DISSERTATION APPROVAL

The abstract and dissertation of Stanislaw Grygiel for the Doctor of Philosophy
in Electrical and Computer Engineering were presented November 19, 1999, and

accepted by the dissertation committee and the doctoral program.

COMMITTEE APPROVALS:

Marek Perkowski, Chair

George Lendaris

Michael Driscoll

Jack Riley

Martin Zwick

Marek Elzanowski
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL:

Douglas V. Hall, Director
Electrical and Computer Engineering

Ph.D. Program

ABSTRACT

An abstract of the dissertation of Stanislaw Grygiel for the Doctor of Philosophy
in Electrical and Computer Engineering presented November 19, 1999.

Title: Decomposition of Relations as a new Approach to Constructive Induction

in Machine Learning and Data Mining

Machine learning usually refers to either making enhancements to an existing,
or a synthesis of a new system for performing tasks like prediction, recognition,
diagnosis, planning, robot control, etc. Data mining refers usually to machine
learning methods designed specifically for information retrieval from large data
sets.

The quality of a system created to perform a specific task is usually scored
based on its predictive accuracy. In some domains however, predictive accuracy
is not the only measure of interest for the users. What is often more important
is interpretability of rules encoded in the system. The interpretation of results is
especially important in applications where not only a correct decision is desired
but also an explanation underlying that decision. That is why, for some applica-
tions, systems which provide human understandable results like decision diagrams
are considered to be more acceptable than black box classifier models like neural
networks.

The method proposed in this dissertation is based on decomposition as a
way of simplification of the description of data by extracting relationships and
concepts hidden in the data. The method follows the general Occam Razor
principle, which advises a user to select the simplest of available descriptions of
data in order to obtain better generalization properties. The decomposition type
is the well known (from the logic synthesis area) Ashenhurst-Curtis [29] simple
serial decomposition, but its application to decomposition of relations and

constructive induction in Machine Learning and Data Mining is novel.

The decomposition method uses a new data representation specially de-
signed for effective storage and decomposition of large multiple-valued, incom-
pletely specified relations. The new representation may be particularly advan-
tageous for decomposition and data mining of distributed data bases. Within
the framework of the decomposition process, methods for effective data reduc-
tion (removing vacuous variables) and dealing with unknown values are devel-
oped to further simplify data description and speed up the decomposition process.
Methods for dealing with incomplete and noisy data are proposed in the same

framework.

DECOMPOSITION OF RELATIONS AS A NEW APPROACH TO
CONSTRUCTIVE INDUCTION IN MACHINE LEARNING AND DATA
MINING

by
STANISLAW GRYGIEL

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
2000

Contents

List of Tables

List of Figures

1 INTRODUCTION

1.1 Learning Bias
1.1.1 Model Selection Bias
1.1.2 Hypothesis Selection Bias
2 OVERVIEW OF THE DISSERTATION
2.1 Representation o
2.2 Decomposition e
2.2.1 Decomposition strategy 0oL
2.2.2 Cost measureso
2.2.3 Variable Partitioning for Decomposition
2.2.4 Datareduction o
2.2.5 Discretizationo 0oL
23 Learning
2.3.1 Learning from noisy or incomplete data

3 REPRESENTATION

3.1
3.2
3.3
3.4
3.5

3.6

Introductiono
Multiple-valued cubes L
Labeled rough partitions L.
Representation of multiple-valued relations
Operations on multiple-valued relations
3.5.1 Restriction (cofactor) L
3.5.2 Containment
3.5.3 Complement
3.5.4 Composition
Time complexity analysis,
3.6.1 Restriction (cofactor) L
3.6.2 Containment
3.6.3 Complement
3.6.4 Composition

ii

11
11
14
16
17
17
18
19

i

3.7 Memory Requirementso 54
3.7.1 Selection of sets X;,Y; o L 55
3.7.2 Set representationo 56

3.8 Experimental results L oo 58
3.8.1 Binary functions oo 59
3.8.2 Multiple-valued functions 65

3.9 Summaryo e 65

DECOMPOSITION 68

4.1 Introduction 68

4.2 Decomposition of non-probabilistic directed relations 74

4.3 Decomposition of probabilistic neutral relations 79

4.4 Decomposition of non-probabilistic neutral relations 86

4.5 Complexity measureso 87
4.5.1 Cardinality o 88
4.5.2 Functionality 0 89
4.5.3 Number of degrees of freedom 98

4.6 Complexity minimization 104
4.6.1 P(Y1) determination oL L 104
4.6.2 Variable partitioning for decomposition 110
4.6.3 Data reduction oo 119
4.6.4 Discretization of continuous variables 121
4.6.5 Implementation 123

4.7 Experimental resultso oo 126
4.7.1 Multiple-valued functions 126
4.7.2 Binary functionso 0L oo 135

4.8 Summaryo e 137

LEARNING 141

5.1 Introductiono 141

5.2 Learning from noisy or incompletedata 146
5.2.1 Lossy decomposition 149

5.3 Estimation of performance oo 151
5.3.1 Trial-and-test error rate estimation 152
5.3.2 Resampling techniques 152

5.4 Experimental results 0 oo 153

5.5 SUMMATY . . v oo e e e 157

CONCLUSIONS 162

6.1 Conclusions 162

6.2 TFuture work 166

il

Bibliography 168

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14

Multiple-valued, multi-output relation.
Example of arelation (a). L.
Example of arelation (b). L
Example of arelation (¢).o L
Multiple-valued relation represented by cubes.
Pairs of blocks (a). L
New row numbers.
Pairs of blocks (b)..
Parity functions: construction time.
Parity functions: size. o
Devadas functions: construction time.
Devadas functions: size. Lo
Multiplier functions: construction time.
Multiplier functions: size.
MCNC benchmarks: construction time.
MCNC benchmarks: size.

Multiple-valued benchmarks.

Multiple-valued relation.
Comparison of cardinality and log-functionality cost measures for 4-

input binary functions. L L
Comparison of cardinality and log-functionality cost measures for 3-

inputs binary functions. L L
Disjoint vs. non-disjoint decomposition: comparison.
Multiple-valued relation from Example 45.
Multiple-valued relation from Example 46.
Effectiveness of entropy variable partitioning procedure.
Cost for different structures.
Cardinality of variables in Y; for MCNC benchmarks.
Cardinality of variables in Y; for MV benchmarks.
Top-down vs. bottom-up approach to decomposition: binary functions.
Top-down vs. bottom-up approach to decomposition: multiple-valued

functions. Lo
Decomposition of MV functions (a).
Decomposition of MV functions (b).

v

4.15
4.16

5.1

5.2
5.3

Decomposition of binary functions. 135
Decomposition of binary benchmarks. 136
10-fold cross-validation true error estimation: machine learning bench-

marks. 155
leave-one-out true error estimation: machine learning benchmarks. . . . 156

test-and-error true error estimation: machine learning benchmarks. . . 156

vi

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2

3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Lr-partitions. 10
Set of tuples and its storage in a distributed data base with vertically

partitioned data space.o 10
Extracting concepts by decomposition.o 11
Decomposition strategy. o 12
How to select the best solution? 13
Block decomposition. Lo 14
Cardinality vs. Functionality. 15
Variable partitioning for decomposition. 16
Learning concepts. L. Lo 18
Learning from noisy data. L Lo 19
Lossy decomposition. 20
a) Single variables b) Sets of variables. 24
Set of tuples and its storage in a distributed data base with vertically

partitioned data space.o 25
Non-disjoint serial composition. 42
Parallel composition. oo 48
One level serial decomposition: fo(Xo) = fo(fi(X1), X2). 72
Algorithm 6: Decomposition strategy. 78
Transformation of data (a). 81
Transformation of data (b). 81
Disjoint decomposition. 84
Non-disjoint decomposition. 85
Serial decomposition. L L 90
Karnaugh map for Figure 4.7. 91
Functionality: non-disjoint case. 94
Function vs. relation. oo 98
Disjoint decomposition. 100
Determination of sets Xy, Xy, X3, X7, XJ, X§, and XY, 101
Decomposition of relation from Table 45. 107
Decomposition of relation from Table 4.6. 109
Variables ordering. oo 111
Serial decomposition. L L 113

Vacuous variables removing.o 120

4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
5.4
3.5
5.6
5.7

Vil

Discretization: general procedure. oL 121
Discretization: Univ. of Wisconsin breast cancer data. 122
Discretization schemes discovered in breast cancer data. 123
Algorithm 8: lllustration. L. 124
Michalski's trains.o 127
Decomposition of trains benchmark. 130
Decomposition of Univ. of Wisconsin breast cancer data. 131
Discovering new concepts.o 145
a) A good fit to a noisy data b) Overfitting on the same data 147
Compatibility graph for lossy decomposition in nominal spaces. 150
Compatibility graph for lossy decomposition in metric spaces. 150
Learning curves for machine learning benchmarks. 158
Learning curves for machine learning benchmarks (cont.). 159

Learning curves for machine learning benchmarks (cont.). 160

Chapter 1

INTRODUCTION

The data collected in many research, business, medical and manufacturing
domains contain valuable information. Since the volume of the data is often large
(the number of factors (features) it depends on may be on the order of 10% or even
10® in some medical applications and the number of records on the order of 10?)
the problem of automatic data analysis and information retrieval becomes more
important than ever.

Knowledge Discovery in Databases (KDD) and Data Mining is the re-
search area focused on problems of automating data analysis and information re-
trieval from large data sets. Distributed Data Mining deals with the problem of
finding data patterns in an environment with distributed data and computations.
While KDD usually refers to the overall process of data analysis and informa-
tion retrieval, including selection, preprocessing and transformation of data, data
mining refers to the process of applying specific algorithms to extract useful infor-
mation from the data. A data mining algorithm is any algorithm that fits theories
to data or enumerates patterns from data [38].

Learning general concepts from a limited number of instances of data is the
domain of inductive inference. It consists of generating hypotheses, fitting them
to the data and selecting the one(s) which best describe the data. To represent
hypotheses, a learning system can use a variety of models, such as linear discrimi-
nator, nearest neighbor classifier, decision tree, neural network, etc. The learning
process consists of adjusting model parameters according to certain performance
criteria. There is no universally best model for all possible problems. For instance,

Bayes’ classifiers seem to provide good results in medical domains [60], neural net-

works are likely to perform well in parallel domains, while decision diagrams are
better when dealing with sequential domain problems [101]. Selection of the model

depends on the type of the problem and constitutes the learning bias.

1.1 Learning Bias

Learning processes are always biased. One teacher suits our needs better than
the other. One person prefers studying in a library, the other at home. Night is
the best study time for one individual and morning for the other. We are all biased
by our customs, culture, friends, environment. Learning systems are biased too.
We make assumptions and choices when building learning systems, implementing
them and adjusting their parameters. These are all biases. Learning biases can be

divided into two major categories: model selection bias and hypothesis selection

bias [31].

1.1.1 Model Selection Bias

To build a classifier, a model for it has to be selected. The choice depends
on the problem the classifier will be used for, and includes, but is not limited to,
factors like simplicity of implementation, speed, accuracy, and personal preferences

of the designer. The list of possible choices includes the following:

e Linear Discriminator uses hyper-plane decision boundaries to classify data.

An example of a linear discriminator is the McCulloch-Pitt neuron model.

e Nearest Neighbor Classifiers assign the data sample to the class the

closest training data sample belongs to.

e Decision Diagrams partition data samples into a set of covering decision

rules [100]. An example application is Quinlan’s C4.5 [99]

e Neural Networks use a network of artificial neurons to store information

contained in data. The information is transferred in a learning process which

assigns weight values to the network interconnections. An example is a back-

propagation neural network, the most often used type of neural network.

e Feature Vectors, a table of feature vectors or a lookup table, the most
natural representation of data. Feature vector consists of a set of values,

each value corresponds to a different variable (feature).

e First Order Logic as hypotheses language. First-order predicate calculus

is used to store a set of hypotheses (rules, equations) describing the data.

e Genetic Algorithms [46] use ideas borrowed from genetic reproduction to
generate populations of hypotheses. The best hypotheses from the current
population are selected to create a new, more promising, population. This
evolutionary process of selection continues until a satisfactory hypothesis is

found.

1.1.2 Hypothesis Selection Bias

Within a framework of a given classifier model (or methodology) many hypothe-
ses or theories may be formulated. The choice of the best one is often a difficult
task. To facilitate this task, selection criteria have to be determined which are
simple and robust enough to make hypothesis selection an efficient process. The

list of possible choices includes but is not limited to the following:

Principle of Multiple Explanations was formulated by Epicur (341-270BC) and
it states the following: If more than one hypothesis (theory) is consistent with the
data, keep them all. The contemporary name for principle of multiple explanations

is Principle of Indifference.

Occam’s razor principle was formulated by William of Ockham (1299-1350) and
states that: Among theories which are all consistent with the observed phenomena

(data) one should use the simplest one until more evidence comes along.

Bayesian learning Thomas Bayes (1702-1761) takes a probabilistic view of Na-

ture and formulates what we know today as Bayes’ rule:

P(H;|D;) =

where:

P(H;) is a priori probability of hypothesis H; (learner’s initial belief)
P(Dj|H;) is a priori probability of data vector D; given hypothesis H;
P(H;|Dj) 1is inferred probability of hypothesis H; given data vector D;
P(Dj) is the probability of data vector D;

In essence, Bayes’ rule is a mapping from a priori probability P(H) to a pos-
teriori probability P(H|D) determined by data D. It basically defines a way of
updating the probability of hypothesis H, as more and more data DD comes along.
The main problem with Bayes’ rule is that an a priori probability for hypothesis

P(H) may be not known, and can be difficult, or even impossible to calculate or

estimate.

Maximum Likelihood principle The Maximum Likelihood principle states that
a reasonable hypothesis for explaining a particular set of data is the one which
is most likely to have provided the data. In other words, it is the hypothesis H
which maximizes P(D|H). The maximum likelihood principle is based on Bayes’
rule. Bayes’ rule leads us to discovering the rule H which maximizes P(H|D).
It is equivalent to finding the hypothesis H maximizing P(D|H)P(H). Since
P(H), the a priori probability of hypothesis H, is difficult to determine, instead
of maximizing P(D|H)P(H), as it is in the Bayes’ rule, we maximize likelihood
P(D|H) and assume that it also maximizes P(H|D). The maximum likelihood
ratio P(D|H)/P(D) is related to the Shannon-Wiener measure of information and
to the well known (from statistics) y? (chi-square) distribution. It was shown [86]
that the maximum likelihood estimate L* = —2n > P(D)log, P(D|H)/P(D) ap-
proximates y? asymptotically. Hence, given sample size n, number of degrees of

freedom of hypothesis H, and standard x?* tables, the significance level (probabil-

ity) that hypothesis H reflects sampling biases rather than true hypothesis can be

obtained.

