
Some RecentSome Recent
Research Issues inResearch Issues in

Quantum LogicQuantum Logic

Marek Perkowski

Part onePart one



What will be
discussed?

•  1. Background

•  2. Quantum circuits synthesis

•  3. Quantum circuits simulation

•  4. Quantum logic emulation and evolvable hardware

•  5. Quantum circuits verification

•  6. Quantum-based robot control



Origin of  slides: John Hayes, Peter Shor,  Martin
Lukac, Mikhail Pivtoraiko, Alan Mishchenko, Pawel
Kerntopf.



A beam-splitterA beam-splitter

0

1

0

1

%50

%50

The simplest explanation is that the beam-splitter
acts as a classical coin-flip, randomly sending each
photon one way or the other.



Quantum InterferenceQuantum Interference

0

1

0

1 %100

The simplest explanation must be wrong, since it
would predict a 50-50 distribution.



More experimental dataMore experimental data

0

1

0

1 






 ϕ
2

cos2ϕ








 ϕ
2

sin2



0

1

0

1 






 ϕ
2

cos2ϕ








 ϕ
2

sin2

1
2
10

2
i + 1

2
e0

2
i iϕ

+

The particle can exist in a linear combination or
superposition of the two paths

1
2

)1e(i0
2

1e ii ++− ϕϕ



Probability Amplitude andProbability Amplitude and
MeasurementMeasurement

0

1

0

1ϕ

2
0α

If the photon is measured when it is in the state
then we get    with

probability
10 10 α+α

θ

2
1α

2
0α

0

12
1

2
0 =α+α



Quantum OperationsQuantum Operations
The operations are induced by the apparatus linearly,
that is, if

and
then








 +α+






 +α→α+α 1
2
i0

2
11

2
10

2
i10 1010

1
2
10

2
i0 +→

1
2
i0

2
11 +→

1
2
i

2
10

2
1

2
i

1010 






 α+α+






 α+α=



Quantum OperationsQuantum Operations

Any linear operation that takes states
satisfying

and maps them to states
satisfying

must be UNITARY

12
1

2
0 =α+α10 10 α+α

10 '
1

'
0 α+α 1

2'
1

2'
0 =α+α



Linear AlgebraLinear Algebra

10 10 α+α

0 








0
1

1 








1
0










α
α

=







α+








α

1

0
10 1

0
0
1

corresponds to

corresponds to

corresponds to



Linear AlgebraLinear Algebra



















2
i

2
1

2
1

2
i

corresponds to

corresponds to
ϕ 








ϕie0

01



Linear AlgebraLinear Algebra

0

ϕ

corresponds to










0
1



















2
i

2
1

2
1

2
i









ϕie0

01



















2
i

2
1

2
1

2
i



Linear AlgebraLinear Algebra

I
10
01

uu
uu

uu
uu

UU *

**

1110

0100t

11*
01

1000 =







=




















=









=

1110

0100

uu
uu

U

is unitary if and only if



AbstractionAbstraction
The two position states of a photon in a
Mach-Zehnder apparatus is just one
example of a quantum bit or qubit

Except when addressing a particular physical
implementation, we will simply talk about
“basis” states      and
and unitary operations like

and

0 1

H ϕ



where corresponds toH

ϕ



















−
2
1

2
1

2
1

2
1

and         corresponds to








ϕie0

01



An arrangement like

0

ϕ

is represented with a  network like

H ϕ H0



More than one More than one qubitqubit

( )10 10 α+α

If we concatenate two qubits

11100100 11011000 βα+βα+βα+βα

( )10 10 β+β
we have a 2-qubit system with 4 basis states

0000 = 0110 = 1001 = 1111 =
and we can also describe the state as

or by the vector









β
β

⊗








α
α

=





















βα
βα
βα
βα

1

0

1

0

11

01

0

00



More than one More than one qubitqubit
In general we can have arbitrary superpositions

11011000 11100100 α+α+α+α

12
11

2
10

2
01

2
00 =α+α+α+α

where there is no factorization into the tensor
product of two independent qubits.
These states are called entangled.



