Some Recent Research Issues in Quantum Logic

Marek Perkowski

Part one

What will be discussed?

- 1. Background
- 2. Quantum circuits synthesis
- 3. Quantum circuits simulation
- 4. Quantum logic emulation and evolvable hardware
- 5. Quantum circuits verification
- 6. Quantum-based robot control

Quantum

Origin of slides: John Hayes, Peter Shor, Martin Lukac, Mikhail Pivtoraiko, Alan Mishchenko, Pawel Kerntopf.

A beam-splitter

The simplest explanation is that the beam-splitter acts as a classical coin-flip, randomly sending each photon one way or the other.

Quantum Interference

The simplest explanation must be wrong, since it would predict a $50-50$ distribution.

More experimental data

A new theory

The particle can exist in a linear combination or superposition of the two paths

Probability Amplitude and

 MeasurementIf the photon is measured when it is in the state $\alpha_{o}|0\rangle+\alpha_{l}|1\rangle$ then we get $|0\rangle$ with
probability $\left|\alpha_{0}\right|^{2}$

Quantum Operations

The operations are induced by the apparatus linearly, that is, if

$$
\begin{aligned}
|0\rangle & \rightarrow \frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
\text { and } \quad|1\rangle & \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle
\end{aligned}
$$

then

$$
\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \rightarrow \alpha_{0}\left(\frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)+\alpha_{1}\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle\right)
$$

$$
=\left(\alpha_{0} \frac{i}{\sqrt{2}}+\alpha_{1} \frac{1}{\sqrt{2}}\right)|0\rangle+\left(\alpha_{0} \frac{1}{\sqrt{2}}+\alpha_{1} \frac{i}{\sqrt{2}}\right)|1\rangle
$$

Quantum Operations

Any linear operation that takes states

$$
\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \quad \text { satisfying } \quad\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1
$$

and maps them to states

$$
\alpha_{0}^{\prime}|0\rangle+\alpha_{1}^{\prime}|1\rangle \quad \text { satisfying } \quad\left|\alpha_{0}^{\prime}\right|^{2}+\left|\alpha_{1}^{\prime}\right|^{2}=1
$$

must be UNITARY

Linear Algebra

$|0\rangle \quad$ corresponds to $\quad\binom{1}{0}$
$|1\rangle \quad$ corresponds to $\binom{0}{1}$
$\alpha_{o}|0\rangle+\alpha_{1}|1\rangle$
corresponds to $\quad \alpha_{0}\binom{1}{0}+\alpha_{1}\binom{0}{1}=\binom{\alpha_{0}}{\alpha_{1}}$

Linear Algebra

corresponds to $\left(\begin{array}{cc}\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right)$

Linear Algebra

corresponds to

$$
\left(\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right)\left(\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\binom{1}{0}
$$

Linear Algebra

$$
\mathcal{U l}=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]
$$

is unitary if and only if

$$
\mathcal{U U l}^{t}=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]\left[\begin{array}{cc}
u_{00}^{*} & u_{10}^{*} \\
u_{*}^{*} & u_{11}^{*}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

Abstraction

The two position states of a photon in a Mach-Zehnder apparatus is just one example of a quantum bit or qubit

Except when addressing a particular physical implementation, we will simply talk about "basis" states $|0\rangle$ and $|1\rangle$ and unitary operations like

and

corresponds to $\quad\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \varphi}\end{array}\right)$

An arrangement like

is represented with a network like

More than one qubit

If we concatenate two qubits

$$
\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)\left(\beta_{o}|0\rangle+\beta_{1}|1\rangle\right)
$$

we have a 2-qubit system with 4 basis states

$$
|0\rangle|0\rangle=|00\rangle \quad|0\rangle|1\rangle=|01\rangle \quad|1\rangle|0\rangle=|10\rangle \quad|1\rangle|1\rangle=|11\rangle
$$

and we can also describe the state as
$\alpha_{0} \beta_{o}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle$
or by the vector $\quad\left(\begin{array}{c}\alpha_{0} \beta_{o} \\ \alpha_{0} \beta \\ \alpha_{1} \beta_{o} \\ \alpha_{1} \beta_{1}\end{array}\right)=\binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}$

More than one qubit

In general we can have arbitrary superpositions

$$
\begin{aligned}
& \alpha_{o 0}|0\rangle|0\rangle+\alpha_{01}|0\rangle|1\rangle+\alpha_{10}|1\rangle|0\rangle+\alpha_{11}|1\rangle|1\rangle \\
& \quad\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
\end{aligned}
$$

where there is no factorization into the tensor product of two independent qubits.
These states are called entangled.

