

Multi-Level Programmable Array

20023179 Kim, Hyung ock

Inroduction

□ Regular Structures

- Why? Easy to P&R(almost no need to P&R)
- Examples
 - PLA like
 - Binary Tree base
 - Lattice Diagram
 - Better solution than UAA
 - UAA is treated as attempt to combine PLA-like and tree-like

Inroduction

- This Presentation is composed as following
 - Intro to Lattice Diagram
 - MOPS for multiple-out Lattice Diagram
 - Generalized architecture for MOPS

1. Intro to Lattice Diagram

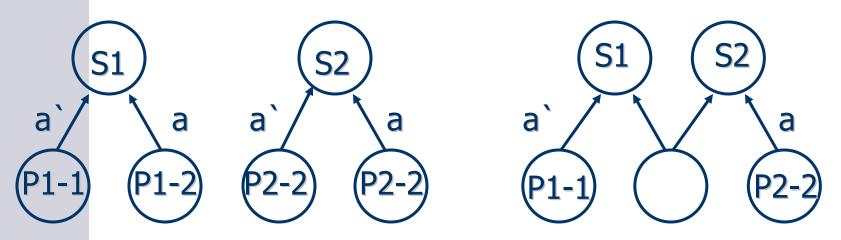
Chacteristics

- Like Tree and similar to BDD.
- BDD has combined predecessors if and only if predecessors in the same level is equal.
- But Lattice Diagram has always combine neighbor predecessors by some Rule. It occurs repetition of control variables.
- Although BDD grows horizontally, Lattice grows vertically by the repetition of variables...
- BDD and Lattice Diagram is made of MUX.

1. Intro to Lattice Diagram

Combining Rule

Basic rule is the combining of two predecessors by XOR



(a AND P1-2) XOR (a' AND P2-1)

 More rule and method are introduced in "LATTICE DIAGRAMS USING REED-MULLER LOGIC" by Perkowski

Some problems in Lattice Diagram

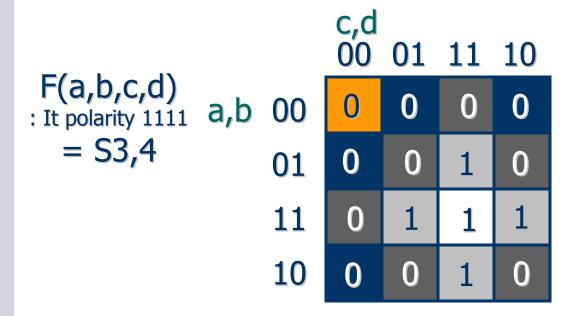
- Repetition of control variable
 - It increases vertical depth.
 - This problem controlled by variable ordering.
- In the case of multi-output func
 - Ordering is not easy to be performed
 - There is quite waste for one block
 - And Partitions generate big empty subareas
 - Not good method, it leads to horizontal growth.

□ Functional Decomposition

- Basic conception is to divide function to subfunctions
- There are some decomposition methods
 - AND Decomposition, OR ~, Decomposition with Mux
- Multi-output func can be decomposed by symmetric func
 - Multi-output func can be composed of Boolean operation(AND, OR, EXOR) of symmetric funcs.
 - Because of no repetition of variable in symmetric func, this method is very nice to reduce vertical depth.

■ What is symmetric func?

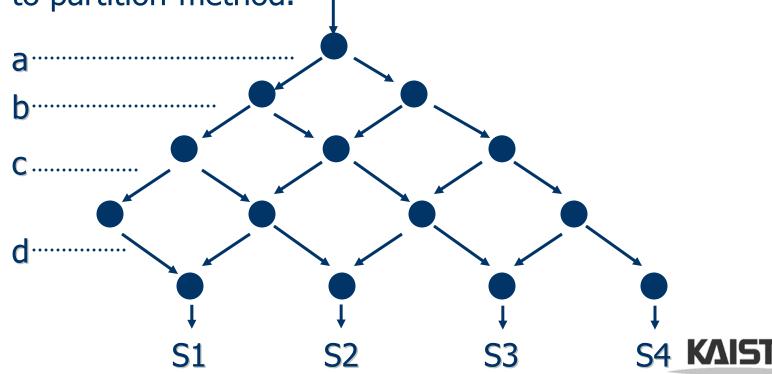
- All minterms that have same number of ones in their binary number have same value(zero, or one).
- Eg



■ MOPS for 4-variables

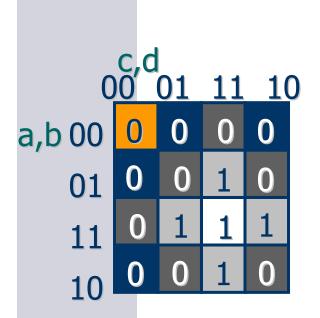
 MOPS is one diagram but it can express all symmetric func which has same polarity

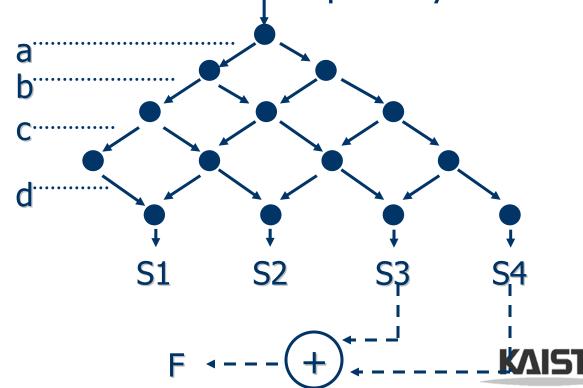
 So that reason, it reduces horizontal width compare to partition-method.



■ Examples of using MOPS

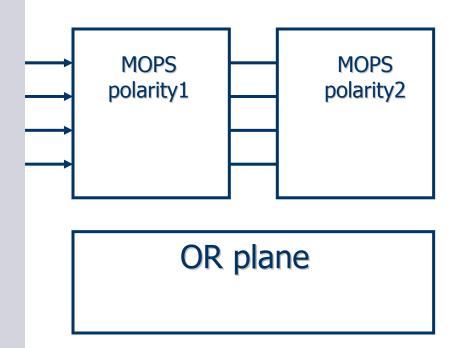
- $F = (\sim b \text{ XOR } \sim d) \text{ OR } (a \text{ XOR } c) \text{ OR } (abcd)$
 - → It is decomposed to two symmetric functions S3, S4 that have same polarity





3. Generalized architecture for MOPS

- Every multi-output Boolean func can be decomposed to vector-OR of symmetric func of variable polarity
 - Each MOPS has same control variable but different polarity
 - Outputs of two MOPSes are combined in OR plane



3. Generalized architecture for MOPS

- Every multi-output func with subset SVi, i= 1~k of mutual symmetric variables can be decompsed to serial composition of K MOPS arrays followed by AND/OR plane.
 - F(SV) = f1(SV1) OR f2(SV2) ... OR fk(SVk)
 - Each fi(SVi) is symmetric, it can be expressed by one MOPS

