Some Recent Research Issues in Quantum Logic

Marek Perkowski

Part one

What will be discussed?

- 1. Background
- 2. Quantum circuits synthesis
- 3. Quantum circuits simulation
- 4. Quantum logic emulation and evolvable hardware
- 5. Quantum circuits verification
- 6. Quantum-based robot control

Origin of slides: John Hayes, Peter Shor, Martin Lukac, Mikhail Pivtoraiko, Alan Mishchenko, Pawel Kerntopf.

A beam-splitter

The simplest explanation is that the beam-splitter acts as a classical coin-flip, randomly sending each photon one way or the other.

The simplest explanation must be wrong, since it would predict a 50-50 distribution.

More experimental data

The particle can exist in a linear combination or *superposition* of the two paths

Probability Amplitude and Measurement

If the photon is measured when it is in the state $\alpha_0 |0\rangle + \alpha_1 |1\rangle$ then we get $|0\rangle$ with probability $|\alpha_0|^2$

Quantum Operations

The operations are induced by the apparatus *linearly*, that is, if $|0\rangle \rightarrow \frac{i}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

and
$$|1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle$$

then

$$\begin{aligned} \alpha_{0}|0\rangle + \alpha_{1}|1\rangle &\rightarrow \alpha_{0}\left(\frac{i}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) + \alpha_{1}\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle\right) \\ &= \left(\alpha_{0}\frac{i}{\sqrt{2}} + \alpha_{1}\frac{1}{\sqrt{2}}\right)|0\rangle + \left(\alpha_{0}\frac{1}{\sqrt{2}} + \alpha_{1}\frac{i}{\sqrt{2}}\right)|1\rangle \end{aligned}$$

Quantum Operations

Any linear operation that takes states $\alpha_0 |0\rangle + \alpha_1 |1\rangle$ satisfying $|\alpha_0|^2 + |\alpha_1|^2 = 1$

and maps them to states $\alpha_0 | 0 \rangle + \alpha_1 | 1 \rangle$ satisfying

$$\left|\alpha_{0}^{'}\right|^{2} + \left|\alpha_{1}^{'}\right|^{2} = 1$$

must be UNITARY

corresponds to $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$

corresponds to

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_{00} & \mathbf{u}_{01} \\ \mathbf{u}_{10} & \mathbf{u}_{11} \end{bmatrix}$$

is unitary if and only if

$$UU^{t} = \begin{bmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{bmatrix} \begin{bmatrix} u^{*}_{00} & u^{*}_{10} \\ u^{*}_{01} & u^{*}_{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

The two position states of a photon in a Mach-Zehnder apparatus is just one example of a quantum bit or *qubit*

Except when addressing a particular physical implementation, we will simply talk about "basis" states $|0\rangle$ and $|1\rangle$

and **unitary operations** like

An arrangement like

is represented with a network like

More than one qubit

If we concatenate two qubits

 $\begin{pmatrix} \alpha_0 | 0 \rangle + \alpha_1 | 1 \rangle \end{pmatrix} \begin{pmatrix} \beta_0 | 0 \rangle + \beta_1 | 1 \rangle \end{pmatrix}$ we have a 2-qubit system with 4 basis states $|0\rangle |0\rangle = |00\rangle \quad |0\rangle |1\rangle = |01\rangle \quad |1\rangle |0\rangle = |10\rangle \quad |1\rangle |1\rangle = |11\rangle$ and we can also describe the state as $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$ $\begin{pmatrix} \alpha_0 \beta_0 \end{pmatrix}$

or by the vector

$$\begin{pmatrix} \boldsymbol{\alpha}_{0}\boldsymbol{\beta}_{0} \\ \boldsymbol{\alpha}_{0}\boldsymbol{\beta} \\ \boldsymbol{\alpha}_{1}\boldsymbol{\beta}_{0} \\ \boldsymbol{\alpha}_{1}\boldsymbol{\beta}_{1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_{0} \\ \boldsymbol{\alpha}_{1} \end{pmatrix} \otimes \begin{pmatrix} \boldsymbol{\beta}_{0} \\ \boldsymbol{\beta}_{1} \end{pmatrix}$$

