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Abstract

Finding the minimum column multiplicity for a bound set
of variables is an important problem in Curtis decomposi-
tion. To investigate this problem, we compared two graph-
coloring programs. one exact, and another one based on
heuristics which can give, however, provably exact results
on some types of graphs. These programs were incorporated
into the multi-valued decomposer MVGUD. We proved that
the exact graph coloring is not necessary for high-quality
functional decomposers. Thus we improved by orders of
magnitude the speed of the column multiplicity problem,
with very little or no sacrifice of decomposition quality.
Comparison of our experimental results with competing de-
composers shows that for nearly all benchmarks our solu-
tionsare best and time is usually not too high.

1. Generalized Curtis Decompositions

The decomposition method formulated by Curtis [10] has been

widely used for multi-level realizations of single-output Boolean
functions and gives better results than factorization. It found many
applicationsin multi-level FPGA synthesis, VLSI design, Machine
Learning (ML) and Data Mining. In an innovative approach to Fi-

nite State Machine design [7, 19, 16], the design starts from tem-
poral logic constraints, from which a canonical representation
of the non-deterministic machineis automatically created in the
form: F = F(x(t),x(t—1),..x(t—r),y(t—1),y(t—2),..y(t—Vv))
(shown here with single input x and single output y for simpli-

fication), where x(t — 1) is the value of signal x in the previous
clock pulse. Thefunction (relation) F is next hierarchically decom-
posed[23, 6] using generalized Curtis decomposition. Thisrelation

hasmany inputs, outputs and terms, and isstrongly unspecified; the
problemis thus very complex.

The slow speed of the algorithms is the reason that the
decomposition-based design methods are not yet as popularly used

in EDA tools asthey deserve, especially for efficient FSM design.

Therefore, creating decomposers that are both efficient and effec-

tive is important. Two-level Curtis method decomposes function

F asfollows: F(X) = H(G(B),A) wherefunctions G, H, F can
be all multi-output. Set of input variables X is first partitioned
to the set of bound variables B and the set of free variables A
(sets A and B can overlap in the so-called "non-disjoint decompo-
sitions”, then sets A and B are formally a coverof set X, we will

keep the name partition for uniformity). The set of bound vari-
ablesis called the bound setand the set of free variablesis called

thefree set Thereexist somemethodsto find set PAR of good par-

titionings of set X to setsA; and B; [22], but they are not a subject of
this paper. Then each set (Aj,Bj) is tested for decomposition. For
some of these subsets (A, B;) there exist decompositions, for some
other there are no Curtis decomposition. Some of the existing de-
compositions are also evaluated as better than others using certain

cost functions When the set (A, B;) isfound that its correspond-
ing decomposition is evaluated as having the smallest cost for al

subsets of PAR, functions G; and H; are actually created from F.
This two-level decomposition procests next recursively applied
to new functions H; and Gj, until small functions G; and H; are
created, that are not further decomposabl e (such functions arereal-

ized by CLBs or standard cells). Thus, the Curtis decompositionis
multi-level, and each two-level stage should create the candidates
for the next level decompositions, that will be as well decompos-
ableaspossible. Currently there exist no provably exact algorithms
to find sufficiently good sets of partitions that would guarantee that
the best two-level decompositionisnot lost. Thus, if the presented
below stages of the two-level decomposition were faster, the algo-
rithms that generate larger sets PAR of pairs (A, Bj) could be used,
thus giving a higher chance of arriving at the minimum cost (i.e.,
best) decomposition. In Curtis decompositions, the primary god is
typically to minimize, in anumber of steps, the total complexity of
the hierarchical multi-level realization of agiven function, relation
or (non-deterministic) machine. In our case, by the best decompo-
sition we understand one that minimizes the value of DFC. DFC
or Decomposed Function Cardinalityis the total cost of blocks,
where the cost of a (binary) block with n inputs and m outputs is
2"+ m, [23] (we use DFC because our research is mostly based on

decompositionsfor VLS| layout generation and Machine L earning;

most authors are interested in FPGASs and use the total number of
Look-Up table blocks as the cost function; for instance, XC3000
CLB of Xilinx hasa DFC cost of 2% = 32).