Measuring multi-Measuring multi-qubit qubit systemssystems

If we measure both bits of

we get with probability

11011000 11100100 α+α+α+α

yx 2
xyα





• Goal:  Fast, low-cost implementation of useful algorithms
using standard components (gates) and design techniques

•  Classical Logic Circuits
– Circuit behavior is  governed implicitly by classical physics
– Signal states are simple bit vectors, e.g. X = 01010111
– Operations are defined  by Boolean Algebra
– No restrictions exist on copying or measuring signals
– Small well-defined sets of universal gate types, e.g. {NAND},

{AND,OR,NOT}, {AND,NOT}, etc.
– Well developed CAD methodologies exist
– Circuits are easily implemented in fast,  scalable and

macroscopic technologies such as CMOS

Classical vs. Quantum CircuitsClassical vs. Quantum Circuits



•  Quantum Logic Circuits
– Circuit behavior is governed explicitly by quantum mechanics
– Signal states are  vectors interpreted as a  superposition of binary

“qubit” vectors with complex-number coefficients

– Operations are defined by linear algebra over Hilbert Space and
can be represented by unitary matrices with complex elements

– Severe restrictions exist on copying and measuring signals
– Many universal gate sets exist but the best types are not obvious
– Circuits must use microscopic technologies that are slow, fragile,

and not yet scalable, e.g., NMR

Classical vs. Quantum CircuitsClassical vs. Quantum Circuits

Ψ = ci in −1in−1… i0
i =0

2n −1

∑



• Unitary  Operations
– Gates and circuits must be reversible (information-lossless)

• Number of output signal lines = Number  of input  signal lines
• The circuit function must be a bijection, implying that output vectors are

a permutation of the input vectors

– Classical logic behavior can be represented by permutation
matrices

– Non-classical logic behavior can be represented  including
state sign (phase) and entanglement

Quantum Circuit CharacteristicsQuantum Circuit Characteristics



• Quantum Measurement
– Measurement yields only one state X of the

superposed states
– Measurement also makes X the new state and so

interferes with computational processes
– X is determined with some probability, implying

uncertainty in the result
– States cannot be copied (“cloned”), implying that

signal fanout is not permitted
– Environmental interference can cause a

measurement-like state collapse (decoherence)

Quantum Circuit CharacteristicsQuantum Circuit Characteristics



Classical vs. Quantum CircuitsClassical vs. Quantum Circuits

Classical adder

cn–1

s0

s1

s2

s3

cn

a0

b0

a1

b1

a3

b3

a2

b2

Sum

Carry



Classical vs. Quantum CircuitsClassical vs. Quantum Circuits

Quantum adder





Reversible CircuitsReversible Circuits
• Reversibility was studied around 1980 motivated

by power minimization considerations
• Bennett, Toffoli et al. showed that any classical

logic circuit C can be made reversible with modest
overhead

……




n inputs

Generic
Boolean
Circuit

m outputs



 f(i)i …





Reversible
Boolean
Circuit

…



 f(i)

…

…

“Junk”i







“Junk”



• How to make a given f reversible
– Suppose f :i  →  f(i) has n inputs m outputs
– Introduce n extra outputs and m extra inputs
– Replace f by  frev: i, j →  i, f(i) ⊕  j where ⊕  is XOR

• Example 1: f(a,b) = AND(a,b)

• This is the well-known Toffoli gate, which realizes AND
when c = 0, and NAND when c = 1.

Reversible CircuitsReversible Circuits

Reversible
AND
gate

a

b

f = ab ⊕  c

a

b
c

a  b   c    a  b   f
0   0   0     0   0   0
0   0   1     0   0   1
0   1   0     0   1   0
0   1   1     0   1   1
1   0   0     1   0   0
1   0   1     1   0   1
1   1   0     1   1   1
1   1   1     1   1   0



• Reversible gate family [Toffoli 1980]

Reversible CircuitsReversible Circuits

(Toffoli gate)

• Every  Boolean function has a reversible
implementation using Toffoli gates.