Maximum Entropy principle Shannon’s entropy, or uncertainty [112]:
Ulprs- pn) = — Zpi log p;

where p; = P(H;) is a probability of hypothesis H;, can be used to determine the set
of a priori probabilities P(H;) which maximize U(py,...,p,) subject to > .p; =1
and constraints of our prior knowledge of the problem. The hypothesis H; with
the highest probability P(H;) is the one to be chosen. The entropy principle has
direct application in cases when the data D is not available, Bayes’ theorem can
not be used and the decision on which hypothesis to chose has to be made directly

from the a priori probabilities P(H;).

Kolmogorov complexity A different point of view is based on the concept of Kol-
mogorov complexity. Kolmogorov complexity, or algorithmic entropy, is the basic
concept of algorithmic information theory and was developed independently by
Solomonoff [88],[116],[115], Kolmogorov and Martin-Lof [57],[58], [59], [77],[78],[79],
and Chaitin [21],[22],[23],[24], [25]. The Kolmogorov complexity of an object can
be defined as the length of the shortest computer program used for the description
of that object. It is an attempt to address a problem of determination of absolute
information content of individual objects rather than average information content
of objects generated by a random source with underlying probability distribution
(entropy or uncertainty).

Let us consider for instance a set of n binary strings of length k, 5 = {s;},|5| =
n. The Shannon’s uncertainty (entropy) of the set S is equal to — > ", p; log pi,
where p; is a probability of drawing s;. In the absence of any other information on
the probability distribution p, we apply the principle of indifference and assume all
strings to be equally probable p; = 1/n. In this case, Shannon’s uncertainty will

be equal to the amount of information (in bits) required to count the strings, or

equivalently, to the amount of information required to communicate each individual
string.

Strings containing regular patterns however, as for example a string consisting
of 1 repeated k times, don’t need as many bits to be communicated. Random
strings, the ones which can not be compressed, require more information to be
communicated. Kolmogorov complexity K(x) addresses the problem of express-
ing properties of individual objects z, their individual entropies. There exist an
interesting relation between these individual entropies (Kolmogorov complexities)
and Shannon’s entropy: the expected value of Kolmogorov complexity over a set
of objects is equal to Shannon’s entropy of the set.

Unfortunately, Kolmogorov complexity K () is not computable in general [74]

and has to be replaced by computable approximations in practical applications.

Minimum Description Length principle Another method of selecting the best
hypothesis is the Minimum Description Length (MDL) principle developed by Ris-
sanen [106]. The best theory (hypothesis) to explain a set of data is the one which

minimizes the sum of:

o the length, in bits, of the description of the theory,

o the length, in bits, of the description of data given the theory.

The above formulation can be directly derived from Bayes’ rule . Taking the

negative logarithm of both sides of Bayes’ formula, we obtain:
—log P(H|D) = —log P(D|H) — log P(H) + log P(D)

Selecting the best hypothesis corresponds to maximizing P(H|D), or corre-
spondingly, minimizing — log P(H|D). Since log P(D) is constant, then minimiz-
ing —log P(H|D) corresponds to minimizing — log P(D|H) — log P(H) which, as
is shown in [74], corresponds to minimizing K (D|H) + K(H) where K(-) is Kol-

mogorov complexity.

The second part of the sum refers to the length of the hypothesis describing
the available data. Usually, the more accurate the hypothesis is (fewer data mis-
matches), the longer its length (it describes data in more details). Fewer data
mismatches means the first part of the sum requires fewer bits to be encoded, and

vice versa.

PAC learning The model of PAC (Probably Approximately Correct) learning
was introduced by Valiant [124] and, roughly speaking, specifies the meaning of
well or good when evaluating learned concepts and learning algorithms used to
learn them. Let us assume that Hy is the (true) hypothesis we try to learn and H
is the hypothesis we have learned. Then the error of hypothesis H is defined as:

error(H) = Probability(H(x) # Hr(x) for a data sample x)

We can say that a learned hypothesis H is good if:

Probability(error(H) > ¢) < §

where: 0 <e < land 0 <d < 1.
Different degrees of goodness will correspond to different values of ¢ and 4. The
smaller ¢ and ¢ are, the better (closer to Hy) the learned hypothesis H will be.
A class C of hypotheses is Efficiently PAC Learnable if the algorithm to learn
hypothesis is polynomial in ¢, § and In N, where N is the cardinality of C (number
of hypotheses). A class C is Polynomial PAC Learnable if m, cardinality of
the training set required for given ¢ and 4, is polynomial in ¢, § and the size of

minimal descriptions of the hypothesis and the data.

Chapter 2

OVERVIEW OF THE DISSERTATION

In Chapter 1 we briefly introduced a learning process in the context of ma-
chine learning and data mining. We stated that every learning process is, roughly
speaking, doubly biased by model and hypothesis selection biases. These two bi-
ases correspond to two major components of any learning process: memorization
and inference. The model selected for a classifier is responsible for memorizing the
information inferred from data. The hypothesis selection process is a process of
extracting useful knowledge from data. It is an inference process. In his inferential

theory of learning R. Michalski proposed the following equation:

memory + in ference = learning

The general organization of this dissertation reflects this simple scheme:

representation + decomposition = learning

Chapter 3 describes a new data structure, lr-partitions, used for storing (mem-
orizing) data. Chapter 4 is devoted to decomposition as a constructive induction
approach to inferencing useful information from data. The next chapter, Chapter
5, closes the learning equation. It presents both decomposition and lr-partitions
in action, learning from various data sets. The last chapter, Chapter 6 concludes
this dissertation and proposes future work.

The description presented in the following sections is not intended to provide
all the details of the respective algorithms and methods, it is an overview. Missing
details can be found in corresponding chapters of the dissertation, and the reader

is encouraged to consult them as needed.

2.1 Representation

The representation developed in this dissertation consists of a set of Ir-partitions,
where each Ir-partition is based on a set of variables (attributes) and consists of
a set of blocks. Figure 2.1 shows the process of creating of Ir-partitions (Figure
2.1b) from a set of data tuples (Figure 2.1a). The process begins with assigning
a unique key to each tuple (row label in Figure 2.1a). Each lr-partition is defined
by a pair of sets:

e a set of variables (subset of column labels in Figure 2.1qa)
e a set of combinations of values these variables take in the data tuples

In the example in Figure 2.1 we have four Ir-partitions P(x1), P(x2), P(y1),
and P(y2). They are defined by the following pairs of sets: {{x1},{0,1,2}},
{{x2},{0,1}}, {{w1},{0,1,2}}, and {{y2},{0,2}}. Each value from the second
set of the pair is used to specify a different Ir-partition block; a block label. The
lower part of each corresponding block contains the Key Designator (row labels in
2.1a) for those tuples (all the data in each row) which contain values equal to the
block label.

An Ir-partition block is a set of keys corresponding to tuples in which set of
variables takes values equal to the block label.

The primary reason for developing this new data representation was its poten-
tial for more compact than tuples storage of information. Lr-partition blocks
(designated via sets of keys) can be implemented using any representation of a
set of integer numbers. We experimented with two such representations: binary
decision diagrams (BDD) and bit-sets (BS) and compared them to the most often
used representation of binary functions binary decision diagrams.

The secondary reason is flexibility of Ir-partitions when used for data decom-
position, the procedure we use in this dissertation for developing quality classifiers
for machine learning and data mining. The sets of variables for Ir-partitions can

be selected in an arbitrary way, but, if any extra information is available on how

variable x;: P(%,

Input variables

variable X5 P(>92

10

key/variable | x1 | 23 yi | Yo
: 02| 1 0,02 2
b 000 02 o0
¢ 2 1ol 1.2 |0
d 11| 12 |2
Figure 2.1: Lr-partitions.
set of tuples
key/variable | @1 | x3 | 3 T4 | Y1
: 0211102201
b 0,010]012| 0| 2
¢ 2 10| 12 |01]02
d L2 |12 0
site A site B site C
key/variable | x1 | x2 | y1 key/variable | 3 key/variable | x4 | 11
: 0211 (0.1 0.1,2 d 1210
b 0,10 2 0,2 b 0|2
¢ 2 | 0|02 1,2 : 2 101
d 11]o 1,2 ¢ 01102

Figure 2.2: Set of tuples and its storage in a distributed data base with vertically
partitioned data space.

these variables are related, it can be used to create Ir-partitions which facilitate

decomposition and, as a consequence, lead to better classifiers. A direct example

of how this external information can be used is in creating lr-partitions for dis-

tributed data bases. In Figure 2.2, data tuples are assumed distributed among

three different sites. Such a split is usually based on some relationship between

data variables and each site can be directly mapped into separate lr-partition.

11

2.2 Decomposition

The inference method used in this dissertation is decomposition. Using de-
composition, a complex structure is replaced with a set of interrelated simpler
structures that can be more easily comprehended (Figure 2.3). They correspond
to concepts which, when extracted from data, can be used to provide higher level
abstractions to simplify the description of data. According to the Occam Razor
Principle a simpler decomposed structure is likely to have better predictive prop-
erties than the original one (see [70][73][72] for more detailed treatment of this
topic).

buying

e buying j | cost 4
doors maint 4

persons

doors 4
lug_boot comfort 3
lug_boot 3

safety 3
persons

safety
cost = 3456 cost =125

Figure 2.3: Extracting concepts by decomposition.

2.2.1 Decomposition strategy

The decomposition process is iterative. One iteration step consists of decom-
posing a block into two smaller blocks of lower cost. The decomposition strategy
is depicted in Figure 2.4. A block to be decomposed is drawn from a pool of blocks
to be decomposed. If its size is smaller than the minimum user specified size, then
the block is transfered to the pool of final blocks. Otherwise an attempt is made to
extract a smallest possible (user specified) block from it. If such a decomposition
exists, the resulting blocks are added to the pool of blocks to be decomposed. Oth-

erwise the minimum size is increased and decomposition attempted again. This

12

process continues until the pool of blocks to be decomposed is empty. As a result
of the decomposition we obtain the set of blocks in the pool of final blocks. This
strategy is referred to as a bottom-up procedure in this dissertation. An alterna-
tive strategy, top-down, is also analyzed in this dissertation and both approaches
compared.

The decomposition of any block from the pool of blocks to be decomposed
is independent of the decomposition of any other block. This means that the
decomposition process at this level can be parallelized, i.e., each block from the
pool of blocks to be decomposed can be decomposed on a different processor or

computer.

Pool of blocks to be decomposed

RiRz

—

Pool of final blocks size=user_min_size

Ro

0 NO

R0>sze

0

YES

decompose_optimized
Ro7RR,

|

decomposition
exists

NO

L] increase size

Figure 2.4: Decomposition strategy.

13

There are many possible decompositions of one block into two smaller blocks
and all of them would have to be performed in order to select the optimal solution
(see Figure 2.5). The number of all such decompositions is too large to evaluate
them all so we only generate a limited number of the most promising solutions.
The limited number of solutions is created via generating sets of variables Xy and

X5. This is referred to as variable partitioning process.

Selection criteria:

e Cardinality cost measure
e Functionality cost measure

e Minimum Description Length (for in-

complete data)

Figure 2.5: How to select the best solution?

The process of decomposition of one block into two blocks is in more details
shown in Figure 2.6. Given sets X; = {x3,24} and Xy = {z1, 22} the task is to
determine the output variables of block f; in such a way as to minimize the cost of
the solution. This is done by reducing the original problem to the clique covering or
graph coloring problem. The number of cliques (colors) in the graph corresponds
to the cardinality (number of possible values) of variable y;. Minimizing this value
minimizes the cost of the solution.

The decomposition procedure described above is developed in Section 4.2 (p.74)
for non-probabilistic directed relations, and is an essential part of all other decom-
position procedures developed in this dissertation. A decomposition procedure for
non-probabilistic neutral relations is developed in Section 4.4 (p.86). Two different

decomposition procedures for probabilistic relations, are developed in Section 4.3

14

Figure 2.6: Block decomposition.

(p.79).

2.2.2 Cost measures

To evaluate a goodness of the solution at each decomposition step an appro-
priate cost measure is needed. In this dissertation we propose and compare two
such cost measures. First of them, we call it cardinality cost measure, is closely
related to the maximum number of tuples that may be used for the description of
a problem given a set of attributes (variables). For binary functions the following

formula can be applied to one step decomposition result (based on Abu-Mostafa):
C. = 2|X1||Y1| 4 2|X2|+|Y1||Y2|
We extended this formula onto multiple-valued functions to obtain:

C. = px, logy pv; + px,pv, logs py,

15

where: X7, Xy, Y7, Y5 are sets of variables defined in Figure 2.9

|.X| is a cardinality of set X
Px = IL.ex @il
| is a cardinality of variable z;

The second cost measure, functionality cost measure, is equal to the number
of functions that can be realized for a given structure. For binary functions and

disjoint sets X, Xy the following formula was developed by Lendaris and Stanley:

1
Cp = 5272 (2% — 12 = 2) 4 2%

We extended their formula to the more general case of multiple-valued functions

to obtain:

Py; —1

Cr= Y Py pv —i)S(px,.pv — i)

=0

where: P(n,r) is an r-permutation of n distinct things
S(n,m) is a Stirling number of the second kind

Px = [oex [2il
| is a cardinality of variable z;

The formula above applies to disjoint sets X; and X3 but its extension to the

non-disjoint case is also derived in Section 4.5.2 (p.93).

decomposed | cardinality | log-functionality | original data
structure C. log, Cy (CY) cost

12 10.6 (1528) 16

12 10.7 (1696) 16

Figure 2.7: Cardinality vs. Functionality.

16

What are advantages and disadvantages of both measures? Both cost measures
are in fact very similar. The functionality cost measure, however, provides a finer
distinction between structures than the cardinality cost measure does. Figure 2.7
provides a simple example of such a distinction (the functions are binary). On the
other hand cardinality cost measure is much simpler from the computational point

of view.

2.2.3 Variable Partitioning for Decomposition

As we already stated above, the process of selecting sets X; and X is referred to
as variable partitioning. The algorithm we developed in this dissertation is based
on the ordering of input variables according to their significance to the output
variable determination. The most significant variables are selected to be inputs of
the block fy (see Figure 2.9) due to their direct link to the output of this block.
The remaining variables form the set Xj.

Determination of each variable significance is based on the conditional uncer-

tainty calculation, and is depicted in Figure 2.8.

. u(y)
e Uncertainty:

u(a) == pla = a;)log, p(a = a;) uy I b)
e Conditional Uncertainty: u(y | bd)

u(ylb) = u(yb) — u(b) u(y | bda)

u(y | bdac)

Figure 2.8: Variable partitioning for decomposition.

The conditional uncertainty of every input variable with respect to the output

17

variable is computed and the variable which reduces the uncertainty of the output
variable the most is selected as the most significant one. In the following steps,
computations are repeated for the remaining input variables until all the variables

are ordered. In Figure 2.8 the final variable order is bdac.

2.2.4 Data reduction

Real life data often contain many vacuous variables, variables which are not
necessary for the description of a given problem. Such variables can be removed
from the data without compromising accuracy of the description. Furthermore,
their removal usually simplifies the process of creating a good model for the data.
Therefore, efficient algorithms to discover such variables are an important part of
the induction process.