The two-level Curtis decomposition algorithm can be summa-
rized asfollows.

STEP_1. Find, using algorithms not described here, set PAR of
"good pairs’ of sets (A, B;) (set PARisusually large, but still much



smaller than the total number of partitions, or two-block covers, of
set X).

STEP2. For each pair of sets (A;,B;) find decomposition
F(X) = Hi(Gi(Bi), Ai) suchthat thevalue; of thecolumn multi-
plicity index is(quasi)minimum. Themultiplicity index isequa to
the number of values of amulti-valued variable G. This meansthat
when a binary encoding with the minimum number of bitsis used,
it creates the minimum number of wires from block G to block H.
Minimizing the number of these wiresisthe heuristic of Curtis de-
composition. If the number of binary signals going out of block
G is not smaller from the number of binary signals going into G,
then it is considered that the Curtis decomposition does not exist.
The multiplicity index is equal to the minimum number of com-
patible groups of columns in a Karnaugh map with cofactors for
bound set variables as columns, and free set variables as rows. A
column is the same as a single cofactor of a bound sef a row
is the same as a cofactor of the free set The multiplicity index
isusually found as follows. An incompatibility graph is created
with initial columns as nodes and their incompatibility relations as
edges. If two columns are incompatible, which meansif they can-
not be combined to one column, there is an edge between the re-
spective nodes. Because columns f and f; are cofactors on the
bound set, they can be combined together (i.e., are compatible) if
they constitute an incomplete tautology fi = f|. A popular method
to find the minimum multiplicity index isto find a (quasi)minimum
coloring of theincompatibility graph using somegraph-coloring al-
gorithm (graph coloring is an NP-complete problem, and even its
provable-quality approximation version is NP-complete [13]). The
multiplicity index pfoundis equal to the number of different colors
used and it is not smaller than the chromatic number x, 1 > X.
(n = ¥ for exact coloring). All columns colored with the same
color correspond to a mutually compatible set of cofactors.

If during the creation of the graph it isfound that apartial graph al-
ready hasaclique with more nodesthan the previously found value
of p, than the creation is not completed and the next set (A, B;) is
tested (it is obviousthat the clique sizeisthe lower bound of x). If
during or after coloringit is found that the current number of colors
or p exceeds the previous minimum value of the multiplicity index
Hopt, it is discarded, and the next set (A, B;) istested.

STEP_3. From the set of groups of compatible columns functions
G; and H; are quickly found, and their DFC is counted. The de-
composition with DFC higher than the minimum previous val ue of
DFC isdiscarded.

Observe that the decomposition F = H(G(B;),Ai) is repeated for
al sets (A, B;) until the best set (A;, Bj) is found for which the
decomposition with the smallest DFC cost exists. By minimizing
first the column multiplicity index and next the DFC, we also pre-
serve, or evenincrease, the number of don’t caresfor the successive
decompositionsteps. Thus, it is of high importance that this step
is as fast as possible and at the same time gives the valuejof
that is close toy.

Becausetwo-level decompositionstageisrepeated very many times
on all second, third, etc. levels, the stages of graph creation and
graph coloring in STEP_2 must be thoroughly designed. They are
very important to the overall success of a Functional Decomposer
program, because a high percentage of the run time of the Func-
tional Decomposer is spent on the Column Minimization part of
Decomposition [22, 23]. One needsthus: (1) to create the graph
quickly [6], (2) to color the graph quickly, but also the result
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Fig. 1. Example showing howDOM colors a reducible graph

should be as close to minimum as possiblélere, we want to find
out what is the role of Column Minimization in the overall success
of a Decomposer; especialy, in terms of the calculation time, the
memory usage, and the quality of results. We want to investigate
how the answersto these questions depend on the type of data, for

instance on the percent of don’t cares, or on the density of graphs
in question.