More than one qubit

In general we can have arbitrary superpositions

$$\begin{aligned} \alpha_{00} |0\rangle |0\rangle + \alpha_{01} |0\rangle |1\rangle + \alpha_{10} |1\rangle |0\rangle + \alpha_{11} |1\rangle |1\rangle \\ &|\alpha_{00}|^{2} + |\alpha_{01}|^{2} + |\alpha_{10}|^{2} + |\alpha_{11}|^{2} = 1 \end{aligned}$$

where there is no factorization into the tensor product of two independent qubits. These states are called *entangled*.

Measuring multi-qubit systems

If we measure both bits of

$$\alpha_{_{00}} \big| 0 \big\rangle \big| 0 \big\rangle + \alpha_{_{01}} \big| 0 \big\rangle \big| 1 \big\rangle + \alpha_{_{10}} \big| 1 \big\rangle \big| 0 \big\rangle + \alpha_{_{11}} \big| 1 \big\rangle \big| 1 \big\rangle$$

we get $|x\rangle|y\rangle$ with probability $|\alpha_{xy}|^2$

Classical vs. Quantum Circuits

- <u>Goal</u>: Fast, low-cost implementation of useful algorithms using standard components (gates) and design techniques
- <u>Classical Logic Circuits</u>
 - Circuit behavior is governed implicitly by classical physics
 - Signal states are simple bit vectors, e.g. X = 01010111
 - Operations are defined by Boolean Algebra
 - No restrictions exist on copying or measuring signals
 - Small well-defined sets of universal gate types, e.g. {NAND}, {AND,OR,NOT}, {AND,NOT}, etc.
 - Well developed CAD methodologies exist
 - Circuits are easily implemented in fast, scalable and macroscopic technologies such as CMOS

Classical vs. Quantum Circuits

- Quantum Logic Circuits
 - Circuit behavior is governed explicitly by quantum mechanics
 - Signal states are vectors interpreted as a superposition of binary "qubit" vectors with complex-number coefficients

$$|\Psi\rangle = \sum_{i=0}^{2^n-1} c_i |i_{n-1}i_{n-1}\dots i_0\rangle$$

- Operations are defined by linear algebra over Hilbert Space and can be represented by unitary matrices with complex elements
- <u>Severe restrictions</u> exist on copying and measuring signals
- Many universal gate sets exist but the <u>best types are not obvious</u>
- Circuits must use microscopic technologies that are slow, fragile, and not yet scalable, e.g., NMR

Quantum Circuit Characteristics

- Unitary Operations
 - Gates and circuits must be reversible (information-lossless)
 - Number of output signal lines = Number of input signal lines
 - The circuit function must be a bijection, implying that output vectors are a <u>permutation</u> of the input vectors
 - Classical logic behavior can be represented by <u>permutation</u> matrices
 - Non-classical logic behavior can be represented including state sign (phase) and entanglement

Quantum Circuit Characteristics

- Quantum Measurement
 - Measurement yields <u>only one state</u> X of the superposed states
 - Measurement also <u>makes X the new state</u> and so *interferes with computational processes*
 - X is determined with some **probability**, implying uncertainty in the result
 - <u>States cannot be copied</u> ("cloned"), implying that signal fanout is not permitted
 - <u>Environmental interference</u> can cause a measurement-like state collapse (decoherence)

Classical vs. Quantum Circuits

Classical adder

Classical vs. Quantum Circuits

Quantum adder

Reversible Circuits

- Reversibility was studied around 1980 motivated by power minimization considerations
- Bennett, Toffoli et al. showed that any classical logic circuit *C* can be made reversible with modest overhead

Reversible Circuits

- How to make a given *f* reversible
 - Suppose $f: i \rightarrow f(i)$ has *n* inputs *m* outputs
 - Introduce *n* extra outputs and *m* extra inputs
 - Replace *f* by f_{rev} : $i, j \rightarrow i, f(i) \oplus j$ where \oplus is XOR
- Example 1: f(a,b) = AND(a,b) $a = [Reversible] \\ b = [AND] \\ gate \\ c = [f = ab \oplus c] \\ f = ab \oplus c \\ c = [f = ab \oplus c] \\ c = [f \oplus c] \\ c$
- This is the well-known Toffoli gate, which realizes AND when *c* = 0, and NAND when *c* = 1.