Measuring multi-qubit systems

If we measure both bits of

$$
\alpha_{00}|0\rangle|0\rangle+\alpha_{01}|0\rangle|1\rangle+\alpha_{10}|1\rangle|0\rangle+\alpha_{11}|1\rangle|1\rangle
$$

we get $|x\rangle|y\rangle$ with probability $\quad\left|\alpha_{x y}\right|^{2}$

Versus

Classical vs. Quantum Circuits

- Goal: Fast, low-cost implementation of useful algorithms using standard components (gates) and design techniques

Classical Logic Circuits

- Circuit behavior is governed implicitly by classical physics
- Signal states are simple bit vectors, e.g. $X=01010111$
- Operations are defined by Boolean Algebra
- No restrictions exist on copying or measuring signals
- Small well-defined sets of universal gate types, e.g. \{NAND\}, \{AND,OR,NOT\}, \{AND,NOT\}, etc.
- Well developed CAD methodologies exist
- Circuits are easily implemented in fast, scalable and macroscopic technologies such as CMOS

Classical vs. Quantum Circuits

Quantum Logic Circuits

- Circuit behavior is governed explicitly by quantum mechanics
- Signal states are vectors interpreted as a superposition of binary "qubit" vectors with complex-number coefficients

$$
|\Psi\rangle=\sum_{i=0}^{2^{n}-1} c_{i}\left|i_{n-1} i_{n-1} \ldots i_{0}\right\rangle
$$

- Operations are defined by linear algebra over Hilbert Space and can be represented by unitary matrices with complex elements
- Severe restrictions exist on copying and measuring signals
- Many universal gate sets exist but the best types are not obvious
- Circuits must use microscopic technologies that are slow, fragile, and not yet scalable, e.g., NMR

Quantum Circuit Characteristics

- Unitary Operations
- Gates and circuits must be reversible (information-lossless)
- Number of output signal lines $=$ Number of input signal lines
- The circuit function must be a bijection, implying that output vectors are a permutation of the input vectors
- Classical logic behavior can be represented by permutation matrices
- Non-classical logic behavior can be represented including state sign (phase) and entanglement

Quantum Circuit Characteristics

- Quantum Measurement
- Measurement yields only one state X of the superposed states
- Measurement also makes X the new state and so interferes with computational processes
$-X$ is determined with some probability, implying uncertainty in the result
- States cannot be copied ("cloned"), implying that signal fanout is not permitted
- Environmental interference can cause a measurement-like state collapse (decoherence)

Classical vs. Quantum Cïrcuits

Classical vs. Quantum Cirrcuits

Quantum adder

Reversible

Reversible Circuits

- Reversibility was studied around 1980 motivated by power minimization considerations
- Bennett, Toffoli et al. showed that any classical logic circuit C can be made reversible with modest overhead

Reversible Circuits

- How to make a given f reversible
- Suppose $f: i \rightarrow f(i)$ has n inputs m outputs
- Introduce n extra outputs and m extra inputs
- Replace f by $f_{\text {rev }}: i, j \rightarrow i, f(i) \oplus j$ where \oplus is XOR
- Example 1: $f(a, b)=\operatorname{AND}(a, b)$

a	b	c	a	b	f
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

- This is the well-known Toffoli gate, which realizes AND when $c=0$, and NAND when $c=1$.