There are basically four methods to find the Column Multiplic-
ity in Functional Decomposition, namely Set Covering, Graph
Coloring, Clique Partitioning and Clique Covering. A rela
tion between the columns of the Karnaugh map of a function,
for a given bound and free sets can be represented as a Com-
patibility Graph or as an Incompatibility Graph. If represented
as a Compatibility Graph, nodes which are connected together
are compatible nodes and can be colored with the same color.
This is caled Clique Covering. Even though there has been a
lot of research done in the field of Graph Coloring and Func-
tional Decomposition, nobody, to our knowledge, has compared
these methods, or evaluated the importance of finding minimal so-
lutions to the problem of Column Multiplicity in the Curtis De-
composition. There exist hundreds exact and heuristic graph-
coloring and clique finding algorithms in the literature, to mention
just [1, 2, 3,4, 5,9, 11, 12, 13, 14, 17, 20] and in the past we
programmed and compared several of them [8, 21, 22, 23, 25]. Al-
though we are not able to study all published papers, we did not
find an agorithm similar to our agorithm DOM), which is very
fast, and gives good results. It usesdomination coveringsto color
the graph and makes use of the fact that many graphs are colored
with known values of popt. (The names domination and covering
are used here with different meanings than in Graph Theory). In
result, we obtain very high quality decompositions quite quickly,
which positions our decomposer on top for nearly all tested by us
benchark functions, not only from ISCAS and MCNC benchmarks,
but also for KDD, Data Mining and ML benchmarks from U.C.
Irvine and Wright Labsthat have very high percent of don't cares.
(Moreover, our method is for multi-output decompositions, which
alowsto useit also for FSMs|[7, 19, 16]).



Remove node 1

€]
® ® o
© 3and5
e‘ ® pseudo-
@ covering
© (d) ©

Fig. 2. Example showing howDOM colors a non-reducible graph

2. A New Algorithm DOM for Graph Coloring based on
Domination Covering

Definition 1 A node “A” in an incompatibility graptcovers some
other node “B” in the graph if all of the following are satisfied:

1) Node “A” and node “B” have no common edge.

2) Node “A” has edges with all the nodes that node “B” has edges
with.

3) Node “A” has at least one more edge than node “B".

When two nodes have a covering then both the nodes can be colored
with the same color.

Definition 2 If conditions 1) and 2) for coverings are satisfied and
node “A” has the same number of edges as node “B”, then it is
called apseudo-covering.

Theorem 1 If any node “A” in a graph coversany other node “B”
in the graph, node “B” can be removed from the graph, and in a
pseudo-covering any one of the nodes “A” or “B” can be removed.

Definition 3 A Complete graph is one in which all pairs of vertices
are connected.

In a complete graph, total_edges= mw, where
total_edgess the sum of all the edgesin the graph. In a Com-
plete Graph no coverings or pseudo-coveringscan be found and all
nodes must have unique colors. Fig. 1d shows a complete graph
with 4 nodes.

Definition 4 A non-reduciblegraph is a graph that is not complete
and has no covered or pseudo-covered node(s).

Graphs from Fig. 1ab,c are reducible. The graph from Fig. 2ais
non-reducible. Graphsfrom Fig. 2b,c arereducible, and graph from
Fig. 2d is complete.

Theorem 2 If a graph is reducible and can be reduced to a com-

plete graph by successive removing of all its covered and pseudo-

covered nodes, then Algorithm DOM finds the coloring with the
minimum number of colors (the exact coloring).

Our approach to the Column Minimization Problem in Functional
Decomposition is the following: For an arbitrary graph, it is as-
sumed that the graph is reducible and the DOM algorithm is used.
If it finds a solution by subsequent reduction and arrives at a com-
plete graphwithout generating anon-reducible graph, we know that
this solution is exact If a non-reducible graph is generated, we
color and remove a randomly selected node. The removal makes
the graph reducible - in such case we have no proof of optimality,
but still a good coloring is found if only few non-reducible graphs
were consecutively converted to reducible graphs by the removal
of nodes. Thus, if the characteristics of graphs of some class is

that only few non-reducible graphs are created by DOM, this class
is well-colorable by DOM. The number of removals is the upper
bound on the difference p — X.

The following explains how DOM colors a reducible graph. [1.]

