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What will be

discussed?

« 1. Background
o 2. Quantum circuits synthesis

e 3. Quantum circuits simulation

4. Quantum logic emulation and evolvable hardware

5. Quantum circuits verification

6. Quantum-based robot control



Quantum
Logic
Circuits

Origin of slides: John Hayes, Peter Shor, Martin
Lukac, Mikhail Pivtoraiko, Alan Mishchenko, Pawel
Kerntopf.



A beam-splitter
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The simplest explanation is that the beam-splitter
acts as a classical coin-flip, randomly sending each
photon one way or the other.



Quantum Interference
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The simplest explanation must be wrong, since It
would predict a 50-50 distribution.




More experimental data
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A new theory

The particle can exist in a linear combination or
superposition of the two paths




Probability Amplitude and
Measurement

If the photon Is measured when It Is In the state
a,|0)+0a,|1) then we get |0) with
probability [o,|
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Quantum Operations

The operations are induced by the apparatus linearly,
that 1s, If 0 0) +
0) - [0} + 1
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Quantum Operations

Any linear operation that takes states
0,|0) +a,|1)  satisfying o [" +|a,[" =1

and maps them to states
o('o\o> + o('l‘1> satisfying ‘0('0

‘2

must be UNITARY



Linear Algebra

1
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Linear Algebra
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Linear Algebra
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Abstraction

The two position states of a photon In a
Mach-Zehnder apparatus Is just one
example of a quantum bit or qubit

Except when addressing a particular physical
Implementation, we will simply talk about
“basis” states |0)and |1)

and unitary operations like

— H[— and — ¢ —
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An arrangement like
T
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IS represented with a network like
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More than one qubit

If we concatenate two qubits

(0,/0) +a,[1)) (B,]0) +B,[1))
we have a 2-qubit system with 4 basis states
0)[0) =|00) |0)1)=]01) [1)]0)=10) [1)|1)=]11)
and we can also describe the state as
a,B,|00) +aB;|01) + a,B,|10) + o, B, |11)

KGOBO\
or by the vector a,B [uoj (Boj
= ]
aBy | \a) \B
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More than one qubit

In general we can have arbitrary superpositions

040|0)|0) + 0 |0)[1) + 0, |1)|0) + 0y | 1)|1)
‘0‘00‘2 + ‘0‘01‘2 + ‘0‘10‘2 + ‘0‘11‘2 =1

where there Is no factorization Into the tensor
product of two independent gubits.
These states are called entangled.




Measuring multi-qubit systems

If we measure both bits of
04| 0)|0) + 0, |0)|1) + 01, |1)] O) + a1y, [ L)L)

2

a,,

we get  1X)|Y) with probability




Classical
Versus
Quantum



Classical vs. Quantum Circuits

e Goal: Fast, low-cost implementation of useful algorithms

using standard components (gates) and design techniques

o Classical Logic Circults
— Circuit behavior is governed implicitly by classical physics
— Signal states are simple bit vectors, e.g. X =01010111
— Operations are defined by Boolean Algebra
— No restrictions exist on copying or measuring signals

— Small well-defined sets of universal gate types, e.g. {NAND},
{AND,OR,NOT}, {AND,NOT}, etc.

— Well developed CAD methodologies exist

— Circuits are easily implemented in fast, scalable and
macroscopic technologies such as CMOS




Classical vs. Quantum Circuits

Quantum Logic Circults

— Circuit behavior is governed explicitly by quantum mechanics

— Signal states are vectors interpreted as a superposition of binary
“gubit” vectors with complex-number coefficients

2" -1

Wy=>"clii i ... i)

i=0
— Operations are defined by linear algebra over Hilbert Space and
can be represented by unitary matrices with complex elements
— Severe restrictions exist on copying and measuring signals

— Many universal gate sets exist but the best types are not obvious

— Circuits must use microscopic technologies that are slow, fragile,
and not yet scalable, e.g., NMR




Quantum Circuit Characteristics

o Unitary Operations

— Gates and circuits must be reversible (information-lossless)
« Number of output signal lines = Number of input signal lines

 The circuit function must be a bijection, implying that output vectors are
a permutation of the input vectors

— Classical logic behavior can be represented by permutation
matrices

— Non-classical logic behavior can be represented including
state sign (phase) and entanglement



Quantum Circuit Characteristics




Classical vs. Quantum Circuits

Classical acder SN
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Classical vs. Quantum Circuits




Reversible
Circuits




Reversible Circuits

« Reversibility was studied around 1980 motivated
by power minimization considerations

« Bennett, Toffoli et al. showed that any classical
logic circuit C can be made reversible with modest
overhead

.| — Generic |—— ] E— -
1{ ... | Boolean [++: ¢ f(I il -
{ Coi?C?JEiT —} ( ) | { Reversible | * " } Junk

Boolean

1 Circuit |— .
n inputs m outputs “Junk”{T } (1)




Reversible Circuits

 How to make a given f reversible
— Suppose f:1 — f(i) has n inputs m outputs
— Introduce n extra outputs and m extra inputs
— Replace fby f.:1,] - 1, (i) U jwhere [Jis XOR
« Example 1: f(a,b) = AND(a,b)

a Reversible a
b — AND b
gate

C —— f=abOc
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 This is the well-known Toffoli gate, which realizes AND
when ¢ =0, and NAND when ¢ = 1.