In this dissertation, a simple but efficient algorithm for discovering vacuous

variables is proposed as a part of the decomposition process:

if Y1 (Figure 2.9) is constant then all the variables x; € X1 are vacuous.

If the above condition is satisfied, then the result of one step decomposition is a
single block obtained from the original block by removing all the vacuous variables

T; € Xl.

2.2.5 Discretization

The inference method presented in this dissertation requires variable values to
be discrete. The continuous variables have to be discretized before the decompo-
sition process can even be started. In this dissertation we describe an interesting
new discretization procedure derived within the framework of the decomposition
strategy.

In the general decomposition strategy, the user specifies a minimal decompo-

sition block which is the smallest size unit (block f; in Figure 2.9) that can be

18

extracted from the block being decomposed. The inference procedure attempts to
extract fi in such a way as to minimize the cost of the decomposed structure. If
the block f; is specified to have only one input variable x, then its output variable
cardinality |y;| must be smaller than the cardinality of the input variable |z¢| in
order for the cost to be decreased. Therefore, block f; represents a mapping from
a set of values the variable x; can take into a smaller set of values the variable y;
can take, and f; defines a new discretization scheme for variable z;. In order to
apply the described procedure, the continuous input variable x; has to be initially
discretized using any simple discretization method, uniform binning for instance.
If the number of bins used is large enough, then the decomposition procedure pro-
vides a mean for optimizing both the number and the size of the bins. Moreover,
the discretization scheme discovered is directly related to the way the dependent
and independent variables relate to each other and, as such, can better fit the data
than any other independent discretization procedure.

The discretization procedure is described in more detail in Section 4.6.4 (p.121).

2.3 Learning

The learning method used in this dissertation can be classified as a constructive
induction learning method. In other words our method learns from examples. In
the learning process concepts are extracted from data forming a new representa-
tion space. Then a theory is formed in this new representation space which is as
consistent as possible with the set of training examples.

A practical example of a theory discovered via a multi-level constructive induc-
tion learning method is presented in Figure 2.3 where the higher level concepts are

cost and tech, and a lower level concept is comfort.

2.3.1 Learning from noisy or incomplete data

If the training data are noisy or incomplete, then creating an error-free classifier

may lead to an overfitting situation. The classifier will perfectly fit the training

19

New concept: Yi
New representation space: Y, X,
A theory: f2(Y1, X3)

Figure 2.9: Learning concepts.

data but perform poorly on the data not present in the training set (compare Figure
2.10a and b, where open circle is a new piece of data). A better overall performance
of a classifier can usually be achieved when allowing for non zero error rate on the
training set (lossy but simpler classifier). A tradeoff between simplicity and error
rate may be determined by minimizing the sum of description lengths of the cost

of classifier and error rate (so called minimum description length principle).

3 b)

Figure 2.10: Learning from noisy data.

The algorithm for creating such a lossy classifier is embedded into the de-
composition procedure when creating a compatibility/incompatibility graph for
determination of a set of variables Y; (Figures 2.9, 2.6, and 2.11).

The graph in Figure 2.11b is a full graph with edges weighted by the ratio of
mismatches for the corresponding table columns. By selecting a threshold value

and removing all the edges with weights higher than the threshold value we can

20

od Bl,, Bly Bl Bl

ab 00 01 11 10

a 4 7 9
0l 0|3 [13]2

1 g 10
o1 1] - |o1 |1

2 El
1) 0 | 3

3 q 11
0/0 1471 -4

f
3 b) ©

Figure 2.11: Lossy decomposition.

control the cost of the result of decomposition. The graph in Figure 2.11¢ is a
result of selecting threshold value equal to 0.5. Lossless decomposition results
from the threshold value equal to 0 (see Section 5.2.1 p.149). This algorithm was
developed for the very general case of nominal data spaces. If the data variables
are metric (a distance measure can be calculated), then more precise algorithms

can be developed (see Section 5.2.1 p.149).

21

Chapter 3

REPRESENTATION

3.1 Introduction

In the last few years, there has been an increasing trend to apply logic represen-
tations such as BDDs in image processing, machine learning, knowledge discovery,
data-base optimization, Al, image coding, automatic theorem proving and formal
verification. Multiple-valued (MV) relations (functions in particular) which include
very many don’t cares are becoming increasingly important in these new areas of
applications [98] as well as in classical logic synthesis and state machine problems.
When a state machine is represented as a relation, the present and next states,
as well as symbolic i/o variables are represented as multiple-valued variables that
have arbitrary number of values. It is very important to have a good representa-
tion for such relations. By good representation, we understand one that is compact
and allows for fast processing. For instance, success of many binary decomposers
resulted entirely from appropriate innovative representations of Boolean functions:
cube calculus [126], spectral transforms [113], decision diagrams [63, 110], or rough
partitions [75] rather than from new algorithmic ideas. The same is true for tau-
tology verifiers. Better representation allows storing larger functions, and also, to
carry out efficiently appropriate calculations.

Three essentially different representation methods for multiple-valued functions
have been successfully used in logic synthesis programs and ATl applications:

Multiple-Valued Cubes (MVC, using positional notation) [120], stores cubes
of the table (such as Table 3.1) one by one (row by row), value by value (linearly)
and apply cube calculus for cube operations.

Multiple-Valued Decision Diagrams (MVDD) [100],[117],[30],[55] stores

22

cubes in a Directed Acyclic Graph (DAG). Each DAG level corresponds to a dif-
ferent variable; the number of node’s children is equal to the number of values a
variable can take.

Rough Partitions (r-partitions) [75] stores the table (such as Table 3.1)
column-wise, and not row-wise as MVC does. In r-partition every variable (a
column of a table), both input and output, induces a partition of the set of rows
(cubes) to blocks, one block for each value the variable can take (there are two
blocks for a binary variable, and k blocks for a k-valued variable).

Cube representation seems to be superior in problems with a limited number
of levels, such as sum-of-products (SOP) or exclusive-sum-of-products (ESOP)
synthesis. The disadvantage of cube representation is that large multi-level netlists
or BDDs may produce too many cubes after flattening, so that their cube arrays
can not be stored. Even if the initial data is in a form of large arrays of cubes
(as is the case in ML or controller design applications), cubes may be too slow for
effective manipulation and alternative representations may considerably improve
the processing speed.

Decision Diagram representation seems to be superior for general purpose
Boolean function manipulation, simulation, tautology, technology mapping, and
verification, but can be exponential for functions of certain classes. For some
classes of functions, such as parity, the decision diagram storage requirement is
polynomial in terms of the number of variables. For other functions however, as
shown in [32] or that occur in ML, logic or controller design [118], it is exponential.

Rough Partitions are an interesting and novel idea but they don’t really form
a representation of a function. Since the values of a variable are not stored to-
gether with partition blocks, the essential information on the function is lost in
this representation and the original data can not be recovered from it.

None of the above representations addresses the problem of binary or multiple-

valued strongly unspecified functions and relations which occur in Machine Learn-

ing (ML), Knowledge Discovery in Databases (KDD), Artificial Intelligence (AI),

23

Finite State Machine (FSM) and controller design, and in decompositional ap-
proaches to logic synthesis [98]. Although the logic and FSM methodologies that
produce a very high percent of don’t cares are not very popular yet, there exist
practical industrial applications with more than 95% of don’t cares (on the aver-
age, the percent of don’t cares in industrial benchmarks is not greater than 80%)
[114]. In contrast, benchmarks with more than 99% of don’t cares are common in
ML.

With the exception of [75],[44], and [43], the representation problem has not
been addressed for multiple-valued functional and state machine decomposers, and
other synthesis programs. The data structure presented in this chapter is particu-
larly useful for the decomposition of incompletely specified MV functions, relations,
and state machines.

To briefly introduce the new representation, we will show how to construct Ir-
partitions from a set of tuples shown in Table 3.1 representing a relation y; (1, x2)
and function ya(x1,x2). In the table, a set of values separated by ’,” means that a

variable can take any value from that set.

X Y
1 T2 th Y2
a 02 11012 2
bl101 0 0,2 1
c| 2 0 1,2 0
d| 1 1 1,2 2

Table 3.1: Multiple-valued, multi-output relation.

The data structure consists of a set of Ir-partitions. Each Ir-partition corre-
sponds to a set of columns S. and partitions the data horizontally. Fach set of
columns S, is partitioned vertically by blocks. A block corresponds to a set of tu-
ples Sy, each tuple in S; having the same projection on the set of columns S.. This
projection constitutes the block label. Each tuple in the table is associated with

a different symbol (number) and a block corresponding to S; is a set of symbols

24

variable x;: P(%,) variable x,: P(x,) variable y;: P('y;) variable y,: P(y,)

1 2 0 1 1 2 0 1 2
b,d a,c b,c a,d ac,d |lab,c,d b,c b a,d

a)

variables XXt P(X%y) variables Yi¥o! P(V1Yo)

0,2 1]010| |20 11 0,12 2 02 1| |120][12 2
a b c d a b C d

b)

Figure 3.1: a) Single variables b) Sets of variables.

corresponding to the tuples in 5;. Both horizontal and vertical partitions can be
non-disjoint, i.e. sets of columns (tuples) corresponding to different lr-partitions
(blocks) can overlap.

In Figure 3.1, the small squares correspond to partition blocks, the upper part
of each block contains a label and the lower part, set of symbols. Figures 3.1a,b
show Ir-partitions based on single variables and on sets of variables, respectively.

Due to their vertical-horizontal structure, Ir-partitions have a potential for
capturing both vertical and horizontal patterns in data. Most of the operations
on Ir-partitions can be reduced to set operations on the blocks (sets of integer
numbers). Hence, by selecting a set representation for blocks we can significantly
change the properties of the whole representation! We experiment with two such
set representations in this chapter: BDDs and Bit Sets.

The representation presented in this chapter may be particularly advantageous
in distributed data and computation environments. For large distributed data
bases the sets of variables observed in different sites may in general be different.
This is sometimes called a vertically partitioned data set and is illustrated in Figure
3.2. Fach site stores only a part of the data tuple and a set of Ir-partitions can
be independently created for every site (this is not possible for cubes or decision
diagram representations). Alignment between sub-tuples stored in different sites is

in lr-partitions representation made automatically via tuple numbers (keys) that

25

are stored in Ir-partition blocks.

set of tuples

key | x1 | 3 3 Ta | Y1

0 102]1 0,2 2 10,1

1 0,110 101,21 0 2

2 2 0 1,2 10,11]0,2

3 1 1 1.2 (1,21 0

site A site B site C

key | =1 |22 | w key T3 key | x4 | y1
0 1021 01 1 0,1,2 3 1,210
1 0,110 2 0 0,2 1 0 2
2 2 0102 3 1,2 0 2 10,1
3 1 1 0 2 1,2 2 10,1102

Figure 3.2: Set of tuples and its storage in a distributed data base with vertically
partitioned data space.

The chapter is organized as follows. Section 3.2 contains basic definitions of
cube calculus and the necessary extensions for manipulating cubes based on differ-
ent sets of variables. Such cubes are used to represent block labels. Sections 3.3 and
3.4 introduce the labeled rough partitions (Ir-partitions) representation. Section 3.5
presents basic operations on multiple-valued relations represented by Ir-partitions
and Section 3.6 discusses the corresponding time complexities. Section 3.7 dis-
cusses memory requirements for two different representations of partition blocks:
BDDs and Bit Sets (BS). Section 3.8 presents experimental results and Section 3.9

concludes the chapter.

3.2 Multiple-valued cubes

Definitions in this section are based on multiple-valued cube calculus definitions
([120] [108] [109] [107]) but extend them on the case of cubes based on different
sets of variables and on multiple-valued output relations. The reason for such
an extension is that Ir-partitions can in general be based on overlapping sets of

variables (see Section 3.3) and can represent multiple-valued relations in general.

26

For the special case of Ir-partitions based on disjoint sets of variables, we could use

cubes based on the same sets of variables along with the concatenation operation.

Definition 3.1 (literal) Let x; be a variable taking values from the set P; and let
S; be a subset of P;. Let U be the uniwersal set. Then :L'f’ is defined as:

S 0 ZfSI?ZQSZ

will be called a literal of variable x;.

The literal 27" can be viewed as a pair (variable, value) = (x;,5;) where value
is a set. In particular S; = P;, which is a multiple-valued equivalent of a binary
don’t care (variable z; can take any value from P;), and S; = @) (none of the values
can be assigned to the variable).

Using set-values allows for expressing situations where there is an uncertainty
on what value a variable should take but the set of acceptable values can be clearly
specified. For instance: “the color was red or yellow but not black or white”. An
example of application in the logic synthesis area is a modulo-3 counter that counts
in sequence (non-deterministic state machine is a special case of multi-valued,
multi-output, relation) s0 — sl — s2 — s0 and if the state s3 happens to be the
initial state of the counter, counter should transit to any of the states s0, s1, s2,
but not to the state s3 itself. There exist examples [114] of large controllers from
industry specified with non-deterministic transitions (like the modulo-3 counter
above), but the current VHDL-based design methodologies do not encourage this
kind of design style.

Our representation also allows for representing multiple-valued relations in Ma-
chine Learning. For instance, for a given set of attribute values, a tissue cell can
be classified as cancerous by one expert and as non-cancerous by another and both
experts’ opinions need to be taken into account in the data analysis. Examples of

multiple-valued relations are benchmarks hayes, flarel, flare2 from [121].

27

Set-values for input variables are already known from cube calculus, but using
set-values for output variables is a new concept which allows for representation

and manipulation of relations.

Definition 3.2 (cube) The set of literals ¢(X) = {z5 = 2; € X} will be called a

cube based on the set of variables X.

Later in this chapter we will denote a cube by ¢ = #7252 -

cubes by C'. We will use notation ¢(X) and C(X) = {¢;(X)} to specify a cube and

a9 and a set of
a set of cubes based on the set of variables X, respectively.

If S; = () then the literal :L'f’ can be used to represent situations where variable
x; is not present in a given cube. An example from ML domain is the well known
Michalski’s trains benchmark which describes a set of 10 trains [85]. A set of
attributes corresponds to every car in the train. Since the number of cars varies
from train to train, some cubes (trains) contain attributes which correspond to
non existing cars and can be represented by literals with .S; = (). Another appli-
cation is for representing output variables of multi-output functions and relations

)

corresponding to unspecified cubes ("~ in Espresso format).

Definition 3.3 (proper or improper cube) Cube ¢(X) will be called improper
if there exists v; € X such that S; = (). Otherwise the cube will be called proper.

1,3} {01 1 .
(13), o) 9, 1)

xsxy ° 1s improper and cube xil’S}xéo’l}x:{gl}xil}

For instance cube z

proper.