Fig. 1(a) shows an Incompatibility Graph. Nodes 2 and 7 are cov-
ered by node 1, so in Fig. 1(b) nodes 2 and 7 are removed and it

is remembered that they were covered by node 1. [2.] Next, in
Fig. 1(b) node 5 is removed as it is covered by node 4, and it is
remembered that node 4 covers node 5. [3.] After removing node
7 the resulting graph shown in Fig. 1(d) is a complete graph. [4.]
In Fig. 1(e), each node in the Complete Graph is given a unique
color. [5.] In Fig. 1(f) the covered nodesare colored with the same
color as the covering node. The color assignments are: Color A

{1, 2, 7}, Color B {3}, Color C {4, 5}, Color D {6 }. Fig. 1(e)
showsthe completely colored graph. Four colors were used which
isthe minimum required for thisgraph. (L = X, exact solution was
found).

Example showing how DOM colors a non-reducible graph. [1.]

An incompatibility graph is shown in Fig. 2(a), This graph is not
reducible. [2.] Asthefirst step the graph is checked for coverings,
but no coverings are found in this graph, so thefirst node (random)
is removed from the graph, which is node 1, and it is assigned a
minimum possible color which in this case is color A. [3.] This
results in a new graph, shown in Fig. 2(b). In this graph node 4
coversnode 2 and node 6. So node 2 and node 6 are removed from

the graph, and it is remembered that node 4 coversnode 2 and node
6. [4.] On removing node 2 and node 6, in the resulting graph
shown in Fig. 2(c) nodes 3 and 5 have a pseudo-covering so the
first one of these nodeswhich is node 3 is removed, and then node
4, 5, and 7 form a complete graph. The completegraphis shownin
Fig. 2(d). [5.] Now nodes are colored with the minimum possible
color, and each covered node is given the same color as the node
which covered it. The coloring is shownin Fig. 2(e). Three colors
were used to color the graph, which is the minimum required for
this graph. The color assignmentsare: Color A {1, 3, 5}, Color B
{7}, Color C{2, 4, 6}.

In the example like this no proof of exact solution can be given
but only few consecutive graphs (here, only the initial graph) were
non-reducible, so the solution is of a good quality (here, p differs
by not more than one colorfrom x). We showed experimentally
elsewherethat DOM departs from the exact minimum for large ran-
dom graphs, but we will demonstrate experimentally here that it
will perform well in most cases on real-life benchmarks from de-
composition. One weak point of the algorithm is when no cover-
ings or pseudo-coverings are found at any stage of the coloring,

then anode is selected and assigned a minimum possible color. If

the coloring of this nodeis a bad choice, it will result in asolution
whichisnot minimal. But experiments show that such complicated
graphs(worst case graphs) will rarely, if ever, occur during the Col-
umn Minimization steps of decomposition, which is our applica-
tion. When x is equal or slightly higher than the size of the max-
imum clique, which is the case in our graphs, the results are very
good. The strong point of DOM is that it can find the minimum
solution without backtracking in all cases when the graph which
results after checking for coveringsis a complete graph. Thusthis
program will be effective in finding the minimum solution in al
reducible graphs. Observethat if, for instance, p= 7 is found and
the x = 6, then still only 3 wires (23 > 7) are needed for output of
block G, so the only loss of non-exact coloring is one column of



Comparison of EXOC, DOM and CLIP on MCNC Benchmarks
Bnch i o c Al C n Av T(9 NP TC AC
bl E%
xpl 7 10 | 143 E 344 17 63 2006 28 123 44
C 344 17 29.5 28 123 44
D 344 17 29.9 28 123 4.4
Osym1 9 1 158 E 9% 3 - 108 11 54 49
C 9% 3 55.2 10 52 52
D 64 3 47.3 11 54 4.9
b12 15 9 172 E 284 25 15 87 130 389 3
C 284 | 25 57.1 132 387 29
D 284 | 25 46.4 130 389 3
lbw 5 28 97 E 560 56 55 51 115 361 314
C 560 56 50.9 115 361 3.14
D 560 56 48.7 115 361 3.14
lex5p 8 63 | 214 E - - - - - - -
C 2472 186 565 8 35 44
D 2472 | 186 516 8 35 4.4
Imisex1 8 7 40 E 400 19 60 318 589 1831 31
C 388 19 247 587 1816 31
D 400 19 225 589 1831 3.1
rd53 5 3 63 E 80 6 63 5.4 8 26 325
C 80 6 47 8 26 325
D 80 6 4.9 8 26 3.25
rd73 7 3 274 E 160 6 72 46.6 10 38 38
C 160 6 41.6 10 38 338
D 160 6 47.2 10 38 3.8
rda4 8 4 515 E 220 12 189 23 75 33
C 220 12 127 24 80 33
D 208 12 131 24 75 3.3
lsa02 10 4 133 E 416 12 67 4238 52 337 6.5
C 416 12 124 52 337 6.5
D 416 12 121 52 337 6.5
Isquar5 5 8 56 E 200 16 59 124.8 31 94 3
C 200 16 10.2 31 94 3
D 200 16 10.5 31 94 3
xor5 5 1 32 E 20 2 53 11 2 4 2
C 20 2 12 2 4 2
D 20 2 1.0 2 4 2
able