Reversible Circuits

* Reversible gate family [Toffoli 1980]

1
]
i
I
i
i
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NOT XOR/FAN-OUT AND[NAND generalized ANDfNAND

(Toffoli gate)

« Every Boolean function has a reversible
Implementation using Toffoli gates.

* There Is no universal reversible gate with fewer than
three inputs



Quantum
Gates



Quantum Gates

e One-Input gate: NOT
— Input state: ¢,|0) + ¢,|D
— Output state: ¢,|0) + c,[1)  |NOT
— Pure states are mapped thus: |0) - |1 and [1) - |O)

— Gate operator (matrix) is(o 1\ (. (O
1 0 |O>'(o) 'D'[l)

— As expected:

G (1))((1) (1)):((1) (1)) ~—|NOT—NOT




Quantum Gates
» One-Input gate: “Square root of NOT”

— Some matrix elements are imaginary
— (Gate operator (matrix):

(i/,/l/z 1/,/1‘/‘2)_ 1 [i I\
— We find: UJITZ i1 I72) 2\ i)

1 [i 1\[1\_ 1 [i\ so |0y — |0) with probability |i/vV2]2= 1/2

2\1 o) T2\ ang [0y - 11) with probability |1/ v 22 = 1/2
Similarly, this gate randomizes input |1)

— But concatenation of two gates eliminates the randomness!

ol o)



Quantum Gates

e One-Input gate: Hadamard
1 (1 1) _
7y

— Maps |0 - UV2|00+1/V2|Dand|1) - 1/ V2|0 -1/V 2|D.
— Ignoring the normalization factor 1/V 2, we can write
O - (L= [1-%)

* One-Input gate: Phase shift

(Cl) e?¢) : @




Quantum Gates

Universal One-Input Gate Sets
e Requirement:

00 — U Any state ()

 Hadamard and phase-shift gates form a universal gate set

o Example: The following circuit generates
JU) = cos @ |0) + el?sin @ |1) up to a global factor

HEOEE

N




Quantum Gates

o Two-Input Gate: Controlled NOT

(CNOT)
(10 0 0
X) —— ot | X) 0 1 0 0] ) )
y) — xkOy) ngi(ﬂ Iy>1|xmy>

— CNOT maps [xX)|0) - [X)|x) and [x)|D — [X)|INOT x)

OOy — [X)|X) looks like cloning, but it’s not. These
mappings are valid only for the pure states |0) and

|3

— Serves as a “non-demolition” measurement gate




Quantum Gates

e 3-Input gate: Controlled CNOT
(C?NOT or Toffoli gate)

(10 00O0O0O0O °
|01oooooo\| [2) [2)

'lo o 1000 0 ol
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Quantum Gates

» (General controlled gates that control some 1-

qubit unitary operation U are useful

P
[uoo Ug; )
Uy ullj T —@— etc
U — U |— — U

U C(U) C2(U)



Quantum Gates

Universal Gate Sets

* To Implement any unitary operation on n qubits
exactly requires an infinite number of gate types

« The (infinite) set of all 2-Input gates Is universal

— Any n-qubit unitary operation can be
Implemented using ©(n34") gates [Reck et al.
1994]

e CNOT and the (infinite) set of all 1-qubit gates is
universal



Quantum Gates

Discrete Universal Gate Sets
e The error on implementing U by V is defined as

E(U.V) = maxU - V)W

 If U can be implemented by K gates, we can simulate U
with a total error less than € with a gate overhead that Is
polynomial in log(K/g)

« A discrete set of gate types G is universal, if we can

approximate any U to within any € > 0 using a sequence
of gates from G



Quantum Gates

Discrete Universal Gate Set

 Example 1: Four-member “standard” gate set

(1 0 0 0
o0 1 0 O]

HE e B Y L R I )

T G

CNOT Hadamard Phase 178 (T) gate

 Example 2: {CNOT, Hadamard, Phase,
Toffoli}



Quantum
Circuits



Quantum Circuits

A quantum (combinational) circuit is a sequence of
guantum gates, linked by “wires”

The circuit has fixed “width” corresponding to the
number of qubits being processed

Logic design (classical and quantum) attempts to find
circuit structures for needed operations that are

— Functionally correct

— Independent of physical technology

— Low-cost, e.g., use the minimum number of qubits or gates

Quantum logic design is not well developed!