Reversible Circuits

• Reversible gate family [Toffoli 1980]

- Every Boolean function has a reversible implementation using Toffoli gates.
- There is no universal reversible gate with fewer than three inputs

Quantum Gates

- One-Input gate: NOT
 - Input state: $c_0|0\rangle + c_1|1\rangle$

 - Pure states are mapped thus: $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |0\rangle$
 - Gate operator (matrix) is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Quantum Gates

• **One-Input gate:** "Square root of NOT"

- Some matrix elements are imaginary
- Gate operator (matrix):

– We find:

$$\begin{pmatrix} i/\sqrt{1/2} & 1/\sqrt{1/2} \\ 1/\sqrt{1/2} & i/\sqrt{1/2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$$

 $\frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix} \text{ so } |0\rangle \rightarrow |0\rangle \text{ with probability } |i/\sqrt{2}|^2 = 1/2$ and $|0\rangle \rightarrow |1\rangle \text{ with probability } |1/\sqrt{2}|^2 = 1/2$ Similarly, this gate randomizes input $|1\rangle$

– But concatenation of two gates eliminates the randomness!

• One-Input gate: Hadamard

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad -\mathbf{H}$$

- $\text{ Maps } |0\rangle \rightarrow 1/\sqrt{2} |0\rangle + 1/\sqrt{2} |1\rangle \text{ and } |1\rangle \rightarrow 1/\sqrt{2} |0\rangle 1/\sqrt{2} |1\rangle.$
- Ignoring the normalization factor $1/\sqrt{2}$, we can write $|x\rangle \rightarrow (-1)^{x} |x\rangle - |1-x\rangle$
- One-Input gate: Phase shift

- **Universal One-Input Gate Sets**
- Requirement:

$$|0\rangle - U$$
 Any state $|\psi\rangle$

- Hadamard and phase-shift gates form a <u>universal</u> gate set
- *Example*: The following circuit generates $|\psi\rangle = \cos \theta |0\rangle + e^{i\phi} \sin \theta |1\rangle$ up to a global factor

Quantum Gates

• **Two-Input Gate:** Controlled NOT (CNOT)

- CNOT maps $|x\rangle|0\rangle \rightarrow |x\rangle||x\rangle$ and $|x\rangle|1\rangle \rightarrow |x\rangle||NOT x\rangle$ $|x\rangle|0\rangle \rightarrow |x\rangle||x\rangle$ *looks like cloning*, <u>but it's not</u>. These mappings are **valid only for the pure states** $|0\rangle$ and $|1\rangle$
- Serves as a "non-demolition" measurement gate

• **3-Input gate:** Controlled CNOT (C²NOT or Toffoli gate)

• General controlled gates that control some 1qubit unitary operation *U* are useful

Universal Gate Sets

- To implement any unitary operation on *n* qubits exactly requires an infinite number of gate types
- The (infinite) set of all 2-input gates is universal

 Any *n*-qubit unitary operation can be implemented using Θ(n³4ⁿ) gates [Reck et al. 1994]
- CNOT and the (infinite) set of all 1-qubit gates is universal

Discrete Universal Gate Sets

• The error on implementing U by V is defined as

$$E(U,V) = \max_{\|\Psi\}} \|(U-V)\|\Psi\|$$

- If *U* can be implemented by *K* gates, we can simulate *U* with a total error less than ε with a gate overhead that is polynomial in $\log(K/\varepsilon)$
- A discrete set of gate types G is universal, if we can approximate any U to within any ε > 0 using a sequence of gates from G

Discrete Universal Gate Set

• Example 1: Four-member "standard" gate set

• Example 2: {CNOT, Hadamard, Phase, Toffoli}

Quantum Circuits

Quantum Circuits

- A quantum (combinational) circuit is a sequence of quantum gates, linked by "wires"
- The circuit has fixed "width" corresponding to the number of qubits being processed
- Logic design (classical and quantum) attempts to find circuit structures for needed operations that are
 - Functionally correct
 - Independent of physical technology
 - Low-cost, e.g., use the minimum number of qubits or gates
- Quantum logic design is not well developed!