Definition 3.4 (minterm) Cube ¢(X) will be called minterm if for every x; € X
cardinality of the set S; is equal to 1.

is a minterm and cube

For instance the cube :z:?}xéo}xgl}xil} ?’S}xéo}xgl}xil}

is not.
Definition 3.5 (projection) Let ¢(X) be a cube and let X' be a subset of X. The

cube ¢(X') ereated from ¢(X) by removing all the literals 7 such that z; € X — X'
will be called a projection of cube ¢(X) on the set X'.

28

Later in this chapter we will use notation ¢;(X;) to denote a projection of cube
¢;(Xz2) on the set X; C X, (same index i) and notation ¢;(X7), ¢;(Xz) to denote
two different cubes based on sets X; and X, (different indexes i, 7).

In the definitions that follow, cube operations for cubes ¢;(X7) and ¢3(X3) based
on different sets of variables are always reduced to the operations on cubes based on
the same sets of variables X3 = X; U X5. This is done by extending corresponding
cubes with literals :L'f’ such that x; € X5 — X3 for ¢1(X1) or ; € X5 — X for
c2(Xz), and S; = 0.

Definition 3.6 (product term) An intersection of literals (), =5 will be called

a product term.

The product term contains a given minterm if it evaluates to U for that

minterm.

Theorem 3.1 (relation) Any multiple-valued directed relation can be expressed

in the form:
F=U@inm)

where (); is a set and T; is a product term.

PROOF [t is enough to show how to convert any other form to the one given
above. For a relation expressed in the form of a set of tuples the correspondence is
established by creating one product term for each tuple. The sets S; for the literals
in the product term are equal to the values of independent variables in the data

tuples and sets (); equal to the corresponding values of dependent variables.

For instance the multiple-valued relation y;(x1,22) from Table 3.1 can be ex-

pressed as:
v =({0,1,2} N 2% n2ithu
({0,2} N 2" 2%y
({1,2} N2 N =i
({1,2} N2t N2t

29

In the definitions that follow ¢ (X;) = {l’f“ cx; € Xi} and (Xz) = {:1;;9‘” :
T; € Xz}

Definition 3.7 (containment) [t is said that the cube ¢i(X1) is contained in the
cube c2(Xz2), c1(X1) C e2(X2), if S1i C Sy, for every x; € X1 U Xs.

For instance cubes ¢; = {0} {1} {1} = :1;1 {O}x:{gl}xé{l} and ¢, = xil}xgo} =
{1}:1;;0}:1;3:1;4 are both contained in the cube ¢3 = :Jci1 3}:1/';0 1}:1;:{))1}:1;4{11}, but ¢z 1s not

contained in ¢;.

Definition 3.8 (intersection) The intersection of cubes ¢1(X1) and cy(Xsy) is
the cube c3(Xs) = (X)) M ea(Xy), X3 = X1 U Xy, such that c3(Xs) = {a7i0%
T; € Xg}

For instance if ¢; = :1;?}:1;?}:1;;1}:1;4{11}, Cy = xil’S}xéo’l} Uy {1} ,and ¢z = :1;{1} {0}
then ¢; Mey = ¢y and ¢ Mes = xil’S}xéo’l}xél}xil} M xil}xgo}x:)) ry = xil}xgo}x:))xél

:1;?}:1;;0} =c

In the standard cube calculus if S; = () for any variable of a cube then the cube
is empty. In our case different base sets for cubes are allowed and if S; =) for any
x; then the cube is equivalent to one with the literal :L'f’ removed from the set of

literals defining the cube.

Definition 3.9 (supercube) The supercube of cubes ¢1(X1) and c3(Xs3) is the
cube c3(Xa) = e1(X1) § a(X2), Xz = X1 U Xy, such that cs(Xs) = {27 1 2; €
X3}

For instance: :1;?}:1;21’2} $ xéo}xél}xil} {3} {1 2}
xiS}xgo’l’z}xél}xil}.

2000 § 0,100, (0, ()

Definition 3.10 (sharp product) The sharp product of cubes ¢1(X1) and c3(X3)
(c1ftcs) is equal to ¢y if their intersection is an improper cube, and is empty if

c1 C ¢y. Otherwise, it is equal to:

S11 5110521 S
CI#CQ U xn"

30

c1Fcy is a set of cubes that contains all the cubes of ¢ which are not contained by

Co.

Definition 3.11 (compaction) Let c3(X3) = ¢1(X1) § a(X3) and X5 = XUX,.
We will say that the cube c3(X3) is a compaction of cubes ¢1(X1) and cy(Xz),
denoted by ¢1(X1) 3% ca(X2), iff there exists only one x; € X5 such that Sy; # Sa;.

The result of compaction is a cube which contains all the information contained
in the original cubes so the compaction operations can be used for compression of

a set of cubes.

For instance if ¢; = :1;?} 103, {1} {1} , Cg = xil} {01, {1} {1} , C3 = xil} {01, {1}
and ¢4 = :1;?} 0 {1} then cubes ¢; and ¢ can be replaced with cube :1;{1’3}:1/';0}

L3 A1

xs 'xy ’, cubes ¢y and ¢z with cube :1;{1} {0} {1} {1}

, and cubes ¢3 and ¢4 with cube
{1 e {0} {1} , Cubes ¢y and ¢4 can not be compacted because they differ on more

than one position.

3.3 Labeled rough partitions

Definition 3.12 Separation of the elements of a nonempty set S into nonempty
subsets S;, |JS; = S, is called a rough partition (r-partition) of S.

Rough partitions allow subsets S; to overlap.

Definition 3.13 (relation) Let S = {S;} be a set of sets S;. A subset R of the

cartesian product S1 X Sy X ... x Sy will be called an k-ary relation.

Cartesian product operation is associative and cartesian product is a set so we
can always reduce a k-ary relation to the binary relation B C Sx x Sy where Sy
and Sy are sets of n-ary and m-ary tuples respectively and n+m = k. This means

that we can reduce our analysis to binary relations with no loss of generality.

Definition 3.14 (directed relation) Let relation R from Sx to Sy be given. If

Sx is a set of tuples corresponding to independent (input) variables and Sy is a

31

set of tuples corresponding to dependent (output) variables the relation R will be

called a directed relation.

Definition 3.15 (neutral relation) A relation which is not directed will be called

neutral.

Function is a special case of a directed relation from Sx to Sy where every
element (tuple) sx € Sy is the first member of precisely one ordered pair (sx, sy) €
Sy x Sy.

An example of a multiple-valued, multi-output directed relation is shown in
Table 3.1. The set of cubes C'(X) = {:1;{0 2 {1}, 0y {0} :1;?}:1;?} i {1}} corre-
sponds to the set Sy and the set of cubes C'(Y') = {y{o L2} {2}, yfo -2} {1}, {1’2} {0}

{1 2 {2}} to the set Sy in Definition 3.14. Multiple-valued input variables x; and
¥ have cardinalities |x;| = 3 and |xz| = 2 respectively. The output variables y;
and yz have both the same cardinality |y;| = |y2| = 3. The multi-output rela-
tion represented in Table 3.1 can also be viewed as a collection of a single output

relation yy (1, x2) and a single output function yo(x1, 22).

Definition 3.16 (labeled partition block) Let C(X) be a set of multiple-valued
1) be defined by a cube cx(X1), X1 C X, as follows:

ci(X)Re, (x,)ci(X) iff en(X1) C i(Xy) and cp(X1) C ¢;(Xy), where cp(Xy) is given
and ¢;(X),¢;(X) € C(X). The set of all cubes ¢;(X) € C(X) being in relation
R, (x,) to each other and labeled by cube cp(Xy) will be called labeled partition
block and denoted by B, (x,)-

cubes, and relation R., (x,)

Since all the cubes in C'(X) can be enumerated with distinct symbols (integer
numbers in particular), the partition block can be represented by a set of sym-
bols. By marking every partition block with a label (as a subscript) we establish
a correspondence between the set of symbols in the partition block and the cubes
in C(X). For instance in Table 3.1, X = {x1,22},Y = {y1,y2} are sets of inde-
pendent and dependent variables, respectively, and C(X UY') = {a,b, ¢, d}, where

a,b, ¢, d are symbols denoting cubes ¢; (X UY) = xio,z}xél}yfo,m}ygz}? (XUY) =

32
xio’l}xéo}yfw}yél}, e3(XUY) = :1;?}:1;{0} 2y, {0} ,and ¢ (XUY) = xil}xél}yfl’z}ygﬂ
respectively.

Example 3.1

Let X7 = {x1}. Then cubes ¢;(X;) define the following relations:

Table 3.2: Example of a relation (a).

and the corresponding labeled partition blocks are {a,b}q, {b,d}1, and {a, c}s.
Let X3 = {x3}. Then cubes ¢,(Xz) define the following relations:

cx(X2) e, (x2)
e (0. (27 0))
{0, @)}

Table 3.3: Example of a relation (b).

and the corresponding labeled partition blocks are {b, ¢}y and {a, d};.

Let X3 = {x1,22}. Then cubes ¢;x(X3) define the following relations:

cx(Xs) L, (x;)
{02} {1} {({02} {1})}

{0 1} {0} {({0 1} {0} b)}
{2} {0} {({2} {0})}

1 1 1 1
xi }xé) {(xi }xé b))

Table 3.4: Example of a relation (c).

and the corresponding labeled partition blocks are {a}o2 1, {b}01 0, {¢}2 0, and

{d} 1.

33

Notice that the first element of every ordered pair of relation R (x;) is the
same and it constitutes label of the labeled partition block defined by that relation.
Observe that by adding labels all information of the initial table (or set of cubes)
is preserved in labeled rough partitions, thus they form a representation of this

relation (function).

Definition 3.17 (labeled rough partition) The collection of nonempty labeled
partition blocks B, (x,) that form a rough partition of a set C(X) will be called
labeled rough partition (lr-partition) and denoted by P(X1) = {B.,(x,)}-

In particular, if X; = {«} then P(X;) may be denoted by P(x). Given the
example from Table 3.1 we have P(X;) = P(xy) = {{a,b}o, {b,d}1, {a,c}2}s,,
P(X3) = P(x2) = {{b,c}o, {a,d}1}s,, and P(X3) = P(X) = {{a}o2 1, {b}oa o,
{0}2 05 {d}l 1}x1x2-

Definition 3.18 For Ir-partitions P(X1) and P(X3) of a set of cubes C(X),
X1, Xy C X, it is said that P(X1) < P(Xz) if every block of P(X1) is included in
at least one block of P(X3).

For lr-partitions P(X1), P(X3) from Table 3.1 we have P(X3) < P(X;) because
{a} € {a,b}, {b} € {a,b}, {c} €{a,c}, and {d} € {b,d}. Also, P(X3) < P(X32).

Definition 3.19 (labeled partition block product) Product of two labeled par-
tition blocks Be;(x,) and Be,(x,) is the labeled partition block B.,(x;) = Beyx,) N

B (x,), which partition block is an intersection of partition blocks of B (x,) and

B, (x,) and which label cx(X3) is equal to c;(X1) § c;(Xy).

The product of Ir-partition blocks B, (x,) = {a,b}o € P(X;) and Bey(xy) =
{a,d}; € P(X3) from Table 3.1 is Ir-partition block {a}o 1 whose label xio}xgl} =
Cl(Xl) $ CQ(XQ).

Definition 3.20 (lr-partition product) The product P(X1)P(Xz) of
Ir-partitions P(X1) and P(X3) of a set of cubes C(X), where X1, Xy C X, is Ir-

34

partition P(X3), X3 = X1 U Xy, the blocks of which are non empty products of the
labeled partition blocks of P(X1) and P(X3).

The product of Ir-partitions P(X;) and P(X3) from Table 3.1 is Ir-partition
P(X3) ={{a}o1, {a}ta1, {b}oo, {b}10, {c}20, {d}1 1}210,- If Ir-partition blocks
contain the same sets of elements and their labels can be compacted (Definition
3.11) we can combine them into one Ir-partition block with a label equal to the
compaction of their labels. So the above Ir-partition can be reduced to P(X3) =
{{a}oz2 1,{b}o1 0,{c}2 0,{d}1 1}2,0- For Ir-partitions based on overlapping sets
X1, X3 we have: P(X1)P(X3) = {{a}oz21,{b}o1 0, {c}2 0. {d}1 1}2,0, = P(X3).

The following two important theorems establish the way lr-partitions can be
combined or splitted which will allow us to optimize the memory requirement for

Ir-partitions representation (see Section 3.4).

Theorem 3.2 For any set of cubes C(X), and any set of subsets X; of X, P(|J, Xi)
- I PLY)).

PROOF [t is enough to show that P(X; U Xy) = P(X1)P(X3). By Definitions
3.16 and 3.17 lr-partition P(X;) consists of blocks corresponding to every combina-
tion of values of variables x € X; present in data. Hence, by Definitions 3.19 and
3.20 product P(X1)P(X3) consists of blocks corresponding to every combination of
values of variables x € X1UXy present in data. Hence, P(X;UX5) = P(X1)P(X3).

Corollary 3.1 If X; C X, then P(X1) P(X2) = P(X32).

PROOF If X1 = X5 then P(X1) P(X2) = P(X2) P(X3) = P(Xsy). If X1 C X3 then
there exists X, such that Xy = X; U X| and X; N X{ = 0. Hence, by Theorem
3.2 P(X1)P(Xy) = P(X1)P(X1 U X]) = P(X1)P(X1)P(X]) = P(X1)P(X]) =
P(X1UX]) = P(Xy).

Theorem 3.3 (Ir-partition extraction) For given sets of variables X and X,
Xy € X, and Ir-partition P(X) = {Bux)}, the lr-partition P(X,) = {Bcgl(Xl)}
extracted from P(X) consists of the partition blocks Bcg'(Xl) satisfying the following

35

condition: each Bcg'(Xl) is @ union of those partition blocks B.i(xy of lr-partition

P(X) which labels satisfy the condition
ci(X1) 2 f(X3)

where ¢(X1) is the projection of cube ¢.(X) on the set Xj.

PROOF By Definitions 3.12 and 3.17 it must be U]‘ Bcg'(Xl) =, Baxy. The
necessary condition to satisfy this requirement is that labels ¢(Xy) are selected in
such a way that for every c(Xy) there exists ci(Xy1) such that ¢}(X;) C ci(Xy).
For a given c/(X1) there may be many ci(X1) satisfying condition ¢/(X,) C ci(Xy)
so the condition U]‘ Bcg'(Xl) =, B (x) can only be satisfied if Bcg'(Xl) IS @ union
of the blocks B (x) corresponding to those ci(X1). This is the sufficient condition.