Quantum Circuits

* Ad hoc designs known for many specific functions and

gates

« Example 1 illustrating a theorem by [Barenco et al. 1995]:
Any C2(U) gate can be built from CNOTs, C(V), and C(VT)

gates, where V2 =U

\VAi




Quantum Circuits

Example 1: Simulation

0) g9 07 0) g10) 00 o 19

1 o L 2 T 1>I1>f |1>I H 1
V Vi
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Quantum Circuits

Example 1: Simulation (contd.)

1) g 11 1) 1) g1 Do ll) o 11

D e 2 I T|1> I|0> . |0>l D | 1n
N VI|x) v VI|x) N | Ux)

O [ 1Y% )|

U

e EXxercise: Simulate the two remaining
cases



Quantum Circuits

Example 1: Algebraic analysis

e LT

U

X3 U V VJr V T

U, U | | Uy | | U | Uy || Us

IS Ug(Xy, Xa1 X3) = UsUUgU,U; (Xg, X5, X5)

= (X3, Xg, XX U (Xg) ) 7
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Example 1 (contd);
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Ircults

Quantum C

=3
o
o
o
o
o
o
—i
N—
]
\.}.,an
g £
S 5
L =z
@)
—
DL o
Q. i
mU2
©
>
LL]

010 00 O0O0O
001 0O0O0O0TGO
000 10 O0O0GO

0O 00 0O O0O01

000 01 O0O0O0

(1 0 0 0
0 1 0 O]

|

(10\
[] =
01/ ;000 00 010

)

0 0O
0 0 10

\ 00000 100



Quantum Circuits

Example 1 (contd);
— Uc Is the same as U, but has x,and x, permuted (tricky!)

— It remains to evaluate the product of five 8 x 8 matrices
U.U,U,U,U, using the fact that VV' =l and VV = U

(10000 0 0 0100000001 O0O0 0 0O0O0 O0}10000O0OGOMMOTO 000 0 0)
lo1 00 0 0 o olflor1 00000001 0 0 o000 o0Jlo10o00000/01 0 000 0 O]
loo 100 0o o olloo100000loov, v 00 o olloo100000loov v, 00 o0 ol
00 Y10 | 00 ‘o1

I00010ooo|10001oooo\I00vmvnoooo|10001oooo\|00vwvnoooo|
0000w v, 0 oloooooo10lo0oo0o o100 oloooooo1o0looo o100 ol
| ® o I [ I [ |
0000w v 0 0000000012000 0010 000000001000 0010 0
00000 0 0 Vg % (0000100000 0 0 00 Vg VO 000100000 0 0 00 v ¥
kooooo0v10v11J\00000100Jk000000vman\00000100Jk000OOOVIOVIJ
(10000 O 0 0

lo 1 00 0 0 0 0 |

lo o100 0 0 0 |

| |

000100 0 0

= |=U

000010 0 0 0

| |

00000 1 0 0

| |

| O 0 O 0 O 0 VOOVOO + V10V10 V00V01 + VIOVIIJ

ko 0 0 0 0 0 VOl\VOO + Vllle VOlVOl + Vllvll



Quantum Circuits

e Implementing a Half Adder

— Problem: Implement the classical functions sum =
X, U Xpand carry = X;X,

e (Generic design:

X1) X1)

Xo) Xo)

Yy) y,» U carry
Yo) Yo, LI sum
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» Half Adder. Generic design (contd.)
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Quantum Circuits

» Half Adder. Specific (reduced) design

|X1> |X1>

Xo) sum

y) ly) O carry



Walsh Transform for two binary-input
many-valued variables

Quantum logic

Classical logic

\{ariablel
P ><:
= . =
You need a
butterfly

Variable 1

Butterfly is created

automatica
tensor proo

ly by
uct

correspona

Ing to

superposition



Portland Quantum
Logic Group

(PQLG)
What we do?




People at PSU and collaborators

Marek Perkowski
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Xiaoyu Song
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Anas Al-Rabadi

Martin Lukac

Mikhail Pivtoraiko

Andrei Khlopotine

Alan Mishchenko (University of California, Berkeley, USA)
Bernd Steinbach (Technical University of Freiberg, Germany)
Pawel Kerntopf (Technical University of Warsaw, Poland)

Mitch Thornton (Southern Methodist University, Dallas, USA)
Lech Jozwiak (Technical University of Eindhoven, The Netherlands)
Andrzej Buller (ATR, Kansai Science City, Japan)

Tsutomu Sasao (Kyushu University of Technology, lizuka, Japan).