A Comparison of results obtained by running MVGUD with 4
variables in the Bound Set on MCNC Benchmarks

Summary of Results of Comparison of the Total Colors
Total Number of Program Runs = 46
DOM CLIP
B=2 B=4 B=5 B=2 B=4 B=5

N % [NJ % [NJ % [NJ % [Ng % NG %
Exact 46 100 97.8 (41 89.1| 3 66.1| 2p 43.5( 14 30.§
Errorl |- - |1 21 |3]| 65|8] 174|13 28.3[1] 239
Error 2 - - |1 21 |4] 86 |5 108]|13 26.1
Error3 | - - - - - |1] 21 |8] 174[3] 65
Errord | - - - - |1f 21 ]1] 21 - - | 3] 65
Error5 |- -1 - -] - 2( 43
Error 6 B 1] 21

able 2

A Comparison of Total Colors generated byDOM, and CLIP
compared with total colors generated byEXOC on the same graphs for
two, four and five variables in the Bound Set for ML Benchmarks

don't cares, instead of two columns of don’t cares in case of exact
coloring with p= x. Let us make a point that in both cases the
number of new wires (functions) created is the minimum and the
same (here, 3).

3. An Evaluation of DOM on the Column Multiplicity
Problem

In this section we will evaluate the importance of an Exact Graph
Coloring in Curtis Decompositions. Our aim isto investigate if an
Exact Graph Coloring isrequired in Functional Decomposition and
if it leadsto better results on the graphsthat are created from prac-

Sum of Table 1
Total Number of Program Runs = 138
DOM CLIP
[Total Numbeq Total % Total Numbej Total %}
Exact 132 95.6 66 47.8
Error 1 4 28 33 239
Error 2 1 0.7 21 15.2
Error 3 - - 12 8.7
Error 4 1 0.7 4 2.8
Error 5 - - 2 14
Error 6 - - 1 0.7
Table3

A Summary showing the Addition of the Total Colors obtained in
Table 2

tical function benchmarks. We instantiated three algorithms into
MVGUD, a Greedy Clique Partitioning (CLIP), the Dominance
Graph Coloring (DOM) and the Exact Graph Coloring(EXOQ.
The decomposer was run with different numbers of variables in
the Bound Set on two kinds of benchmarks: MCNC benchmarks
for circuits (presented below), and ML Benchmarks (from the
Wright Labs Database) for datafrom ML, Pattern Recognition and
Knowledge Discovery in Data Bases.

A comparison of DOM and EXOCwasfirst done on randomly gen-
erated graphs, for varying number of nodes and varying percentage
of edges (not shown because of alack of space). Conclusionswere
reached about how well DOM and EXOCwill perform on the dif-
ferent kinds of graphs. Tests were doneto characterize the kind of
graphsthat are generated in decomposition with regard to the num-
ber of nodes in the graph and the percentage of edgesin the graph
inorder to seeif the same conclusionshold for the graphsgenerated
during Functional DecompositionF = H(G(B),A).