Reversible Circuits

- Reversible gate family [Toffoli 1980]

NOT

XOR/FAN-OUT

AND/NAND
(Toffoli gate)

generalized AND/NAND

- Every Boolean function has a reversible implementation using Toffoli gates.
- There is no universal reversible gate with fewer than three inputs

Gates

Quantum Gates

- One-Input gate: NOT
- Input state: $c_{0}|0\rangle+c_{1}|1\rangle$
- Output state: $c_{1}|0\rangle+c_{0}|1\rangle$

- Pure states are mapped thus: $|0\rangle \rightarrow|1\rangle$ and $|1\rangle \rightarrow|0\rangle$
- Gate operator (matrix) is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}$
- As expected:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Quantum Gates

One-Input gate: "Square root of NOT"

- Some matrix elements are imaginary
- Gate operator (matrix):
- We find:

$$
\left(\begin{array}{ll}
i / \sqrt{1 / 2} & 1 / \sqrt{1 / 2} \\
1 / \sqrt{1 / 2} & i / \sqrt{1 / 2}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)
$$

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{i}{1} \quad \begin{array}{r}
\text { so }|0\rangle \rightarrow|0\rangle \text { with probability }|i / \sqrt{ } 2|^{2}=1 / 2 \\
\text { and }|0\rangle \rightarrow|1\rangle \text { with probability }|1 / \sqrt{ } 2|^{2}=1 / 2
\end{array}
$$

Similarly, this gate randomizes input |1>

- But concatenation of two gates eliminates the randomness!

$$
\frac{1}{2}\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)\left(\begin{array}{ll}
i & 1 \\
1 & i
\end{array}\right)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

Quantum Gates

- One-Input gate: Hadamard

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- Maps $|0\rangle \rightarrow 1 / \sqrt{ } 2|0\rangle+1 / \sqrt{ } 2|1\rangle$ and $|1\rangle \rightarrow 1 / \sqrt{ } 2|0\rangle-1 / \sqrt{ } 2|1\rangle$.
- Ignoring the normalization factor $1 / \sqrt{ } 2$, we can write $|x\rangle \rightarrow(-1)^{x}|x\rangle-|1-x\rangle$
- One-Input gate: Phase shift

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)
$$

Quantum Gates

Universal One-Input Gate Sets

- Requirement:

$$
|0\rangle-\mathrm{U} \quad \text { Any state }|\psi\rangle
$$

- Hadamard and phase-shift gates form a universal gate set Example: The following circuit generates $|\psi\rangle=\cos \theta|0\rangle+e^{i \phi} \sin \theta|1\rangle$ up to a global factor

Quantum Gates

- Two-Input Gate: Controlled NOT (CNOT)

- CNOT maps $|x\rangle|0\rangle \rightarrow|x\rangle||x\rangle$ and $| x\rangle|1\rangle \rightarrow|x\rangle|\mid$ NOT $x\rangle$ $|x\rangle|0\rangle \rightarrow|x\rangle||x\rangle$ looks like cloning, but it's not. These mappings are valid only for the pure states $|0\rangle$ and |1〉
- Serves as a "non-demolition" measurement gate

Quantum Gates

- 3-Input gate: Controlled CNOT (C^{2} NOT or Toffoli gate)
$\left\lvert\,\left(\left.\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array} \right\rvert\,\right.\right.$

Quantum Gates

- General controlled gates that control some 1qubit unitary operation U are useful

$$
\begin{gathered}
\left(\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right) \\
-U-
\end{gathered}
$$

etc.
$\mathrm{C}(U)$
$C^{2}(U)$

Ouantum

Universal Gate Sets

- To implement any unitary operation on n qubits exactly requires an infinite number of gate types
- The (infinite) set of all 2-input gates is universal - Any n-qubit unitary operation can be implemented using $\Theta\left(n^{3} 4^{n}\right)$ gates [Reck et al. 1994]
- CNOT and the (infinite) set of all 1-qubit gates is universal

Quantum Gates

Discrete Universal Gate Sets

- The error on implementing U by V is defined as

$$
E(U, V)=\max _{|\Psi\rangle} x \|(U-V)|\Psi\rangle \|
$$

- If U can be implemented by K gates, we can simulate U with a total error less than ε with a gate overhead that is polynomial in $\log (K / \varepsilon)$
- A discrete set of gate types \boldsymbol{G} is universal, if we can approximate any U to within any $\varepsilon>0$ using a sequence of gates from \boldsymbol{G}