• There is no universal reversible gate with fewer than
three inputs





Quantum GatesQuantum Gates
• One-Input  gate: NOT

– Input state: c0|0〉 + c1|1〉
– Output state: c1|0〉 + c0|1〉
– Pure states are mapped thus:  |0〉 → |1〉 and |1〉 → |0〉
– Gate operator (matrix) is

– As expected:
0 1
1 0

 

 
  

 

0 1
1 0

 

 
  

 
=

1 0
0 1

 

 
  

 

NOT

NOTNOT

0 1
1 0

 

 
  

 
0 =

1
0

 

 
  

 
1 =

0
1

 

 
  

 



Quantum GatesQuantum Gates
• One-Input  gate: “Square root of NOT”

– Some matrix elements are imaginary
– Gate operator (matrix):

– We find:

                                      so |0〉 → |0〉 with probability  |i/√2|2 =  1/2

         and  |0〉 → |1〉 with probability |1/ √ 2|2 = 1/2
      Similarly, this gate  randomizes input |1〉
– But  concatenation of two gates eliminates the randomness!

i / 1/ 2 1/ 1/ 2
1/ 1/ 2 i / 1/ 2

 

 
  

 
 =

1
2

i 1
1 i

 

 
  

 

1
2

i 1
1 i

 

 
  

 

1
0

 

 
  

 
=

1
2

i
1

 

 
  

 

1
2

i 1
1 i

 

 
  

 

i 1
1 i

 

 
  

 
=

0 i
i 0

 

 
  

 
NOTNOT



Quantum GatesQuantum Gates
• One-Input gate: Hadamard

– Maps |0〉 → 1/ √ 2 |0〉 + 1/ √ 2 |1〉 and |1〉 → 1/ √ 2 |0〉 – 1/ √ 2 |1〉.

– Ignoring the normalization factor 1/ √ 2, we can write
|xx〉 → (-1)xx |xx〉 –  |1 –– xx〉

• One-Input gate: Phase shift

1
2

1 1
1 −1

 

 
  

 
H

1 0
0 eiφ

 

 
  

 φ



Universal One-Input Gate Sets
• Requirement:

• Hadamard and phase-shift gates form a universal gate  set
• Example: The following circuit generates

  |ψ〉 = cos θ  |0〉 + eiφ sin θ  |1〉  up to a global factor

Quantum GatesQuantum Gates

U|0〉 Any state |ψ〉

2θH H π
2

+ φ



• Two-Input Gate: Controlled NOT
(CNOT)

Quantum GatesQuantum Gates

|x〉

|y〉

|x〉

|x ⊕  y〉
 CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 

 
 

 

 

 

 
 

– CNOT maps |x〉|0〉 → |x〉||x〉 and |x〉|1〉 → |x〉||NOT x〉

|x〉|0〉 → |x〉||x〉 looks like cloning, but it’s not. These
mappings are valid only for the pure states |0〉 and
|1〉

– Serves as a “non-demolition” measurement gate

|x〉

|y〉

|x〉

|x ⊕  y〉



• 3-Input gate: Controlled CNOT
(C2NOT or Toffoli gate)

Quantum GatesQuantum Gates

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|b〉

|c〉

|b〉

|ab ⊕  c〉

|a〉 |a〉



• General controlled gates that control some 1-
qubit unitary operation U are useful

Quantum GatesQuantum Gates

U

u00 u01

u10 u11

 

 
  

 

C(U)

U

C2(U)

U

U

etc.