Given the example from Table 3.1, let us extract lr-partition P(X;) from P(X3),
X = {51?1}, X3 = {51?1,902}- Since P(X3) = {{a}o,z 1,{5}0,1 0,{0}2 0,{d}1 1}x1x2
then we have the following ¢i(X3) cubes: ¢|(X3) = xiO’Z}xél}, A (X3) = xio’l}xéo},
A (Xs) = :1;?}:1;?}, and ¢4 (X3) = xil}xgl}. Projecting ¢i(X3) cubes on the set X; we
have the following ¢i(X;) cubes: ¢{(X1) = xio’z}, A (Xy) = xio’l}, a(Xy) = :1;?},
and ¢j(X;) = :1;?}. Let us select the following ¢/(X;) cubes: ¢f(X;) = xio},
A(Xy) = :1;?}, (X)) = :1;?}, It can be easily verified that the necessary condition
is satisfied. To satisfy sufficient conditions blocks Bcg'(Xl) of Ir-partition P(X)
are computed as follows: By = By21U Bo1o = {{a} U {b}}o = {a,b}o, By =
Bo1oUBy 1 ={{b}U{d}}1 = {b,d}1, Bo = Bo21U By o = {{a}U{c}}s = {a,c}s.

3.4 Representation of multiple-valued relations

Theorem 3.4 (representation) The multiple-valued, multi-output relation Y =
F(X) can be represented as a pair of sets of lr-partitions {{P(X;)}, {P(Y;)}},
where | J; Xi = X,J;Y; =Y and X,Y are sets of input (independent) and output
(dependent) variables respectively.

PROOF [t is enough to show that transition to another representation is pos-

sible. By Theorem 3.2, P(X UY) = [y, P(Xi) HY] P(Y;) and the set of block

36

labels of P(X UY') forms a cube representation of relation Y = f(X).

Notice that the lr-partitions data structure defined by Theorem 3.4 allows not
only the sets X; and Y but also X and Y to overlap. The later means that systems
(relations) with feedback can be represented. Neutral relations (all the variables
are independent) can be represented too.

Contrary to the rough partition [75] which stores an abstraction of a function,
the labeled rough partitions can be used for general purpose representation of

functions and relations because no information is lost in them.

cubeid | xy xy a3 w14 | Y1 Yo
a o 0o O 0|01 01,2
b 0 1 1 0,11,2 1
c 1 1 0 O 0 1,2
d 0 02 0 1 3 0,2
e 1 1 2 1 103 0

Table 3.5: Multiple-valued relation represented by cubes.

Example 3.2

Let us construct Ir-partitions for the multiple-valued relation from Table 3.5.

P(xl) = {{av bv d}ov {C, 6}1}1’1

P(a;) = {{a, d}o, {b, ¢, e}1, {d}2),

P(as) = {{a, ¢, d}o, {0}, {e}a}n,

P(zq) = {{a,b, c}o, {b;d; e} }o,

P(y1) = {{a, c,eto, {a, b}1,{b}2, {d, e}s},

P(yz2) = {{a,d, e}o,{a, b, c}1,{a, ¢, d}2},

P(X) = {{G}o 00 0y {b}o 110,11 {C}l 10 0y {d}o 0,20 15 {6}1 12 1}x1x2x3x4
P(Y) = {{Cl}m 0,1,25 {5}1,2 1y {C}o 1,25 {d}3 0,25 {6}0,3 0}y1y2

As we can see from the Example 3.2 Ir-partitions based on single variables are
in a sense a column representation of the table. Each block of P(x;) is a list of

rows of the table that contain a given value of the variable x;.

37

Representation with partitions P(X), P(Y) is in a sense a row representation
of the table. They can have fewer blocks than those represented with partitions
based on single variables but labels are longer and more memory is needed to store
them. This form is basically the same as the cube representation.

The intermediate cases can be constructed too. The more variables sets X;, Y;
contain the more representation resembles row representation of the table and vice
versa.

Selection of a set of subsets X; and Y; of input and output variables, with which
partition blocks are defined, is one of the fundamental choices one has to make when
constructing Ir-partitions. This is of similar importance as is the variable ordering
for BDDs.

The new representation is a combination of row and column representations of

the data set so the user has more ways of compressing the information:
e by compressing sets of minterms into cubes
e by encoding cubes with new variables (row numbers)
o by selecting set representation for lr-partition blocks

This way, paying the price of higher conceptual complexity, we increase flexi-
bility of storing information contained in the data. By making use of the existence
of repetitive parts of data cubes Ir-partitions can facilitate factorization and de-
composition of multiple-valued functions and relations, especially in the presence
of many don’t cares.

Lr-partitions representation has been created to enable efficient representation
of incompletely specified functions and relations of many variables. If a cube has
standard output don’t cares for all its outputs, it is not stored at all, only care
cubes are stored which for large functions and relations with many don’t cares,
results in savings in both storage and processing time. A MVDD for instance has
to store pointers to the terminal node "DC’. If there are N disjoint DC cubes in a

map, there would be N such pointers, and this number can be exponential in the

38

number of input variables. As a result, the size of Ir-partition representation is at
worst of the order of the number of cares, so it does not depend on the location of
don’t cares.

Using lIr-partitions to represent relations, the set-values of input and output
variables are stored and processed in the same way without loosing the information
about their distinct functionalities. This is another advantage of our representa-

tion, input and output variables are represented in a uniform way.

3.5 Operations on multiple-valued relations

In this section the algorithms to perform basic operations on multiple-valued
relations (functions in particular) will be presented. These few operations (restric-
tion, satisfy, complement, compose) can be combined to perform a wide variety of

more complex operations.

3.5.1 Restriction (cofactor)

Let us first define restriction for multiple-valued relations.

Definition 3.21 (restriction) Let Y = f(X) be a multiple-valued, multi-output
relation defined be a set of cubes C(X UY) = {c;,(X UY)}. The restriction of
Y = f(X) in respect to the cube ¢(X1 UY1) is another relation Y' = f'(X') defined
by a set of cubes C((X — X1)U(Y =Y1)) = {a:((X = X1)U (Y = 1))} such that
¢(X1UY1) =e(X1UY7) and ¢;((X = X1)U(Y —Y1)) and ¢;(X1UY7) are projections
of ¢c;(X UY) on the sets (X — Xq1)U (Y = Y1) and X1 UY] respectively.

For instance a restriction of the function y = f(x1, x, x3) in respect to the cube

xél}xi{go} is the function y' = f'(x1) = f(x1,1,0).

The computational procedure for the simplest case where each of the sets X, Y
contains only one variable is described by Algorithm 1 where B.(x,uy;) is an inter-

section of all the blocks B s and Bys] such that xfi,yfj €c(XiUN).

39

/htp] Restriction: simple case [1] every z; € X — X P(zy) := P(l’J)Bc(Xlqu) every y; €Y =Y P(y;) :=
P(y;)Be(x,uvy)

end

For the general case of sets X;, Y, containing arbitrary numbers of variables, a
more general Algorithm 2 must be formulated. Algorithm 3 describes the process
of computing intermediate blocks needed for determination of blocks B.(x,), Beyy)
and B.x,uy;) in Algorithm 2. This is denoted by sum in the pseudo code of
Algorithm 2.

/htp] Restriction: general case [1]
Compute B.(x,) Be(xy) = Nx,nx,#0 sum(P(X;), c(X; N X1))
Compute B.(y1) Bevi) = Ny,nv, 20 sum(P(Y;),c(Y; N Y1)

Bexyuvy) 1= Be(xy) N Be(vy)
Compute Ir-partitions P(X; — X1) every X; Xi — X1 # 0 P(X; — X1) := P(Xi = X1)Box,uv)
Compute Ir-partitions P(Y; = Y1) every Y; Y; = Y1 # 0 P(Y; = Y1) := P(Y; = Y1)Be(x,uv)

end

/htp] sum(P(X,),c(Xp)) [1]
By(x,) i= B every BCj(X,) € P(X;) Be(x,) = ch(Xp)Qc(Xp) Bcj(Xp) return B.(x,)

end

Notice that the restriction of a relation, represented by sets of Ir-partitions
{P(X;)} and {P(Y;)}, with respect to the cube ¢(X) U Y}) consists of sets of
Ir-partitions { P(X; — Xi)},{P(Y; — Yi)}.

3.5.2 Containment

Let us consider a situation when we have an input-output cube /(X UY') and
we want to check if it is contained in a given function or relation ¥ = f(X)
represented by Ir-partitions {P(X;)},{P(Y;)}. In other words we want to check
if the cube /(X UY) was in the set of cubes used for creation of lr-partitions

representation.

40

In the simplest case cube ¢/(XUY") is a minterm, sets X;, Y; contain one variable
each, and f is a binary function. In this case, each partition P(x;), P(y;) contains
only two blocks (at most) labeled with 0 and 1. Now, for each variable x;, let us
select block By in Ir-partition P(z;) if 2 € (X UY) and block B; otherwise.
Let us repeat the selection process for variables y; and Ir-partitions P(y;). If the
intersection of all the selected blocks is not empty then cube ¢/(X UY') is contained
in the function ¥ = f(X), otherwise it is not. For multiple-valued functions
variables ;,y; may take more than two values and the number of blocks in each
Ir-partition to select from may be greater than two but otherwise the algorithm
remains the same.

For the general case of multiple-valued relations represented by cubes the fol-
lowing procedure can be used to check the containment:

Cube ¢(X UY) is contained in relation Y = f(X) iff the following is true:

ﬂ BC(X,') N ﬂ BC(Y) 7£ @
4 J

where:

U Be,(x))
(Xi)2'(X5)

U Bam
cx(Y)2¢'(Yy)

and ¢(X;), ¢(Y]) are projections of ¢(XUY') on the sets X; and Y; respectively.

Example 3.3

Let us check if the cube (X UY) = xio}xél}xgl}xio}yfl} {1}, where X = {ay,
Tq, T3, ¥4} and Y = {y1,y2}, is contained in the relation from Example 3.2. For
Xy ={a1 1, X = {2}, X5 = {x3}, Xy ={24},Y1 = {y1} and Y5 = {y2} we have:
P(Xy) = {{a,b,d}o,{c, el }s,

P(X3) = {{a,d}o, {b, c.e}1.{d}2}s,

P(Xs) = {{a, c.d}o, {b}1, {€}2}s,

P(Xy) ={{a,b,c}o,{b,d,e}1} .,

)
)
)
)

41

P(Y1) = {{a,¢,e}o,{a,01,{b}2,{d, e}3}y,
P(Y2) = {{a,d, e}o,{a, b, c}1,{a, ¢, d}a}y,
From the definition of containment we have:
Bex) = Uck(X,')Qc'(X,') Be,(x,) and

Uck(Xl);xfO} Be,(x,) = {a,b,d},

Uck(X2);x§1} Bexz) = {0, ¢, €},
Byx,) = Uck(X3)2x§1} B, (x,) = {b}.

Uck(X4);x§°} Bey(xq) = {a,b, ¢},

Uniryaut Bewiry = 1, b
By, = Uck(Yg)Dy{l} Be,vyy = {a,b, ¢},
i Bexy) = 1a,b,d} 0 {b, c,e} N {b} N {a,b,c} = {b},
N; Bev,) = {a, b} N {a,b,c} = {a,b}.
Therefore.

() Bexy N ﬂ By, = {b} N {a,b} = {b} # 0

and cube (X UY) = xio}xél}x:{%l} {03 {1} {1} is contained in the relation from
Example 3.2.

Let us repeat the computations for the relation represented by the second set
of Ir-partitions:
P(X) = {{G}o 000, {b}o 1101, {C}l 100, {d}o 0,201, {6}1 12 1}x1x2x3x4
P(Y) = {{Cl}m 0,1,2, {5}1,2 1, {C}o 1,25 {d}3 0,2, {6}0,3 0}y1y2
From the definition of containment we have:
Bexy = U, (x)20100 200,00 ,00 Beyxy = 105,
Beyvy = U, v)2 0,0 B {G} U {b} = {a,b},
and

Byxy N Byyy = {b} N{a,b} = {b} #0

which again shows that the cube ¢/(XUY') is contained in the relation from Example

3.2.

The containment operation can be used for instance to check whether two

42

relations are equivalent or to find a satisfiability set for a relation.

3.5.3 Complement

Let us consider first a binary function Y = f(X). Each Ir-partitions P(y;) of
that function consist of two blocks By, By. In order to perform the complement
of function f the only thing we need to do is to swap block labels of every lr-
partition P(y;) so that the blocks By and B; will retain their contents but the
labels change their values from 0 to 1 and from 1 to 0 respectively. The similar

procedures can be applied for multiple-valued functions depending of the definition

of the complement [120][107].

3.5.4 Composition

The composition of directed relations can be described by the following equa-
tion:

Y, = fz(Yl,Xz) = Yy = fO(XO)

Figure 3.3: Non-disjoint serial composition.

where:

Y1 = fi(Xy)

XiNnXy=X5

Xo=XiUX,
Yo=Y,

Directed relations (functions in particular) from Figure 3.3 are represented by

Ir-partitions as follows:

43

S ={P(Xa)) {A(Yg))}

Pi(Xy) = {Bexnt Ui X=X
Pl(}/lj) = {Bcln(Ylj)} U]‘ 1/1]' =Y
fo = {H{H{P(X20) }, { P (Vi) }, { P (Yar) }

Po(Xi) = {Beyxont Ui Xoi = Xy
PQ(}/U) = {Bc2n(Y1])} U]‘ 1/1] = 1/1

PQ(}/%) = {Bc2n(Y2k)} Uk Yor = Y5
Jo={{H{Po(Xu)}, {Po(X25) }, { Po(Yar) }}

PO(XM) = {Bcln(Xu‘)} UZ Xli = X1

Po(Xaj) = { Bt U; X2y = Xo
Po(Yor) = { B,y UpYor = Y2

Let P (Y1) = {B.,, o)} and P,(Y1) = {B.,, v }-

The composition of relations f; and f; described by the sets of cubes C'(X;UY})
and C(Y; U X5 U Y3) consists of all possible cubes ¢(X; U X3 U Y3) such that
c(X1 U Xy UY)) is a concatenation of cube ¢(Xy) of f; and cube ¢(X3 U Y3) of fo,
and the value of ¢(Y7) of fi is equal to the value of ¢(Y7) of fi. It is equivalent to
performing the following operation (see [137]):

(C(X7UY) xC(XaUY2))N(C(Xy) x C(Y1U X, UY3))

To perform a composition of relations f; and f; into a relation fy represented
by lr-partitions, Algorithm 4 has been formulated and for simplification the cube
symbols were encoded with integer numbers. The result of composition f, =

{{{Po(X1i) }, { Po(X2;) }}, { Po(Yar)}} consists of lr-partitions based on the sets Xy;,

Xy, and Yi;, the same sets as in the relations f; and f;.