Quantum Gates

Discrete Universal Gate Set

- Example 1: Four-member "standard" gate set

$$
\begin{array}{ccccc}
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) & \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) \\
-0 & - & -\mathrm{H} & -\mathrm{S} & -\pi / 8 \\
- & & & \\
\text { CNOT } & \text { Hadamard } & \text { Phase } & \pi / 8(\mathrm{~T}) \text { gate }
\end{array}
$$

- Example 2: \{CNOT, Hadamard, Phase, Toffoli\}

Quantum Circuits

Quantum Circuits

- A quantum (combinational) circuit is a sequence of quantum gates, linked by "wires"
- The circuit has fixed "width" corresponding to the number of qubits being processed
- Logic design (classical and quantum) attempts to find circuit structures for needed operations that are
- Functionally correct
- Independent of physical technology
- Low-cost, e.g., use the minimum number of qubits or gates
- Quantum logic design is not well developed!

Quantum Circuits

- Ad hoc designs known for many specific functions and gates
- Example 1 illustrating a theorem by [Barenco et al. 1995]: Any $\mathrm{C}^{2}(U)$ gate can be built from CNOTs, $\mathrm{C}(V)$, and $\mathrm{C}\left(V^{\dagger}\right)$ gates, where $V^{2}=U$

Quantum Circuits

Example 1: Simulation

Quantum Circuits

Example 1: Simulation (contd.)

- Exercise: Simulate the two remaining cases

Quantum Circuits

Example 1: Algebraic analysis

$$
\begin{aligned}
&\left.\circ \text { Is } \begin{array}{rl}
& \left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right)=U_{5} U_{4} U_{3} U_{2} U_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
&=\left(x_{1}, x_{2}, x_{1} x_{2} \oplus U\left(x_{3}\right)\right) ?
\end{aligned}
$$

Quantum Circuits

Example 1 (contd);

$U_{1}=I_{1} \otimes C(V)$

$$
\begin{aligned}
& \left|\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right|
\end{aligned}
$$

Quantum Circuits

Example 1 (contd);

$$
\begin{aligned}
& U_{2}=U_{4}=\operatorname{CNOT}\left(x_{1}, x_{2}\right) \otimes I_{1}
\end{aligned}
$$

Quantum Circuits

Example 1 (contd);

- U_{5} is the same as U_{1} but has x_{1} and x_{2} permuted (tricky!)
- It remains to evaluate the product of five 8×8 matrices $U_{5} U_{4} U_{3} U_{2} U_{1}$ using the fact that $V V^{\dagger}=I$ and $V V=U$

Quantum Circuits

- Implementing a Half Adder
- Problem: Implement the classical functions sum = $x_{1} \oplus x_{0}$ and carry $=x_{1} x_{0}$
- Generic design:

Quantum Circuits

- Half Adder: Generic design (contd.)

$$
\left.U_{A D D}=\left|\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right| \begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array} \right\rvert\,
$$

Quantum Circuits

- Half Adder: Specific (reduced) design

Walsh Transform for two binary-input many-valued variables

Classical logic

Quantum logic

Butterfly is created automatically by tensor product corresponding to superposition

Portland Quantum

Logic Group

 (PQLG)
People at PSU and collaborators

- Marek Perkowski
- Martin Zwick
- Xiaoyu Song
- William Hung
- Anas Al-Rabadi
- Martin Lukac
- Mikhail Pivtoraiko
- Andrei Khlopotine
- Alan Mishchenko (University of California, Berkeley, USA)
- Bernd Steinbach (Technical University of Freiberg, Germany)
- Pawel Kerntopf (Technical University of Warsaw, Poland)
- Mitch Thornton (Southern Methodist University, Dallas, USA)
- Lech Jozwiak (Technical University of Eindhoven, The Netherlands)
- Andrzej Buller (ATR, Kansai Science City, Japan)
- Tsutomu Sasao (Kyushu University of Technology, Iizuka, Japan).