Whether the method used by MVGUD to calculate DFC is a good
evaluation of the cost of the decomposed multi-valued blocksis not
discussed here, but since the DFC is used for a comparison be-
tween different methods of calculating the Column Multiplicity in
Decomposition, within the same decomposer, the method of calcu-
lation of the DFC does not matter for the purpose of evaluating
algorithms for calculating column multiplicity. What matters is
that the same method is used for al the algorithms that are com-
pared. The goa of the testing isto seeif an Exact Graph Coloring
isnecessary to calculate the Column Multiplicity in Functional De-
composition, and if the DFC can beimproved in casethat MVGUD
is run with EXOG in comparison to when it is run with DOM or
with CLIP. MVGUDwastestedwith 2 - 5, and more variablesin the
Bound set (only some results are reported here because of space).
Notations Used in the Tables. The following is an explanation
of the Notations used in the Tables in this section: Bnch : Name
of the Benchmark function; i: Number of inputs of the Bench-
mark; o: Number of outputs of the Benchmark; ¢: Number of
cubes in the Benchmark; C: Decomposed function cardinality of
the decomposed function; Al: Name of Algorithm usedin MVGUD
(E=EXOC, D=DOM, C=CLIPS); n bl: Number of multi-valued
blocksin the decomposedfunction; NP: Number of passesr num-
ber of times the function to calculate the column multiplicity was
caled; TC: Total Colors iterative sum of colors generated for each
pass; AC: Average Colors TC/NP; T(s): User timein seconds.

A comparisonwasfirst made by running MVGUD with 2 variables
in the Bound Setfor EXOC DOM and CLIP. Comparisons were
made with respect to the DFC, the number of two-input gates in
the final decomposed function, and the time taken by MVGUD to
decomposethe function. DOM provides a smaller DFC in 6 cases
and CLIP providesasmaller DFC in 5 cases, while EXOCprovides
atie with the best solution in 6 of the cases. Hence EXOCdoes not
provide any real improvement, on the other hand it is much slower
than CLIP and DOM, which is to be expected. The reason for this
kind of resultsisthat sincein this experiment thereare 2 variablesin
the Bound Set, in most cases the size of the Incompatibility Graph
at different levels of the decompositionis4, whichisasmall graph,
and it is known that for small graphs both CLIP and DOM usually
generate the best solution as well. Hence we conclude that for two
variables in the Bound Set it is not worthwhile having an Exact
Graph Coloring to calculate the Column Multiplicity in MVGUD,



and agood heuristic algorithm to calculate the Column Multiplicity
is sufficient.

Table 1 shows the result for 4 variables in the Bound Set. Av
E% was calculated to see how dense or sparse the graphs gen-

erated during the decomposition are. This was calculated in the
following way: For any graph with number of nodes = n, the
total_possibleedgesfor this graph( 100% edges ) will be equa

to n+ (n— 1)/2. Henceif the number of edgesin the graphis equal

to e, then the edgepercent= (ex 100) /total possibleedgesThis
will give the edgepercentin a graph with n nodes and e edges.

Since the decomposer calls the function to calculate the Column
Multiplicity anumber of times, the Av E%was cal culated by adding
the edgepercentfor agraph each time the function to find Column
Multiplicity was called, and then dividing this total by the num-
ber of times the function to calculate the Column Multiplicity was
caled. EXOQE), DOM(D) and CLIP (C) generate the same re-
sultsin all the casesin terms of DFC and number of CLB’s. The
reason for the slow times of MVGUD with EXOCcan be explained
as follows: when MVGUD is run with 5 variables (not shown) in
the Bound set, in most cases the average number of nodesin the
graphis 32 and the edge percentageis always high with the highest
being 77% and the lowest being 46.1% This meansthat the graphs
generated during decomposition were nearly always (since this is
an average) dense graphs. It was found experimentally on random
graphsthat for densegraphsEXOCtakesalong time to find the Ex-
act solution, hence we have such slow times for EXOC Whenever
DOM does not generate an exact solution, it isusually 1 or 2 colors
away from the Exact solution and rarely more than that, and this
being on randomly generated graphs. Now considering that there
were 5 variablesin the Bound Set, then the Incompatibility graph
will have 32 nodes, and for a Curtis decompositionto exist, if acol-
oring of the graph with 16 colors or less is found then one exists.
In a Table for 5 variables in the column for Average colors AC we
would find that the largest average color is 7.65 for the benchmark
sao2 But this means that these graphs generated during decompo-

sition, had low chromatic numbers, which were much less than 16.
So even if DOM or CLIP generate a solution that is 2 or 3 colors
away, the solution will be accepted as a Curtis Decomposition be-
causeit will still be less than 16. The same reasoning applies to
Table 1 where a comparison is made with 4 variables in the Bound
Set. Hence we conclude that for 4 or 5 or greater number of vari-
ablesin the Bound Set an Exact Graph Coloring does not produce
better Curtis Decompositions, and having a good heuristic algo-
rithm to find the Column Multiplicity or even agreedy algorithm to
find the Column Multiplicity is good enough.