/htp] Composition [1]

Step 1: rr = 0 PI(XsUY1) = Pi(X3)Pi (Y1) P2(XsuYy) = P(X3) P2 (Y1) Step 2: Compute new row
numbers rr and partitions Py(Xayg) every Po(Xag) Po(Xop U X3 UY)) = Po(Xoy) P2 (X3 UY1) every pair of
blocks Bey,(xsuvy) € P1(Xs UY1) and B, (x,,ux;0y;) € P2(X2p UXs UY1) c1i(X3 UYT) C eo5(Xa U YY)
mn pair Bch(Xg,UYl)7B62j(X2kUX3UY1) every pair m € B (x,uy;) and n € Bc2j(X2kUX3UY1) the first of the
sets Xog r[m][n] = rr rr =rr 4+ 1 add r[m][n] to B, (x,,) € Po(Xax)

Step 3: Compute partitions Po(X1y) every P1(X1) every Belix1,) €P (X1x) m € B i(x1,) Add rowm of
rlm][n] to B, (x,,) € Po(Xik)

44

Step 4: Compute partitions Py (Yay) every P> (Yay) every Bc2j(Y2k) € P, (Yar) n € Bc2j(Y2k) Add column n of
r[m][n] to Bc2j(Y2k) € Py(Yag)

end

The fact that the new row numbers rr in Algorithm 4 need to be computed

only once is proved in Theorem 3.5.

Theorem 3.5 (new row numbers) The new row numbers rr in Algorithm 4
need to be computed only for one lr-partition Py(Xzy).

PROOF By Definition 3.20 all the blocks B, (x,,uviux,) of lr-partition Py((Xox —
X3) UYiUX3) = Py(Xo) P2(Yr U X3) which have equal projections coj(Y1 U X3)
contain all the row numbers and only the row numbers from the block Bcé](ylqu)
of lr-partition Py(Y1 U X3) regardless of the value of k. Since m is taken from
B ;(viux,) which doesn’t depend of k, and n taken from B., (x,,uv,ux,) such that
c1:(YiUX3) C eg;(Y1UX3) the set of pairsm,n doesnt depend of k either. Therefore
it is enough to compute the set of new row numbers only for the first of the sets

Xog.

Example 3.4 (composition)

Let incompletely specified relations f; and f; be defined as follows:

45

fi: for
o Ty T3 Y # 1 Tz Ts4 Tz Yo
0 1 0 1 0 0O 0 0 0 1 1
1 0 1 1 1 1 0 0 1 1 1
2 1 1 0 1 2 0 1 0O 0 0
3 0 1 0 0 3 0 1 1 0 1
4 1 0 0 1 0
Pr(X11) = {{1,3}o1{0}10{2} 11 }ayes 5 1 1 1 1 0
Xi2) = {{0}0112, 3ho{1 11 }ases
fie) Py(Y11) = {{0,1,2,3}0{4,5}1 }4,
Pir(Y11) = {{0,3}o{1, 2}1 }y,
Py(Xo1) = {{0,4}00{1}o1{2}10{3, 5} 11 tarsers
Pi(Y1) = (Y1)
Py(X22) = {{2}00{0, 4 o1 {3 }10{1, 5} 11 tasers
(YZl) = {{ a5}0{0a a3}1}y2
Pry(Y1) = Po(Yn)
where:

X = {51?1, 51?2}
X2 = {51?2, 51?3}
Y ={u}
Xo = {51?3, 51?4}
Xo2 = {51?4, 51?5}
Yor = {ya}
X1 =X UXypp ={zy, 20,23}
Yi =Y = {y1}
Xo = Xo1 UXypy ={a3, 24,25}
Yo =Y = {yz}
X3 == X1 N X2 == {1’3}
Our goal is to find a relation fj to be a composition of relations f; and f,. First,
we compute the new row numbers and partition Py(Xs1). Following Algorithm 4

we have:

Pi(XzU Y1) = {{3}o0{2}o1 {0} 10{1 }11 }esm
Py(XzU Y1) = {{0,1}oo{4}01{2, 311015 11 aam
Po(X21 UX3UY)) = Py(Xo1) Po(X3U YY)

= {{0}000{4}001{1}010{2}100{3}110{5}111}x3x4y1

The pairs of blocks that satisfy condition in line 10 of Algorithm 4 are listed
in Table 3.6.

46

B

cri(@ayr) BC?J (w3zayn)

{3}o0 {0}o00
{3}o0 {1}o10
{2} {4}oo1
{0}10 {2}oo
{0}10 {3}H10
{1} {5}hn

Table 3.6: Pairs of blocks (a).

Denoting by m,n the row numbers in pairs of blocks from the column 1 and 2

of Table 3.6 the row numbers for relation fy result as in Table 3.7.

n|0 1 4 5

m

\ 2 3
0 314
1)
2

3

Table 3.7: New row numbers.

Empty boxes in Table 3.7 correspond to the combinations of m,n which don’t
appear in the pairs of blocks from Table 3.6, for instance there is no pair with
number 0 in B.,(x,uy;) and 4 in B, (x, ux,0v7)-

The portions ¢z;(Xa1) = caj(ws14) of the labels in blocks {0}go0, {4}001 are
identical and equal to 00 so the combinations of m,n in pairs containing these two
blocks will account for the new row numbers in block Bgg of Ir-partition FPy(Xa1).
The corresponding combinations of m,n are (3,0) and (2,4), and the new row
numbers from Table 3.7 are {0,2}. ¢gj(23x4) portion of the label is equal to 01
in block {1}o19, combination of m,n is (3,1) and corresponding new row number
from Table 3.7 is {1}. ¢y;(x524) portion of the label is equal to 10 in block {2}1g0,
combination of m,n is (0,2) and corresponding new row number from Table 3.7 is

{3}. egj(x324) portions of the labels are equal to 11 in blocks {3}110 and {5}111,

47

combinations of m,n are (0,3),(1,5) and corresponding new row numbers from
Table 3.7 are {4,5}.
Therefore, Ir-partition Py(X2;) is equal to:

Po(Xa1) = {{0, 2} oo {1 }o1{3} 1014, 5111 }wses

Continuing computations of lr-partitions Fy(X2;) we have:

P (X2 UX3UY)) = Py(Xag) Py(X3UY))
= {{2}0010{0}0100{4 }or01 {3 }1010{1 F1100{5 1111 }ewsaan

The corresponding pairs of blocks are listed in Table 3.8.

Beyi(zan) | Beoy(wazszam)
{3}o0 {0} o100
{3}o0 {1}1100
{2} {4}o101
{0}10 {2} o010
{0}10 {3}1010
{1}11 {5}

Table 3.8: Pairs of blocks (b).

Combinations of m,n are the same as before so from Tables 3.8 and 3.7 the

Ir-partition Po(Xaq) results:

Po(Xaz) = {{3}00{0, 2}01{4}1011, 5111 }wses

To compute Ir-partitions Py(X1;) we check the row numbers contained in every
block B, ;(x,,) € Pi(Xix). For every row number m € B, ,(x,,) we add the row
m of Table 3.7 to the block B, (x,,) € Fo(Xix). Block By of Ir-partition P(Xy)
contains row numbers 1 and 3, so the block By of Ir-partition Po(X11) will contain
new row numbers from the rows 1 and 3 of Table 3.7: {0,1,5}. Following the above
procedure we get the following Ir-partitions Po(X11) and Po(Xi2):

Po(X11) = {{0, 1,5} 01{3, 4 }io{2 1 bora
Po(Xi2) = {{3,4}01{0, 1, 2}i0{5 11 banas

48

To compute Ir-partitions Py(Ya;) we follow the same procedure as for Po(Xq)
but instead of adding rows we add columns of Table 3.7 to the corresponding blocks
of Py(Yar). The column numbers correspond to the numbers contained in blocks

of Ir-partition P»(Y2x). The resulting Ir-partition is:

PO(}/?I) = {{27 3, 5}0{07 L, 4}1}1/2

This corresponds directly to the following set of cubes:

foi

ox Ty T3 T4 Ts Yo
0 0 1 0 0 1 1
1 0 1 0 1 1 1
2 1 1 0 0 1 0
3 1 0 1 0 0 0
4 1 0 1 1 0 1
5 0 1 1 1 1 0

Another situation when the composition is needed is the one shown in Figure

3.4.

a) b) ©

Figure 3.4: Parallel composition.

This case can be described by the following equation:
M1 = fi(X0), Y2 = fo(X2)} = {Y], Yo} = fi(X2, V1) = Yo = fo(Xo)

where Y/ = Y), Xo = XjU X5, Yo = Y/UY5, and sets X7, X; and Y;, Y; can overlap.
As it is shown on Figure 3.4, this case can be reduced to the case from Figure

3.3 and then Algorithm 4 used to obtain relation fy. Before Algorithm 4 can be

49

applied however, Ir-partition P,(Y1) needs to be determined in Figure 3.4b. We
assume that variables in the set Y] at the input to f} can assume any values, they
are all don’t cares. Therefore P5(Y1) will consist of blocks labeled by the same
labels as blocks of Ir-partition P;(Y7), each block will contain all the row numbers
of the relation f5.

After applying Algorithm 4 we still need to compute lr-partitions {Fo(Yix)}.
They can be computed by applying the algorithm used for computing lr-partitions
{Po(X1x)} in Algorithm 4, and is repeated below for clarification.

/htp] Compute partitions Py (Y1y) [1]
every Pr(Yix) every Be, (v;,) € Pr(Y1k) m € By (vy,) Add row m of r[m][n] to Be,(v;,) € Po(Yix)

end

Notice that the composition operation allows us to create lr-partitions repre-
sentation not only from a set of cubes but also from a netlist, decision diagrams,

or BLIF format description.

3.6 Time complexity analysis

3.6.1 Restriction (cofactor)

Time complexity analysis will be based on the number of basic set operations
N, U performed on Ir-partition blocks B.

If the sets X;,Y; contain single binary variables the number of set intersection
operations performed to compute B,(x,uy;) is equal to | X;| 4 [Yi|. Computation
of lr-partition P(x;) (P(y;)) requires two set intersections per binary variable x; €
X — X1 (y; € Y —Y1). Hence, the total number of set intersection operations is
equal to [X3] + Vi| + 21X — X, + [V = Vi) = 2(1X] + [Y]) — (|¥a] + Y]} Gf
X' C X" then | X' — X"| = |X'| = | X"|) where |X| denotes the cardinality of set
X.

In general, when X, Y; contain arbitrary number of multiple-valued variables,

the worst case computing B,(x,uy;) is when every variable z,, € X (y, € Y1) is in

50

a different set X; (Y;) and every block B.(x,) (Byy,)) is a union of all the blocks
in P(X;) (P(Y;)). The number of set union operations (worst case) is therefore
equal to [X:|[P(X;)[+ [YAl|[P(Y;)] = 32, [P(Xi)[+ 22, [P(Y;)|. Computation of ev-
ery P(X;)Bex,uvy) (P(Y;)Bex,uvy)) requires |P(X;)| (|P(Y})|) block intersections.
This totals to >, |P(X;)| + >, [P(Y;)] block intersections, which is equal to the
total number of Ir-partition blocks.

Therefore, the worst case time complexity of the restriction operation is equal

to O3, [P(Xi)] + X, [P(Y))]).

3.6.2 Containment

Let us consider first the situation when |X;| = |Y;| = 1, i.e. each set X;,Y;
contains only one variable. The time complexity of selecting a block that corre-
sponds to a variable value from the cube ¢(X UY') is O(1). Each time the selection
is made, intersection of the selected block with the current intersection result is
performed. This process has to be repeated | X |+ |Y| times, hence, the total time
complexity (expressed in terms of the number of basic set operations U,N per-
formed on lr-partition blocks) is equal to O(|X| + |Y]). For sets X;,Y; containing
more than one variable, the time complexity of computing B.(x,), B«y;) is equal to
O(IP(X,)]), O(|P(Y})]), respectively. Hence, the total time complexity is equal to
O [P(Xi)| + 22, [P(Y;)]) and can be smaller than O(|.X| 4 [Y]).

3.6.3 Complement

Complement operation of binary functions, as described in section 3.5.3, is
performed by swapping block labels of every Ir-partition P(y;) so that the blocks
By and B; will retain their contents but the labels change their values from 0 to
1 and from 1 to 0 respectively. Hence, the time complexity of the complement

operation is O(|Y]).

51

3.6.4 Composition

Let us first consider the simplest case of binary functions and all the sets X, Y
containing single variables. Binary function implies two blocks (labeled with 0 and
1) per Ir-partition. One variable per each of the sets X;,Y; implies the number of
Ir-partitions (number of sets X;,Y;) equal to the total number of variables. Let us
also denote n; = |C(X; U Y])| (the total number of row numbers of relation f;)

and ny = |C(X2 U Y UY3)| (the total number of row numbers of relation f).

Step 1:

Computation of a partition products Pi(X3)Pi(Y1), Pa(Xs)Pa(Y1) requires
performing at most |P1(X3)||Pr(Y1)| 4+ |P2(X3)||P2(Y1)] set intersections. In
the worst case X3 = X; or X3 = X, If X5 = X, then Xy, C X; and
the above expression takes the form |Py(X2)||P(Y1)| + |P2(X2)||P2(Y1)| =
2(|PL(X2) |+ P2(X2)]) < 2(n1+ng) for set Y; containing one binary variable.
For the disjoint case (X5 =0), Pi(X3U Y1) = P (Y1), P2(X3UY]) = Pa(Y7),
the above expression simplifies to |P1(Y1)| + |P2(Y1)] = 4.

Step 2:

e Computation of a partition product Py(Xz)Pa(Xs3 U Y7) requires per-
forming | P2(Xak)|| P2(X3UY7)| intersections. The worst case takes place
if X5 =X, or X5 = X,. Let us assume X3 = Xy, then |P2(X5 U Y])| =
|P2(X5 U YY) = ng and | Pa(Xog)||Pa(X3 U Y1) = 2ny for sets Xog, V)
containing one binary variable each. This step has to be repeated the
number of times equal to the number of sets X,.. For single element
sets Xy that number is equal to | X3|. Hence, the worst case number of
“Iintersection” operations on blocks is equal to 2n,|X;|. For the disjoint
case (X3 = 0) we have |Py(Xap)||P2(X5 U Y1)| = |Po(Xap)||P2(Y1)] = 4

and total number of “intersection” operations is equal to 4| X3]|.

e Operation ¢1;(X3 U Y)) C ¢;(X3 U Y]) needs to be performed | Py (X3 U
Y| - |P2(Xar U X3 U Y7)| times. In the worst case when X5 = X or

Step 3:

52

X3 = Xy we have |P (X3 U Y1)| - |P2(Xopr U X5 U YY) = |P(X2 U YY) -
|P2(Xar U Xo U YY) < nyny (we assume X3 = X3). One operation
c1:(X3 U Y1) C ey(X3 U YY) requires | X5 U Yy | subset operations (5; C
Ssi) so the number of set operations for one set Xy is not greater
than ning - | X3 U Yi| which is equal to nyng| X, U Yi| in the worst case.
This has to be repeated for every set X,;. Hence the total number of
C operations for single variable sets X is equal to ning - | X3 U Yi| -
| X3| = ning - (|X3]? + | X2|). Notice that for binary variables each C
operation is performed on sets of cardinality of at most two and is very
fast (constant time) comparing to set operations on lr-partition blocks
which may contain many elements. For the disjoint case (X3 = 0)) we
have [P (X3 U Y1)| - |Po(Xor U X3 U YY) = [Pi(Y1)] - |[Po(X U YT)| =8
for sets Xy, Y) containing one binary variable each. Hence the total

number of C operations for the disjoint case is equal to 8| X,|.

