1 010 100 100 01
1 100 001 001 10

BR 8/99

DFF input equations, Output Equations

DO = EN’QO0 + ENQ2
D1 = EN’Q1 + ENQO
D2= EN’Q2+ENQ1

YO= EN'QL+ENQ1= Q1
Y1= EN'Q2+ENQ2 = Q2

In equations, because a FF Q will only be “1’ in a single state,
do not have to include all FFs to define state!!
(Q2°Q1’Q0 = Q0! 0Q2°Q1Q0° =Q1!, Q201’Q0" =Q2!)

This is one of the advantages of one-hot encoding!

BR 8/99 21

Generic Next State Equations

Generic next state equations can be written directly from the ASM
chart as an alternative to the Transition table

S* = (conditions to remain in this state) + (conditions to enter state)

From ASM chart of modulo three counter:
SO* = EN’ SO+ EN S2

S1* =EN’ S1 + EN SO

S2* = EN’S2 + EN S1

If One hot encoding and DFFs are used, then Generic Next
State equations ARE the specific next State Equations!!

DO = EN’QO + EN Q2
D1 =EN’Q1 + EN QO
D2 =EN’ Q2 + EN Q1

BR 8/99 22