By the results of the testing we can definitely say that we have
proved that an Exact Graph Coloring is not required to find the
Column Multiplicity where Curtis Decompositionsare considered.
Exact Graph Colorings only take up more time and fails to pro-
duce any significant changein the results. Thisis true with respect
to both Circuit Benchmarks and ML Benchmarks (not presented
here). Also the results shown raise the question that in caseswhere
CLIP did not generate the same total numbers of colors as EXOC
why did the DFC not improve when we used EXOC? The only
possible answer to this question is that the decompositions gener-
ated by CLIP werestill acceptabledecompositions, evenif they use
non minimum numbers of colors which in turn means that these
graphs generated during the decomposition process must be hav-

ing low chromatic numbers. This provides a very valuable insight

cost

File | ilo | TR | MI St SC LU Js Jh MV [time]
BxpL 7710 | 496 | 384 | 292 | 288(9) | 288(9)| 320(20) 336(21)] _236 11.0
losym o1 | 640 | 984 | 400 | 224(7) | 160(5) 104 26.4
lcon1 72 | 80 68 | 60 70 23
duke2 | 22/29| 6516 | 2428 | 2200| 3456(108) 2896 | 11289.0
lex5p 8/63 3720 | 1560 2104 | 2080
If51m 88 | 372 | 392 | 240 | 256(8) v 101
misex1 | 87 | 472 | 208 | 224 | 256(8) | 352(11) 304(19)| 288(18) 229 86
misex2 | 25/18 | 548 | 464 | 436 | 768(24) 3% | 10860
misex3 | 14/14 | 9816 | 4204 | 3028 1744 | 13160
rd53 53 | 120 % | 84 60 18
rd73 713 | 320 | 352 | 256 | 160(5) | 160(5) 113 131
rde4 84 | 508 | 672 | 320 | 256(8) | 224(7) an 326
Isa02 10/4 | 1848 | 516 | 468 | 576(18)| 576(18 _a41 472
Iroot 8/5 512(16)| 736(46) | 752(47)| 490 90.0
lalu2 103 1056(33)| 1632(51) 1856(116) 1824(114)
lalud 14/8 3455 1326
clip 10/3 416(13) | 512(16)( 1856(116) 1824(114)
clip 9/5 467 53

Table4

Comparison of Decomposers on selected binary benchmarks

into the kinds of graphsthat are generated during the decomposi-
tion process: the graphs generated during the decomposition pro-
cess are definitely of a different nature than random graphs. This
is because it is known [24] that 98% of real-life functions is de-
composable; thus their graphs have small x (in contrast, only 1%
of randomly generated functions are decomposable). The result
that random graphs are much more difficult than graphs originating
from real-life problemis known from other EDA areas [9], but was
not known for functional decomposition.

Asfoundin experimentsEXOCwas unableto provide abetter DFC
for the ML Benchmarks. In order to seethetotal numbers of colors
generated by DOM, EXOCand CLIP on the same graphs, which
were generated during the process of Functional Decomposition,
the following experiment was performed: MVGUD was made to
run with all three algorithms EXOG CLIP, and DOM calculating
the Column Multiplicity, and only theresults of oneof themwasac-
cepted and the results from the other two was discarded. The count
of the colors was kept for al three Algorithms, thus demonstrat-
ing how EXOGC CLIP, and DOM compare with respect to the total
number of colors generated on the same graphs, only now these
graphs have been generated from practical function Benchmarks.
Table 2 is a summary of the results of 46 program runs. It shows
how DOM and CLIP compare with respect to the number of times
that the total number of colors generated by DOM and CLIP are
the same asthetotal number of colors generated by EXOC and the
number of timesthetotal colors generated by DOM and CLIP were
not exact and by how much. [1.] In Table 2, the row Exactstands
for the case when the total numbers of colors generated by DOM
and CLIP was the same as the total colors generated by EXOC
Error 1 stands for the case in which the total numbers of colors
generated by DOM and CLIP were one color away from the total
numbersof colors generated by EXOGC and so on, till Error 6. Cor-
respondingto these rows, the column Nugivesthe number of times,
and column % isequal to Nu/TotalNumbero f ProgramRur<.00.
[2.] Ascan be seen from the Table 2, DOM performs extremely
well, and CLIP does not perform so well. DOM thus provesto bea
very good heuristic algorithm. [3.] Table 3 isatotal of the rows of
Table2 for DOM and CLIP.