Quantum Circuits

- Ad hoc designs known for many specific functions and gates
- Example 1 illustrating a theorem by [Barenco et al. 1995]: Any $C^2(U)$ gate can be built from CNOTs, C(V), and $C(V^{\dagger})$ gates, where $V^2 = U$

Example 1: Simulation

Example 1: Simulation (contd.)

• *Exercise*: Simulate the two remaining cases

Example 1: Algebraic analysis

• Is $U_0(x_1, x_2, x_3) = U_5 U_4 U_3 U_2 U_1(x_1, x_2, x_3)$ = $(x_1, x_2, x_1 x_2 \oplus U(x_3))$?

Example 1 (contd);

 $U_{1} = I_{1} \otimes C(V)$ $= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & v_{10} & v_{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & v_{00} & v_{01} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & v_{00} & v_{01} \\ 0 & 0 & 0 & 0 & 0 & v_{00} & v_{0} \\ 0 & 0 & 0 & 0 & 0 & v_{0} & v_{0} \\ 0 & 0$

Example 1 (contd);

Quantum Circuits

Example 1 (contd);

- U_5 is the same as U_1 but has x_1 and x_2 permuted (tricky!)
- It remains to evaluate the product of five 8 x 8 matrices $U_5U_4U_3U_2U_1$ using the fact that $VV^{\dagger} = I$ and VV = U

 $|001000000||00100000||00\mathbf{v}_{00}\mathbf{v}_{10}00000||00100000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}0000||00\mathbf{v}_{00}\mathbf{v}_{01}000||00\mathbf{v}_{00}\mathbf{v}_{01}000||00\mathbf{v}_{00}\mathbf{v}_{01}000||00\mathbf{v}_{00}\mathbf{v}_{01}\mathbf{v}_{01}000||00\mathbf{v}_{00}\mathbf{v}_{01}\mathbf{$ $(1 \ 0 \ 0 \ 0 \ 0 \ 0$ 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 $| = U_0$ 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 $\mathbf{v}_{00}v_{00} + \mathbf{v}_{10}v_{10}$ $\mathbf{v}_{00}v_{01} + \mathbf{v}_{10}v_{11}$ $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{v}_{01} v_{00} + \mathbf{v}_{11} v_{10} & \mathbf{v}_{01} v_{01} + \mathbf{v}_{11} v_{11} \end{bmatrix}$

- Implementing a Half Adder
 - *Problem*: Implement the classical functions $sum = x_1 \oplus x_0$ and $carry = x_1 x_0$
- Generic design:

Quantum Circuits

• Half Adder. Generic design (contd.)

• Half Adder. Specific (reduced) design

Walsh Transform for two binary-input many-valued variables

Classical logic

Quantum logic

Butterfly is created automatically by tensor product corresponding to superposition

Portland Quantum Logic Group (PQLG) What we do?

People at PSU and collaborators

- Marek Perkowski
- Martin Zwick
- Xiaoyu Song
- William Hung
- Anas Al-Rabadi
- Martin Lukac
- Mikhail Pivtoraiko
- Andrei Khlopotine
- Alan Mishchenko (University of California, Berkeley, USA)
- Bernd Steinbach (Technical University of Freiberg, Germany)
- Pawel Kerntopf (Technical University of Warsaw, Poland)
- Mitch Thornton (Southern Methodist University, Dallas, USA)
- Lech Jozwiak (Technical University of Eindhoven, The Netherlands)
- Andrzej Buller (ATR, Kansai Science City, Japan)
- Tsutomu Sasao (Kyushu University of Technology, Iizuka, Japan).