Insertion of new row numbers rr into the blocks of Ir-partition Fo(X2x)
has to be performed as many times as the number of different rr is,
which is ning (maximum). This has to be repeated for every Ir-partition
P2(Xar). For single element sets Xyi, that number is equal to | X3

Hence, the number of “insert” operations into a block is equal to nyn, -

| X2

For every block of lr-partition Pi(Xyy), every row number m contained in

it implies inserting new row numbers from row m of table r[m][n] into a

corresponding block of Ir-partition FPy(Xix). The whole process has to be

repeated for every Py (X1j) which is | X | times for Xy containing one variable

each. For binary variables there are only two blocks (at most) per Ir-partition,

each containing at most ny row numbers. Therefore the worst case number

of “insert” operations is equal to 2 - ny - | X1]|. The worst case takes place in

the situation when every block of Ir-partition P;(X;) contains all numbers

33

m. Since such situation doesn’t happen very often the number of “insert”

operations is usually much smaller.

Step 4:
Following the reasoning as in the previous step the number of “insert” oper-

ations is equal to 2 - ny - |Y5].

Let as denote by n;, n,the number of operations required to perform set oper-
ations “intersect” and “insert” respectively. Then, the total number of operations

required to perform composition in the worst case (X3 = X3) is equal to:

N =2(ny + n2)n;+
+ 2n| Xo|n; + n1n2(|X2|2 + | X2|) + ninz| Xa|n,+
+ 204 | Xi|na+
+ 2n5|Y3 0,

The total number of operations in the disjoint case (X3 = }) is equal to:

N =4n;+
+ 4| Xa|n; + 8| Xa| + ninz| Xa|n,+
+ 2m1 [Xy [na+
+ 2n5|Y3 0,

For the sets represented by bit sets or hash tables for instance, the values for
n, and n; are 1, and n respectively, where n is equal to n; or ny. Hence, the time
complexity of the compose operation is equal to O(a) where a = nyny| X;,|? for the
worst case and a = nyny|X;| for the disjoint case.

For the sets represented by binary trees the values for n, and n; are logn and
n, respectively (a node corresponds to one element of the set and n is the number
of nodes in a tree). Since the maximum number of elements in a set is ny (ny), the
time complexity of the compose operation in this case will be equal to O(alog, ns).

In the case of BDD set representation, the elements are not stored in separate

nodes of a tree. An element to be stored in BDD requires the number of nodes

54

equal to the maximum number of bits needed to represent one element of the
set and nodes can be shared between different elements (because of node sharing,
the BDD representation can be more compact than the binary tree one). For
BDD representation of a set, the values for n, and n; are n and n respectively, and
n = log, ny (or log, ny) is equal to the maximum number of bits needed to represent
one element of the set. Hence, the time complexity of the compose operation will
be equal to O(alog, ny), which is the same as for the binary tree.

For the general case of multiple-valued directed relations and Xy, Xog, Yig, Yo

containing arbitrary number of variables, the following time complexities result:

Step 1:
The number of “intersection” operations on blocks:
maximum [P (Xa)| |74 (V)] + Pa(Xs)l | Pa(03),
disjoint case: |Pi(Y7)| + [P2(Y1)]-

Step 2:
e The number of “intersection” operations on blocks:
| Po(X3 U Y1)| Do [Pa(Xog)
e The number of subset operations Sy; C So;: |Pr(XsUY1)| Do, [Pa(Xk U
XsUY)|.
e The number of “insert” operations into a block: nyng - [Xs|.
Step 3:

The worst case number of “insert” operations: ny - Y, |Pi(Xiz)|.

Step 4:

The worst case number of “insert” operations: ny - Y, |Pa(Y2r)|-

3.7 Memory Requirements

The starting point for Ir-partitions representation is a relation or function given

in a form of multiple-valued cubes (see Table 3.5). Then Ir-partitions are built

35

for selected subsets of input and output variables (see Example 3.2). Memory

requirement for Ir-partition representation depends on two main factors:

1. Selection of sets X; and Y.

2. Representation of sets of cubes in the partition blocks.

3.7.1 Selection of sets X;,Y;

The data structure described by Theorem 3.4 gives us a lot of freedom in
selecting sets X; and Y;. Since the partition block can be considered an atomic
data structure the analysis will focus on minimizing the number of partition blocks
required to represent a set of cubes. To simplify analysis let us assume that the
number of values each variable can take is equal to m, each set X; contains the
same number of variables k£, and sets X; are disjoint. Then, for a completely

specified function represented by minterms, the number of blocks ng is equal to:

k

ng = m

n
k
where n = | X|, [JX; = X, and X; are disjoint.

In the above formula m,n are constants so ng = f(k) which takes minimum
value for k = 1/Inm. Computation of k for different values of m results in k =
1.44,0.91,0.72,... for m = 2,3,4,.... Since k has to be an integer number greater
than 0 the best choice for k is k& = 1 which leads to {{P(x1), ..., P(x,)}, {P(y1),

. P(yx)}} in Theorem 3.4.

Situation is different, however, if the relation is incompletely specified and the
number of care cubes is a small fraction of the number of all minterms specifying
the relation (as it is often the case for ML data). For instance, if the number of
care cubes grows linearly with the number of input variables, ng will be described
by the following formula:

n e
ng = E]&’n

56

where K is a constant.

The value of ng in this equation decreases if the value of k increases. Since k
can not be greater than n, np takes minimal value for k equal to n and the set
of partitions in Theorem 3.4 reduces to {P(X), P(Y))}. In this case the number
of blocks and their size (one element) are small but the storage required for la-
bels (cubes) increases and becomes the primary factor determining the memory
requirement.

Between these two extreme cases there are many other possible choices for X;
and Yj. Selection of sets X; and Y; can for instance be done based on some heuristic
measures of closeness of variables. Such operation would correspond to definition of
a higher level abstraction and can easily by represented by Ir-partitions. Example
3.2 on page 36 illustrates the two cases described above and shows that a relation
represented with partitions P(X), P(Y') has smaller number of blocks than the one

represented with partitions based on single variables.

3.7.2 Set representation

All operations on lIr-partitions are set operations on the corresponding sets of
symbols (integer numbers in particular) representing blocks. Therefore, any com-
puter package for representing and manipulating sets (and in particular any deci-
sion diagrams package that allows set-theoretical operations), can be used to im-
plement Ir-partitions with no modification: for instance the packages for BMDDs,
EVDDs, KFDDs, K*BMDs, ZBDDs, etc. [87]. In this chapter we present results
of comparison of two set representations: Bit Sets (BS), and Binary Decision Di-
agrams (BDDs). Notations Ir-BDD and Ir-BS will refer to Ir-partition with blocks
represented by BDDs and BSs respectively. Notation BDD will refer to represen-
tation of a function by a single BDD.

57

Binary Decision Diagrams (BDD)

One of the most efficient representations of a large set of objects is a decision
diagram data structure, in particular Binary Decision Diagram (BDD), which has
been very successfully applied to the representation of large binary functions [18].

A question of comparison of BDDs and cube arrays is a much discussed one in
logic synthesis [32, 118]. It is well-known that there are functions, such as parity,
for which BDDs are obviously better, and there are other functions, such as the
one shown by Devadas [32] (or that occur in ML, logic or controller design [118]),
that are more efficiently described using an array of cubes. Let us analyze these
two extreme cases.

One extreme example is a completely specified binary function, similar to par-
ity, and with many input variables. Obviously, in this case, a BDD is better than
an array of cubes because it has a polynomial number of nodes while the array of
cubes has an exponential number of cubes. In this case the minterm symbols for
Ir-partitions are selected to be integer numbers equal to the decimal values of the
corresponding minterms. Thus the size of the output variable block labeled by 1
is the same as that of the BDD for this function. All the input blocks have one
node each. Hence, both representations are comparable in space.

For the other extreme case, let us consider a binary function like those discussed
by [32] that have polynomial number of cubes and exponential number of nodes
in BDD. If the function is specified with cubes, it has n variables and k& cubes,
k<< 2". Very conservatively estimating: in the worst case there is 2(n 4 1)
partition blocks, each represented by a BDD with k nodes (for {{P(x;),{P(y;)}}).
So, the total number of nodes is O(2nk) while the number of nodes in the single
BDD representation would be O(2").

It is advantageous that with a good selection of a cube symbol encodings in
these two extreme cases the Ir-partitions with blocks represented by BDDs are
comparable in size to the better representation of the two: arrays of cubes, or

BDD:s.

38

Examples of multi-output multiple-valued relations can be constructed for
which the advantage over MVDDs would be dramatic for large values of n and
k. There exist practical functions with similar, although not that extreme, proper-
ties [118]. To this category belong functions with many cubes and many variables,
but with still very small ratio of cares to don’t cares. This is the kind of functions
from ML benchmarks [121], but with larger &, n and number of terms. It is our
hope that for larger multi-valued functions or relations the storage advantage of
Ir-partition representation will be even more clearly observable. Such benchmarks,

however, although they exist, are not included into popular sets of benchmarks

such as [SCAS or MCNC [81].

Bit Sets (BS)

To be able to store any subset of a set of n elements, BS is represented by a
vector of n bits. If the i-th element of the set is contained in the subset, i-th bit
of the BS is set to 1, otherwise it is set to 0. Hence, the memory requirement is

[n/8] bytes.

3.8 Experimental results

Notations Ir-BDD and lr-BS will refer to Ir-partition representations with BDDs
and BSs representing partition blocks respectively. Notation BDD refers to rep-
resenting a function by a single BDD. The size of 1r-BS is computed according to

the following formula:

) "# of cubes - # of partition blocks
size = 8

W [bytes]

Where the number of partition blocks for binary function is double the number of
input and output variables (two blocks, labeled 0 and 1, per variable). To compute
Ir-BS/BDD we assume that one BDD node requires 22 bytes of memory [16]. All
the tests were performed on DECstation 5000/240 with 64MB of RAM. Times

are user times measured with accuracy of 1/10 second by the Unix command

59

/bin/time and are given in seconds. For lIr-BDD and BDD representations we
used U.C. Berkeley BDD package with sifting variable reordering method. All Ir-
partitions were based on single variables {{P(x1), P(x2),...},{P(y1), P(y2),...} }.

3.8.1 Binary functions

The testing has been performed on four types of functions: parity, Devadas,
multiply, and on two-level MCNC benchmarks [81]. The reason for using two-level
MCNC benchmarks is that current implementation of Ir-BDD accepts input data
only in the form of multiple-valued cubes similar to Espresso format. This is a
natural representation of input data in ML, and controller design problems.

The examples analyzed in this section are completely specified binary functions
(to allow for comparison with BDD representation) specified by sets of cubes.
Lr-partitions however, allow for representation of multiple-valued functions and

relations which can be incompletely specified.

Parity functions

For parity functions linearly-sized BDD representation (2n—1 nodes) can always
be found. As the comparison of BDD and Ir-BDD representations presented in
Table 3.10 shows, lr-BDD is equally good (2n nodes) for this type of functions.
The Ir-BS representation however, compares poorly to both BDD and Ir-BDD.
This is due to particularly good compression capabilities of BDDs for this type of
functions.

In Table 3.9, time to create Ir-BDD representation is roughly twice as long as
for BDD and this ratio remains constant when the function size increases. The

time to create lr-BS however is much shorter than for the two other cases.

Devadas functions

Another type of functions to be tested were the ones discussed in [32]. The

function has 2n + logn inputs and n? product terms in sum-of-product repre-

60

i/o | # cubes | tgpp | tir—BDD | tir—Bs

[5] [5] [5]
pd | 9/1 512 [03 0.6 0.0
pl0 | 10/1 1024 | 0.6 1.6 0.1
pll | 11/1 2048 | 1.5 3.6 0.2
pl2 | 12/1 4096 | 3.7 83| 05

pld | 14/1 16384 | 19.2 40.8 2.7
pl6 | 16/1 65536 | 97.1 194.8 11.8

Table 3.9: Parity functions: construction time.

Ir-BDD | BDD | 1r-BS | Ir--BDD
nodes | nodes | BDD BDD

P9 18 17 3.42 1.06
pl0 20 19 6.74 1.05
pll 22 21| 13.30 1.05
pl2 24 23 | 26.31 1.04
pld 28 27 1 103.43 1.04
pl6 32 31 | 408.40 1.03

Table 3.10: Parity functions: size.

sentation and O(2"/%) nodes in BDD representation under any possible variable
ordering. The functions d8, d10, d11, d12 in Tables 3.11 and 3.12 correspond to
n = 8,10,11,and 12.

In terms of memory requirement both Ir-BS and Ir-BDD are better than BDD
in this case. However, Ir-BS memory requirement increases with the number of
cubes and eventually may become greater than BDD. On the other hand, lr-BDD
to BDD ratio decreases with the number of cubes. The larger the number of cubes
the better Ir-BDD comparing to BDD.

The time t,_gpp needed to construct lr-BDD increases slower than the time
tgpp needed to build BDD and the ratio tgpp/t,—gpp increases from 1.79 for d8
to 4.76 for d12. The time t,_gs to create 1r-BS is, as before, much shorter than
for BDD and 1r-BDD.

As we can see from the results of testing on Devadas functions, BDD doesn’t

61

compare well to any of Ir-BDD and 1r-BS.

i/o | # cubes | tgpp | ti—BDD | tir—Bs
[s] [s] [s]

ds8 19/1 2038 23.3 12.8 0.3
d10 24/1 10308 251.2 104.8 2.7
d11 26/1 22631 831.6 249.9 7.0
d12 28/1 49151 | 2984.5 632.3 16.4

Table 3.11: Devadas functions: construction time.

Ir-BDD | BDD | Ir-BS | Ir-BDD

nodes | nodes | BDD BDD
d8 1743 | 1610 | 0.29 1.08
d10 3372 | 5331 | 0.55 0.63
dil 2403 | 16445 | 0.42 0.15
dl12 11930 | 20784 | 0.78 0.57

Table 3.12: Devadas functions: size.

Multiplier functions

Another type of function is n-bit multiplier function which requires O(27/8) =
0O(1.09") nodes in single BDD representation [19]. Functions m6, m7, m8, and m9
in Table 3.14 correspond to n = 6,7,8 and 9. As it can be seen from Table 3.14
the size of Ir-BDD increases slower than that of BDD. This would indicate that
the number of nodes of Ir-BDD is less than O(1.09").

The time needed to construct lr-BDD is about 1.5 times smaller than for BDD
for multiplier functions in Table 3.13. For Ir-BS that factor is even greater and is

of order of 30.

MCNC benchmarks

The result of testing on MCNC benchmarks [81] is shown in Tables 3.15 and
3.16. The Ir-BS representation appears to be smaller than BDD representation in

62

i/o | # cubes | tgpp | ti—BDD | tir—BsS
S| B | B

mb6 12/12 4096 11.0 22.4 1.0
m7 14/14 16384 75.0 124.8 5.1
m8 | 16/16 65536 | 461.2 663.7 23.2
m9 18/18 262144 | 2419.5 3930.9 | 108.3

Table 3.13: Multiplier functions: construction time.