Current Projects

- Logic Synthesis for Reversible Logic
- decomposition
- Decision Diagram Mapping
- composition
- regular structures - lattices, PLAs, nets
- Logic Synthesis for Quantum Logic

4 papers published

- Quantum Simulation using new Decision Diagrams

Current Projects

- FPGA-based model of Quantum Computer
- Reversible FPGA using CMOS.
- Realization of new spectral transforms using quantum logic.
- Non-linear Quantum Logic solves NP problems in polynomial time.
- Quantum-inspired search algorithms for robotics

Where to learn more

- Web Page of Marek Perkowski
- class 572-see description of student projects
- Portland Quantum Logic Group

We are open to
 collaboration and we want to grow

Automated Synthesis of Generalized Reversible Cascades using Genetic Algorithm

Agenda

Introduction and history
Reversible Logic and Reversible Gates
Genetic algorithms
The Model
Simulation
Conclusion

Reversible gates...

Feynman, Toffoli, Fredkin, ...

and Reversible Circuits
-To reduce the R1-synthesis limitations one can insertconstants in order to modify the functionality

Generalized Reversible Gates

Perkowski gates family

Cascades

- Mixed data/control inputs (generalized complex control gates)
- All:
- ESOP
- Factorized-ESOP
- MV Complex Terms
- XOR family

■Example:

Genetic algorithms

Encoding \& operations

Circuit Encoding

GA's settings

- Stochastic universal sampling
- Fitness:

$$
F_{i}=\frac{1}{1+\text { error }_{i}}-\Lambda_{i}
$$

-Error:

$$
\text { error }=\sum_{i=1}^{n} \sum_{j=1}^{2^{n}}\left|U_{i j}-S_{i j}\right| \quad S, U \in U\left(2^{n}\right)
$$

-LUT for Fredkin gate:

A, B, D	A^{\prime}	B^{\prime}	C^{\prime}
000	0	0	0
001	0	0	1
010	0	1	0
011	0	1	1
100	1	0	0
101	1	0	1
110	1	1	1
111	1	1	0

Error evaluation:
-comparison outputs / LUT
-Permutations of all constants and inputs
-Normalization of error by wires and patterns
-Penalization for length

Overview

Mutation	Gates Blocks	Position (block/circuit)
Cross-Over*	Segments	Experimental (unitary matrices)
Reproduction	Circuits	Best gates Best Circuits

* - for circuits having only same number of I/O

Experimental settings

- Each input is equivalent with any other
- Evolving new circuits by recombination
- Non specific conditions
- Population 100-150
- Mutation $=0.01-1$
- Crossover $=0.3-0.8$
- Specifications:

Number of wires	Gates
1	Wire, Inverter
2	Feynman, Swap
3	Fredkin, Toffoli
4	Margolus

- Genetic operations based on RCB > minimal element
- The noise in these experiments is not only a mutation but an random operator on random blocks !!!

Testing

-No starting set restriction

Unitary gate search

-Mutation only on blocks

\# of inputs	Number of individu als	Number of generations	Real gate found	Real Time
2	$10 / 50$	$10 / 1$	$*$	$<1 \mathrm{Min}$
3	$10 / 50$	$10 / 1$	$*$	$<1 \mathrm{Min}$
4	$10 / 50$	$10 / 1$	$*$	$<1 \mathrm{Min}$

Random function search

Improvements

- Using $\min (\mathrm{ESOP}(\mathrm{F} \oplus \mathrm{G}))$ for fitness
- Lamarckian learning
- One genotype \Rightarrow multiple possibilities of phenotype
- Using to minimize Exorcism-4

Circuit search

-Starting set restriction
-Mutation all levels ($0.01-0.1$)

Circuit/Gate	\# of Gen.	R.T.	Exact/s imilar
Toffoli	$5 / 1$	0	$* / *$
Fredkin	$5 / 1$	0	$* / *$
Adder	$? / 200,000$	120 sec	$0 / *$

Conclusion

Ideas:

- Using GA to evolve arbitrary Reversible Circuit
- Specific Encoding helps the evolution
- Alternative encoding presented

Future works:

- Apply Lamarckian GA and other new variants of evolutionary approaches
- Create hybrid algorithms by mixing evolutionary and logic-symbolic methods
- Use new representations such as permutations and decision diagrams
- Use Logic minimizer to minimize the ESOP expression of the circuit
- THIS IS WORK IN PROGRESS, EVERYBODY IS WELCOME TO JOIN.
- Publishing