Current Projects

 Logic Synthesis for Reversible Logic

4 papers
— decomposition < ' pupbl?shed
— Decision Diagram Mapping
— composition

— regular structures - lattices, PLAS, gets paper
| 0Qi - : submitted
e Logic Synthesis for Quantum Logic

e Quantum Simulation using new Decision
Diagrams



Current Projects

FPGA-based model of Quantum
Computer

Reversible FPGA using CMOS.

Realization of new spectral transforms
using quantum logic.

Non-linear Quantum Logic solves NP

<

problems in polynomial time.

Quantum-inspired search algorithms
for robotics



Where to learn more

* Web Page of Marek Perkowski

— class 572 - see description of student projects
— Portland Quantum Logic Group

We are open to

collaboration and we
want to grow




Automated Synthesis of

Generalized Reversible

Cascades using Genetic
Algorithm



Agenda

Introduction and history

Reversible Logic and Reversible Gates
Genetic algorithms

The Model

Simulation

Conclusion



Reversible gates...

Feynman, Toffoli, Fredkin, ...

A b= A Mapping of 1/0 allows
B o =ppp JNIQque (P,Q)=(A,B)

and Reversible Circuits

& limitations one
to modify the

*To reduce the
can inse
functionality




Generalized Reversible Gates

P
0 ] n - inputs

A A
B B
v v
C > R c
c R
D > S
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B Q
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Perkowski gates family

Derivatives of Perkowski’s Gate

Generalized multi-
mnput multiplexer

A I?
. Q Feynman
Many gates
other
> (
pate -: J ( R B J
families Q
Toftoli
gates CMOS
Kerntopf gales
gates Fredkin gates i':r .;pcru]u.-[:d M:m:'n
MAlra gares pAres




Cascades

« Mixed data/control inputs (generalized complex control gates)
o All:

« ESOP
* Factorized-ESOP
MV Complex Terms
o XOR family
mExample:
Optimal Selution to Miller Function oy L".xamplu of m Lllti_“utlet ESOP cascade of

] Toffoli tamily gates
W= 12 CBABCBA B

. ?“ ”‘/_2 . s Do—
oot | | u
/1 I 7T 25| |c kS e R
VAT AY S

M s ol el e
. . ; >.

Yy
Y




Genetic algorithms

2

1 3 |45 |6]7
 Individual




Encoding & operations
=
-




Circuit Encoding




GA'’s settings

 Stochastic universal sampling

e Fitness: |
F = - A
I + error,

!

mError:

error = ii'{ — S,_,-| S.UeU2")

i=1 j=l

mError evaluation:

-comparison
outputs / LUT

-Permutations of
all constants and
iInputs
-Normalization of
error by wires
and patterns

-Penalization for
length

Y. B, A' B’ .
(]

R (l ] 1]
mLUT for o - . |
Fredkin 010 0 ] 0

i | i | |
gate 100 I 1] 1]

101 | ] |

1160 [ | |

111 | | {




Overview

* - for circuits having only same number of 1/0O



Experimental settings

e Each input is equivalent with any
other

e Evolving new circuits by

recombination

Number of wires Gates
* Non specific conditions
*  Population 100-150 : Wire, Inverter
e Mutation=0.01-1 2 Feynman, Swap
e Crossover=03-0.8 3 Fredkin, Toffoli
o Specifications: 4 Margolus

— Genetic operations based on
RCB > minimal element

— The noise in these experiments
IS not only a mutation but an
random operator on random
blocks !



Testing

-No starting set restriction

-Mutation only on blocks

- O min. 36 sec.

Unitary gate search

of | Mumber | Mumber of | Real Real
inputs | of generations | gate [ime
individu found
2 | (1750 [l 1 Min
A | (/50 Ll I Mlin
' 1 /50 1] 1 &in

Random function search




Improvements

e Using min(ESOP(FLIG)) for fitness

e Lamarckian learning

* One genotype = multiple possibilities of phenotype
 Using to minimize Exorcism-4



Circuit search

-Starting set restriction
-Mutation all levels (0.01 — 0.1)

Circuit/Gate | # of Gen. R.T. Exact/s
imilar
Toffoli 5/1 0 *[*
Fredkin 5/1 0 *[*
Adder ?/200,000 |120sec |O0O/*




Conclusion

|deas:

e Using GA to evolve arbitrary Reversible Circuit
« Specific Encoding helps the evolution
« Alternative encoding presented

Future works:

 Apply Lamarckian GA and other new variants of evolutionary approaches

e  Create hybrid algorithms by mixing evolutionary and logic-symbolic
methods

e Use new representations such as permutations and decision diagrams
e Use Logic minimizer to minimize the ESOP expression of the circuit

« THIS IS WORK IN PROGRESS, EVERYBODY
IS WELCOME TO JOIN.

e Publishing