Universal Gate Sets
• To implement any unitary operation on n qubits

exactly requires an infinite number of gate types
• The (infinite) set of all 2-input gates is universal

– Any n-qubit unitary operation can be
implemented using Θ(n34n) gates [Reck et al.
1994]

• CNOT and the (infinite) set of all 1-qubit gates is
universal



Discrete Universal Gate Sets
• The error on implementing U by V is defined as

• If U can be implemented by K gates, we can simulate U
with a total error less than ε with a gate overhead that is
polynomial in log(K/ε)

• A discrete set of gate types G is universal, if we can
approximate any U to within any ε > 0 using  a sequence
of gates from G

Quantum GatesQuantum Gates

E(U,V ) = max
Ψ

(U − V ) Ψ



Discrete Universal Gate Set
• Example 1: Four-member “standard”  gate set

Quantum GatesQuantum Gates

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 

 
 

 

 

 

 
 1

2
1 1
1 −1

 

 
  

 

H

1 0
0 i

 

 
  

 

S π/8

1 0
0 e iπ / 4

 

 
  

 

      CNOT          Hadamard      Phase     π/8 (T) gate

• Example 2: {CNOT, Hadamard, Phase,
Toffoli}





• A quantum (combinational) circuit is a sequence of
quantum gates, linked by “wires”

• The circuit has fixed “width” corresponding to the
number of qubits being processed

• Logic design (classical and quantum) attempts to find
circuit structures for needed operations that are
– Functionally correct
– Independent of physical technology
– Low-cost, e.g., use the minimum number of qubits or gates

• Quantum logic design is not well developed!

Quantum CircuitsQuantum Circuits



• Ad hoc designs known for many specific functions and
gates

• Example 1 illustrating a theorem by [Barenco et al. 1995]:
Any C2(U) gate can be built from CNOTs, C(V), and C(V†)
gates, where V2 = U

Quantum CircuitsQuantum Circuits

V V† V

=

U



Example 1: Simulation

Quantum CircuitsQuantum Circuits

|0〉

|1〉

|x〉

|0〉

|1〉

|x〉

|0〉

|1〉

|x〉
V V† V

=

U

|0〉

|1〉

V|x〉

|0〉

|1〉

|0〉

|1〉

|x〉

|0〉

|1〉

|0〉

|1〉

|x〉

?



Quantum CircuitsQuantum Circuits

|1〉

|1〉

|x〉

|1〉

|1〉

|x〉

|1〉

|1〉

U|x〉
V V† V

=

U

|1〉

|1〉

V|x〉

|1〉

|0〉

|1〉

|0〉

V|x〉

|1〉

|1〉

|1〉

|1〉

U|x〉

Example 1: Simulation (contd.)

?

• Exercise: Simulate the two remaining
cases



Quantum CircuitsQuantum Circuits
Example 1: Algebraic analysis

U4U2 U3U1 U5U0

V V† V

=

U

?
x1

x2

x3

• Is U0(x1, x2, x3) = U5U4U3U2U1(x1, x2, x3)

               = (x1, x2, x1x2 ⊕  U (x3) )  ?



Quantum CircuitsQuantum Circuits
Example 1 (contd);

U1 = I1 ⊗ C(V)

=
1 0
0 1

 

 
  

 
⊗

1 0 0 0
0 1 0 0
0 0 v00 v01

0 0 v10 v11

 

 

 

 
 

 

 

 

 
 

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v01 0 0 0 0
0 0 v10 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Quantum CircuitsQuantum Circuits
Example 1 (contd);

U2 = U4 = CNOT(x1, x2 ) ⊗ I1

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

 

 

 
 

 

 

 

 
 

⊗
1 0
0 1

 

 
  

 
=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Quantum CircuitsQuantum Circuits
Example 1 (contd);

– U5 is the same as U1 but has x1and x2 permuted (tricky!)
– It remains to evaluate the product of five 8 x 8 matrices

U5U4U3U2U1 using the fact that VV† = I and VV = U

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 v00 v01 0 0
0 0 0 0 v10 v11 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v10 0 0 0 0
0 0 v01 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v10

0 0 0 0 0 0 v01 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 v00 v01 0 0 0 0
0 0 v10 v11 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00 v01