4. General Comparison of MVGUD with other Decom-
posers and Conclusions

Table 4 showsthe result of comparison of MVGUD and other de-
composers on some benchmarks (recall that in contrast to others,
we do not have a fixed number of inputs to a block). Observe that



DFC allowsto compare (only approximately) decomposersthat de-

composeto varioustypesand sizes of blocks. In Table, all the func-

tions in the table are binary and are taken from the set of MCNC
benchmarks. St is the binary decomposer from Freiberg (Stein-

bach). TRADE (MI) isan earlier decomposer developed at Port-

land State University [25]; MISII (MI) at University of California,
Berkeley; SCis the Mulop-dc decomposer from Freiburg (Scholl)

Js and Js are from Technical Univ. of Eindhoven (Jozwiak) (Js
is systematic and Jh heuristic strategy); and LU is the Demain
program from Warsaw/Monash (Luba and Selvaragj) The final cost
value is computed as a sum of the costs of DFCs of single blocks
of the result of the decomposition. For MVGUD (MV) there is
also execution time given (DECstation 5000/240, 64 MB of mem-

ory, user time in seconds) to show that the decomposition task can

be performed in a reasonable amount of time. Numbers in paren-

theses are numbers of 5-input CLBs (Jozwiak reports only 4-input
CLBs). The underlined results are the best DFC values for a given

benchmark. Our version of clip is different (9,5), and we cannot
find some of the benchmarks used by other authors.

Concluding, in order to create an efficient and effective program for
the Column Multiplicity in Curtis decomposition, it was necessary
to analyseits stages systematically. Our achievements are:

1 The new agorithm for incompatibility graph creation, GCA, is
always faster, and for larger bound sets it is orders of magnitude
faster than the previous algorithm PCA used in other decomposers,
producing the same graphs|[6].

2 The new heuristic Dominance Col oring program, DOM wascom-
pared with heuristic Clique Partitioning CLIP used in previousre-
search. It was shown that DOM performs better, because it gives
exact solutions on sometypes of graphs, which happen to be quite
common in decomposition.

3 DOM was compared with the Exact Graph Coloring algorithm
EXOC. It was shown that Exact Algorithm is not needed to find
the minimum Column Multiplicity for Curtis Decompositions on
graphs from decomposition, because it is much slower on larger
bound sets and gives the same or only dlightly better results. In
many various type experiments we clearly demonstrated that the
incompatibility graphs generated during the decomposition process
aremuch simpler than graphs generated randomly (for which Exact
algorithm gives much better results, as may be expected for NP-
complete problem).

4 The DOM graph reduction can be seen as a preprocessing step
soit could be applied to any other heuristic or exact graph coloring
algorithm.

5 The introduction of the idea of fast early filtering of decompo-
sitions by using clique size and opt Values for the cut-off of the
graph creation process, of the further graph coloring process, and
of the G and H calculation processes.

6 Because using GCA and DOM together we can create and color
graphs quickly, we can test many more bound set candidates, and
also larger bound sets, in the same time. Thus, our decomposer
can find relatively quickly hierarchical decompositionsof smaller
complexity. DFC of our solutionsisin most casessmaller than that
for other decomposers.

Thus, we created a highly efficient and effective decomposer, and,
paraphrasing O. Coudert, [9] we showed experimentaly that -
“Column Minimization for Curtis Decomposition is Easy.”
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