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Classical Logic Circuits

Circuit behavior is governed implicitly

by classical physics

Signal states are simple bit vectors, 

e.g. X = 01010111

Operations are defined by Boolean Algebra



Quantum Logic Circuits

Circuit behavior is governed explicitly
by quantum mechanics

Signal states are vectors interpreted as a 
superposition of binary “qubit” vectors with 
complex-number coefficients

Operations are defined by linear algebra over 
Hilbert Space and can be represented by unitary 
matrices with complex elements



Signal state (one qubit)
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More than one qubit

If we concatenate two If we concatenate two qubitsqubits

( )10 10 αα + ( )10 10 ββ +

We have a 2We have a 2--qubit system with 4 basis statesqubit system with 4 basis states

0000 = 0110 = 1001 = 1111 =

And we can also describe the state as And we can also describe the state as 
11100100 11011000 βαβαβαβα +++

Or by the vectorOr by the vector
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Quantum Operations

Any linear operation that takes statesAny linear operation that takes states

satisfyingsatisfying

and maps them to statesand maps them to states

satisfyingsatisfying

must be UNITARYmust be UNITARY
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Find the quantum gate(operation)

From upper statementFrom upper statement

We now know the necessitiesWe now know the necessities

1. A matrix must has inverse , that is 1. A matrix must has inverse , that is reversible.reversible.

2. Inverse matrix is the same as      .2. Inverse matrix is the same as      .

So, reversible matrix is good candidate for quantum gateSo, reversible matrix is good candidate for quantum gate
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Quantum Gate

One-Input gate: Wire 

10 10 cc +
WIREWIRE

By matrix
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Quantum Gate

One-Input gate: NOT

10 10 cc + 10 01 cc +
NOTNOT

By matrix
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Quantum Gate

Two-Input Gate: Controlled NOT (Feynman gate)
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Quantum Gate

3-Input gate: Controlled CNOT (Toffoli gate)
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Quantum circuit
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