0 0 0 0 0 0 v10 v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 v00v00 + v10v10 v00v01 + v10v11

0 0 0 0 0 0 v01̀ v00 + v11v10 v01v01 + v11v11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= U0



Quantum CircuitsQuantum Circuits
• Implementing a Half Adder

– Problem:  Implement the classical functions sum =
x1 ⊕  x0 and carry =   x1x0

• Generic design:
|x1〉

Uadd
|x0〉

|y1〉

|y0〉

|x1〉

|x0〉

|y1〉 ⊕  carry
|y0〉 ⊕  sum



Quantum CircuitsQuantum Circuits
• Half Adder: Generic design (contd.)

UADD =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Quantum CircuitsQuantum Circuits
• Half Adder: Specific (reduced) design

|x1〉

|x0〉

|y〉

|x1〉

|y〉 ⊕  carry

sum C2NOT
(Toffoli)

CNOT



Walsh Transform for two binary-inputWalsh Transform for two binary-input
many-valued variablesmany-valued variables

+

-
+

-

+

-
+

-

You need a
butterfly

•H

Classical logic Quantum logic

•H

Butterfly is created
automatically by
tensor product
corresponding to
superposition

•minterms

Variable 1 Variable 1



Portland Quantum
Logic Group
(PQLG)
What we do?



People at PSU and collaboratorsPeople at PSU and collaborators
• Marek Perkowski
• Martin Zwick
• Xiaoyu Song
• William Hung
• Anas Al-Rabadi
• Martin Lukac
• Mikhail Pivtoraiko
• Andrei Khlopotine
• Alan Mishchenko (University of California, Berkeley, USA)
• Bernd Steinbach (Technical University of Freiberg, Germany)
• Pawel Kerntopf (Technical University of Warsaw, Poland)
• Mitch Thornton (Southern Methodist University, Dallas, USA)
• Lech Jozwiak (Technical University of Eindhoven, The Netherlands)
• Andrzej Buller (ATR, Kansai Science City, Japan)
• Tsutomu Sasao (Kyushu University of Technology, Iizuka, Japan).



Current ProjectsCurrent Projects
• Logic Synthesis for Reversible Logic

– decomposition
– Decision Diagram Mapping
– composition
– regular structures - lattices, PLAs, nets

• Logic Synthesis for Quantum Logic
• Quantum Simulation using new Decision

Diagrams

4 papers
published

paper
submitted



Current ProjectsCurrent Projects
• FPGA-based model of Quantum

Computer
• Reversible FPGA using CMOS.
• Realization of new spectral transforms

using quantum logic.
• Non-linear Quantum Logic solves NP

problems in polynomial time.
• Quantum-inspired search algorithms

for robotics



Where to learn moreWhere to learn more
• Web Page of Marek Perkowski

– class 572 - see description of student projects
– Portland Quantum Logic Group

We are open toWe are open to
collaboration and wecollaboration and we

want to growwant to grow



Automated Synthesis ofAutomated Synthesis of
Generalized ReversibleGeneralized Reversible
Cascades using GeneticCascades using Genetic

AlgorithmAlgorithm



AgendaAgenda
• Introduction and history
• Reversible Logic and Reversible Gates
• Genetic algorithms
• The Model
• Simulation
• Conclusion



Reversible gates…Reversible gates…
Feynman, Toffoli, Fredkin, …

A

B

P A

Q P B

=

= ⊕

Mapping of I/O allows
unique (P,Q)⇒(A,B)

and Reversible Circuits

•To reduce the RL synthesis limitations one
can insert constants in order to modify the
functionality



Generalized Reversible GatesGeneralized Reversible Gates

n - inputs

SS

BB
PP
QQ

ff

AA

RR

DD

CC

AA

BB
PP
QQ

CC RR

ff

SS

BB
PP
QQ

ff

AA

RR

DD

CC

ff
ff ff

A

B

C

A

B

C

0

1

0

1



Perkowski gates familyPerkowski gates family



• Mixed data/control inputs (generalized complex control gates)
• All :