Current Projects

- Logic Synthesis for Reversible Logic
 - decomposition
 - Decision Diagram Mapping
 - composition
 - regular structures lattices, PLAs, nets
- Logic Synthesis for Quantum Logic
- Quantum Simulation using new Decision Diagrams

paper

submitted

Current Projects

- FPGA-based model of Quantum Computer
- Reversible FPGA using CMOS.
- Realization of new spectral transforms using quantum logic.
- Non-linear Quantum Logic solves NP problems in polynomial time.
- Quantum-inspired search algorithms for robotics

Where to learn more

- Web Page of Marek Perkowski
 - class 572 see description of student projects
 - Portland Quantum Logic Group

Automated Synthesis of Generalized Reversible Cascades using Genetic Algorithm

- Introduction and history
- Reversible Logic and Reversible Gates
- Genetic algorithms
- The Model
- Simulation
- Conclusion

Reversible gates...

Feynman, Toffoli, Fredkin, ...

$$A \longrightarrow P = A$$
$$B \longrightarrow Q = P \oplus$$

Mapping of I/O allows unique (P,Q)⇒(A,B)

and Reversible Circuits

•To reduce the RL synthesis limitations one can insert constants in order to modify the functionality

B

Generalized Reversible Gates

Perkowski gates family

- Mixed data/control inputs (generalized complex control gates)
- *All* :
- ESOP
- Factorized-ESOP
- MV Complex Terms
- XOR family

Example:

Genetic algorithms

Encoding & operations

C-O

Circuit Encoding

GA's settings

- Stochastic universal sampling
- Fitness:

$$F_i = \frac{1}{1 + error_i} - \Lambda_i$$

Error:

$$error = \sum_{i=1}^{n} \sum_{j=1}^{2^{n}} |U_{ij} - S_{ij}| \quad S, U \in U(2^{n})$$

Error evaluation:

-comparison outputs / LUT -Permutations of all constants and inputs

- -Normalization of error by wires and patterns
- -Penalization for length

LUT for Fredkin gate:

А, В,	A'	B,	С'
D			
000	0	0	0
001	0	0	1
010	0	1	0
011	0	1	1
100	1	0	0
101	1	0	1
110	1	1	1
111	1	1	0

Mutation	Gates Blocks	Position (block/circuit)
Cross-Over*	Segments	Experimental (unitary matrices)
Reproduction	Circuits	Best gates Best Circuits

* - for circuits having only same number of I/O

Experimental settings

- Each input is equivalent with any other
- Evolving new circuits by recombination
- Non specific conditions
- Population 100-150
- Mutation = 0.01 1
- Crossover = 0.3 0.8
- Specifications:
 - Genetic operations based on RCB > minimal element
 - The noise in these experiments is not only a mutation but an random operator on random blocks !!!

Number of wires	Gates
1	Wire, Inverter
2	Feynman, Swap
3	Fredkin, Toffoli
4	Margolus

-No starting set restriction

-Mutation only on blocks

Unitary gate search

# of	Number	Number of	Real	Real
inputs	of	generations	gate	Time
	individu		found	
	als			
2	10/50	10/1	*	<1 Min
3	10/50	10/1	*	<1 Min
4	10/50	10/1	*	<1 Min

Random function search

Improvements

- Using min(ESOP($F \oplus G$)) for fitness
- Lamarckian learning
 - One genotype \Rightarrow multiple possibilities of phenotype
 - Using to minimize Exorcism-4

Circuit search

-Starting set restriction

-Mutation all levels (0.01 - 0.1)

Circuit/Gate	# of Gen.	R.T.	Exact/s imilar
Toffoli	5/1	0	*/*
Fredkin	5/1	0	*/*
Adder	?/200,000	120 sec	0/*

- Ideas:
 - Using GA to evolve arbitrary Reversible Circuit
 - Specific Encoding helps the evolution
 - Alternative encoding presented
- Future works:
 - Apply Lamarckian GA and other new variants of evolutionary approaches
 - Create hybrid algorithms by mixing evolutionary and logic-symbolic methods
 - Use new representations such as permutations and decision diagrams
 - Use Logic minimizer to minimize the ESOP expression of the circuit
 - THIS IS WORK IN PROGRESS, EVERYBODY IS WELCOME TO JOIN.
 - Publishing