• ESOP
• Factorized-ESOP
• MV Complex Terms
• XOR family

�Example:



Genetic algorithmsGenetic algorithms

•Population of n individuals

•Chromosome variable length

•Parallel blocks

•Classic GA’s operators

Individual

Population

1 32 4 5 6 7

 2

W
 I
 P

 P

 P
 C
 P
 2

 I
 2

 I
 2

 3
 P

  F
 P
 P

I
 S
 W

 P



Encoding & operationsEncoding & operations

22   C  C  I I  /P  /P  I I /P/P  2 2/P/P   /P  /P

22  I I  I I  /P  /P  I I /P/P/P/P   /P  /PWW  2 2

22   I  I /P/P  W  W /P/P IIII /P/P/P/P /P/P

22  C C  I I  /P  /P  I I /P/P/P/P  I I WW 22/P/P   /P  /P /P/P

22   C  C   /P  /P  2 2/P/P

22   C  C  I I  /P  /P  I I /P/P  2 2/P/P   /P  /P/P/P   W  W   I  I /P/P

Mutation

C-O

22    I   I   W  W /P/P/P/P IIII /P/P/P/P II WW 22  /P  /P   /P  /P



Circuit EncodingCircuit Encoding

4 /PWT/P /PFII/P /PFF/P

Toffoli

Wire
Feynmann

Inverter

Inverter

Feynmann

Feynmann

Circuit LUT
representation

Toffoli

Feynmann

Inverter
Inverter

Feynmann

Feynmann

Wire



GA’s settingsGA’s settings
• Stochastic universal sampling
• Fitness:

�Error:

�Error evaluation:
-comparison
outputs / LUT
-Permutations of
all constants and
inputs
-Normalization of
error by wires
and patterns
-Penalization for
length

�LUT for
Fredkin
gate:



OverviewOverview

Best gates
Best Circuits

CircuitsReproduction

Experimental
(unitary matrices)

SegmentsCross-Over*

Position
(block/circuit)

Gates
Blocks

Mutation

* - for circuits having only same number of I/O



Experimental settingsExperimental settings

• Each input is equivalent with any
other

• Evolving new circuits by
recombination

• Non specific conditions
• Population 100-150
• Mutation = 0.01 –1
• Crossover = 0.3 – 0.8
• Specifications:

– Genetic operations based on
RCB > minimal element

– The noise in these experiments
is not only a mutation but an
random operator on random
blocks !!!

Fredkin, Toffoli3

Feynman, Swap2

Margolus4

Wire, Inverter1

GatesNumber of wires



TestingTesting
-No starting set restriction

-Mutation only on blocks

Unitary gate searchUnitary gate search

Random function searchRandom function search



ImprovementsImprovements
• Using min(ESOP(F⊕ G)) for fitness
• Lamarckian learning

• One genotype ⇒ multiple possibilities of phenotype
• Using to minimize Exorcism-4



Circuit searchCircuit search
-Starting set restriction

-Mutation all levels (0.01 – 0.1)

0/*120 sec?/200,000Adder
*/*05/1Fredkin

*/*05/1Toffoli

Exact/s
imilar

R.T.# of Gen.Circuit/Gate



ConclusionConclusion
• Ideas:

• Using GA to evolve arbitrary Reversible Circuit
• Specific Encoding helps the evolution
• Alternative encoding presented

• Future works:
• Apply Lamarckian GA and other new variants of evolutionary approaches
• Create hybrid algorithms by mixing evolutionary and logic-symbolic

methods
• Use new representations such as permutations and decision diagrams
• Use Logic minimizer to minimize the ESOP expression of the circuit

•• THIS IS WORK IN PROGRESS, EVERYBODYTHIS IS WORK IN PROGRESS, EVERYBODY
IS WELCOME TO JOIN.IS WELCOME TO JOIN.

•• PublishingPublishing