Ir-BDD | BDD | Ir-BS | Ir-BDD

nodes | nodes | BDD BDD
m6 1109 | 1103 | 1.01 | 1.0050
m7 3116 | 3109 | 1.68 | 1.0020
m8 8849 | 8841 | 2.70 | 1.0009
m9 25063 | 25054 | 4.20 | 1.0004

Table 3.14: Multiplier functions: size.

73% of cases. The Ir-BDD representation however, is larger than BDD in most of
the cases.

For most of the functions in the table the number of cubes is much smaller
than the number of minterms required to represent the same functions and, as
the analysis in Section 3.7.1 shows, lr-partitions based on sets of variables (P(X}))
instead of single variables (P(x;)) should be less memory consuming here.

BDD representation for benchmarks apex3 and seq failed to terminate success-
fully as it didn’t fit into computer memory. The Ir-BDD representation terminated
without any problem for the same benchmarks. This would indicate that Ir--BDD is
less memory consuming when creating the representation. This can be explained
by the fact that Ir-BDD consists of many small shared BDDs which are incre-
mentally created and processed while reading the data. On the other hand, BDD
representation consists of one large DAG which may temporarily grow beyond ca-
pacity of the available memory while reading the data and performing necessary

transformations.

i/o # cubes | tgpp | tir—BDD | tir—Bs
S 5| B

apexl 45/45 1440 | 82.4 31.0 0.8
apex?2 39/3 1576 | 42.2 31.0 0.6
apex3 54 /50 1036 - 20.1 0.7
apex4 9/19 1907 1.9 13.8 0.3
apexd 117/88 2710 7.2 120.9 4.6
seq 41/35 2014 - 47.5 1.0
table3 14/14 1686 1.8 19.5 0.3
tableb 17/15 1600 1.7 21.8 0.3
cps 24/109 855 3.2 10.3 0.5
cordic 23/2 2105 4.0 14.0 0.5
duke? 22/29 404 0.7 4.1 0.1
e64 65/65 327 3.5 5.0 0.2
ex1010 10/10 1297 2.4 9.7 0.1
ex4p 128/28 654 2.5 19.8 0.8
misex?2 25/18 101 0.1 0.5 0.0
misex3 14/14 1391 4.0 15.5 0.2
misex3c | 14/14 1566 2.3 16.3 0.3
pdc 16/40 822 1.6 7.9 0.2
spla 16/46 837 1.3 8.5 0.2
t481 16/1 841 0.7 4.5 0.1
vg?2 25/8 304 0.9 2.8 0.0
alud 14/8 1184 2.6 12.4 0.2
dxpl 7/10 141 0.0 0.4 0.0
9sym 9/1 158 0.1 0.6 0.0
bw 5/28 93 [0.1 02| 00
clip 9/5 271 0.2 1.3 0.0
exop 8/63 208 0.4 0.8 0.0
inc 7/9 94 0.0 0.3 0.0
rd53 5/3 67 0.0 0.1 0.0
rd73 7/3 274 0.1 1.1 0.0
rd84 8/4 511 0.2 2.3 0.0
sa02 10/4 137 0.1 0.5 0.0

Table 3.15: MCNC benchmarks: construction time.

63

Ir-BDD | BDD | Ir-BS | Ir-BDD

nodes | nodes | BDD BDD

apexl 4877 | 1345 | 1.09 3.63
apex? 5594 730 | 1.03 7.66
apex3 3384 - - -
apex4 4012 892 | 0.68 4.50
apexh 7435 | 1130 | 5.59 6.58
seq 6202 - - -
table3 4311 778 | 0.69 5.54
tableb 4387 711 | 0.82 6.17
cps 2550 | 1072 | 1.21 2.38
cordic 2136 61| 9.84 35.02
duke?2 1364 392 | 0.60 3.48
e64 918 229 | 2.12 4.01
ex1010 3605 | 1314 | 0.23 2.74
ex4dp 2952 535 | 2.17 5.52
misex?2 369 78 | 0.65 4.73
misex3 4616 695 | 0.64 6.64
misex3c 3976 499 | 1.00 7.97
pdc 2820 609 | 0.86 4.63
spla 2598 576 | 1.03 4.51
t481 1368 32| 5.12 42.75
vg2 1139 301 | 0.38 3.78
alud 3478 800 | 0.37 4.35
5xpl 388 55 |1 0.51 7.05
9sym 485 26 | 0.70 18.65
bw 228 105 | 0.34 2.17
clip 759 92 | 047 8.25
exhp 562 242 | 0.69 2.32
inc 265 68 | 0.26 3.90
rd53 180 19| 0.34 9.47
rd73 661 351 0.91 18.89
rd84 928 48 | 1.45 19.33
sa02 459 89 | 0.26 5.16

Table 3.16: MCNC benchmarks: size.

64

65

3.8.2 Multiple-valued functions

Table 3.17 shows a comparison of selected benchmarks from [121] and [17] in
terms of memory requirements for representation of partition blocks by BDDs and
BSs. Value in column 4 (part blocks) is equal to the total number of partition

blocks for a given benchmark.

i/o | cubes | part | [r-BDD Ir-BS

blocks | nodes | Ir-BDD

700 16/1 101 46 412 0.07
shuttle 6/1 15 18 43 0.04
breastc 9/1 699 92 3638 0.10
balance 4/1 625 23 652 0.13
lenses 4/1 24 12 23 0.07
trains 32/1 10 107 98 0.10
trains20 29/1 20 109 185 0.08
car 6/1 | 1728 25 1163 0.21
employl 7/1 | 18000 33 4292 0.79
employ?2 9/1 | 9600 31 1802 0.94
programm | 12/1 | 20000 A7 | 70447 0.08

Table 3.17: Multiple-valued benchmarks.

As it can be seen from Table 3.17, in all the cases Ir-BS is smaller than Ir-BDD,
even for functions with a large number of cubes. However, the ratio Ir-BS/Ir-BDD
not only depends on the number of cubes but also on the structure of the function.
For instance, function employ2, which is much smaller than programm, has Ir-
BS/Ir-BDD = 0.98, much larger than the value of 0.08 for the programm function.
If that ratio depended only on the number of cubes the relation would have been

opposite.

3.9 Summary

We have presented a new data structure (Ir-partitions) and shown that it can

be used to represent not only binary functions but also a broader class of multiple-

66

valued, completely and incompletely specified relations (functions in particular)
which are typical in Machine Learning and complex FSM controller optimization
applications. It can easily be used to represent distributed data sets for distributed
data mining applications.

Characteristics of lr-partition representation can be summarized as follows:

e Ir-partitions representation is a natural representation for distributed data
bases with vertically partitioned datasets (in opposite to decision diagrams

and cubes representations).

e 1-BDD based on single variables (P(x;), large partition blocks, small la-
bels) have characteristics similar to BDD representation. If Ir-BDD is based
on larger sets (P(X), small partition blocks, large labels) then they more

resemble cube representation of the function.

e Multiple values of both input and output variables can be easily represented.
This is especially important in ML, and complex FSM controller optimization

applications to express uncertainty of choice of variable’s values.

o [t can easily handle situations where a variable is not present in a given cube

(Michalski’s train benchmark [85] and "~ in Espresso format).

e By selection of sets X; and Y, Ir-partitions can be dynamically adjusted to
a given type of data (completely vs. incompletely specified, many cubes vs.

few cubes) to minimize memory requirements.

o by selecting a set representation for lr-partition blocks, characteristics of the
whole representation can be significantly changed. Two such representations,
BDDs and BSs, have been compared in this chapter, but other representa-
tions (OBDDs, BMDDs, EVDDs, KFDDs, hash tables, etc.) can be used

too.

e by making use of the existence of repetitive parts of data cubes, Ir-partitions

can facilitate factorization and decomposition of multiple-valued functions

67

and relations, especially in the presence of many don’t cares; we implemented
a decomposer of multiple-valued relations which can decompose large func-
tions and relations from ML and controller domains. It was shown in [97] that

this representation is not only compact but also allows for a fast processing.

e Ir-partition representation constructed from a canonical representation (BDD,
canonical cubes [9] [8][10][11], minterms with specified order) can be made

canonical.

Comparison of lr-partitions, with BS representing partition blocks (Ir-BS), and
single BDD shows superiority of lr-partitions in most of the binary MCNC' test
cases (73% of the benchmarks), lr-BS was also smaller than lr-BDD on all the
multiple-valued benchmarks. If the number of cubes describing a function or re-
lation is large (tens of thousands) then representing partition blocks with BDDs
(Ir-BDD) is usually less memory consuming than with BSs (Ir-BS).

We believe therefore that Labeled Rough Partitions are a new and very promis-
ing general purpose data structure for large binary and multiple-valued functions

and relations especially in distributed data and computations environment.

68

Chapter 4

DECOMPOSITION

4.1 Introduction

The idea of decomposition of a complex system into an organized set of simpler
subsystems to simplify the system description is not new. In cognitive science it is
known as Functional Analysis [28]. The basic idea is that the system is viewed
as computing a function. Functional analysis is a process of decomposing that
function into a structure of simpler subfunctions in a hope that the result will be
easier to explain (Occam razor principle). Each subfunction can be viewed as a
definition of a certain concept!.

There are two main approaches to the analysis of complex systems: proba-
bilistic and non-probabilistic.

Probabilistic approach requires an existence of a global probability distribu-
tion over the variables of the system. In practice the true probability distribu-
tion is rarely available and we can only collect frequencies associated with the
combinations of system variables values (tuples). These frequency values can be
normalized to the total number of observations and used for approximation of the
true probability distribution over the variables of the system. The decomposition
of probabilistic systems consists on determination of a set of simplest marginal
probabilities describing the system.

Non-probabilistic approach results from the situations where collecting a sta-
tistically reliable information on the global frequency (probability) distribution
may be impossible or unreasonable. The decomposition in this case consists on

determination of a set of simplest possible relations describing the system.

'Webster: Concept - an idea of what a thing in general should be

69

A system is called directed if there exist a dependency relation between groups
of variables, one set of variables acts on another set of variables, the values of some
variables depend on the values of some other variables. If the system is not directed
it is called neutral (see also Definitions 3.14 and 3.15 p.30).

A directed relation is called a function if the dependent variables can not take
different values for the same combinations of independent variables. The notions
of directed relation and function were constructed by imposing constraints on the
most general notion of relation.

The decomposition of complex systems was analyzed by many researchers in
the past. In the terminology of general systems science both decomposition and
composition are known under the name of reconstructability analysis [52].

The approach presented by Ashby [6], Klir [51], Krippendorff [61], and Conant
[26] consists of generating a lattice of possible decomposition structures and eval-
uating them in terms of both complexity and accuracy using either set-theoretic
(non-probabilistic approach, Hartley’s uncertainty [45]) or information-theoretic
(probabilistic approach, Shannon’s uncertainty [112], transmission and derivatives)
measures. A structure that results in the smallest complexity and yet describes
the data with a high accuracy is selected to be a best solution. Reconstructability
analysis of directed systems was further clarified by Zwick in [135].

An excellent, concise overview of decomposition approaches developed within
the framework of general systems methodology (reconstructability analysis) is pre-
sented in [137] and extended bibliography of reconstructability analysis as a whole
is provided in [1]. Some additional details on set-theoretic approach to recon-
structability analysis are presented in [27] [136].

The approaches presented above can be characterized as using uncertainty mea-
sures as a main tool for discovering and extracting simple subsystems from a com-
plex system. The number of system variables remains unchanged in the process of
decomposition. A distinctively different approach to the decomposition of complex

systems emerged as an extension of approaches used for the decomposition of bi-

70

nary functions. A broader range of methods is used here (mostly non-probabilistic)
to decompose complex structures and new variables are introduced to the resulting
structure to achieve further complexity reduction.

The theory of decomposition of binary functions [7], [29] was extended to
multiple-valued, completely and incompletely specified functions by Karp [50].
Lendaris and Stanley use Ashenhurst-Curtis type decomposition to construct a
cascade of functional blocks (concepts) matching given data [71]. The approach
presented by Walliuzzaman [125] resembles Curtis approach for binary functions
[29] but when Curtis investigates all possible decompositions to select the best one,
Walliuzzaman develops a set of conditions for easy selection of decomposition that
leads to a simple solution. Abugharrbieh and Lee [3] and [4] extend Shen’s algo-
rithm for binary functions [113] on the multiple-valued functions. Their method
operates on functions that may be given either by truth tables or algebraic ex-
pressions. Luba [75] uses partition based method to decompose multiple-valued
functions. In general, Ashenhurst-Curtis type decompositions correspond to ex-
tracting new concepts from data while the approach presented by Fang and Wojcik,
to describing data in terms of predefined, existing concepts.

All the above algorithms start from an initial function and decompose it step by
step by extracting smaller subfunctions. Another, compositional approach to de-
composition of multiple-valued functions is presented by Fang and Wojcik [37]. In
their approach the original function is expressed by a composition of subfunctions
taken from a library of already predefined functions. Another approach presented
in [40], [34], [47] [48], [49] is based on representation of multiple-valued functions
in terms of MTMDD (multi-terminal, multiple-valued decision diagrams). MT-
MDD approach was used only for disjoint decomposition of completely specified
functions (with the exception of [40] where disjoint decomposition of incompletely
specified functions is presented). Most of these algorithms present decomposition
results for functions with no more than 10 input variables and they assume that

functions are homogeneous (all the variables are of equal cardinality). MTMDD

71

based methods were used for disjoint decomposition only.

Comprehensive review of existing methods, and presentation of new ideas for
functional decomposition of binary, multiple-valued and continuous functions is
presented in [96] and [94]. Based on that work new algorithms for functional de-
composition of incompletely specified, multiple-valued functions were developed
and implemented in program GUD [95]. GUD was the first program able to per-
form multi-level decomposition of large, incompletely specified, multiple-valued
functions. Some of the ideas presented in [96], [94], and [95] were next implemented
in program HINT [134][133]. Theory and implementation of the first multi-level
decomposer (MVGUD) for large multiple-valued directed relations were presented
in [97].

In this chapter we will present algorithms for decomposition of non-probabilistic
directed and neutral relations as well as probabilistic neutral relations. These three
approaches will be analyzed separately as they require slightly different algorithms.

The method of decomposition of directed relations described in this dissertation
follows the main ideas from [97] but uses a different data structure to represent re-
lations. It transforms a multiple-valued incompletely specified function or relation
into a multi-level structure and doesn’t depend on particular assumptions about
the nature of the blocks of the structure. The transformation process is based
on Ashenhurst-Curtis type serial decomposition and introduces new variables to
reduce the cost of the final solution.

One step of Ashenhurst-Curtis type decomposition consists of forming a de-

scription of the initial relation fo(Xo) in terms of other, less complex relation

f1(X1) and input variables X:

Yo(Xo) = f2(f1(X1), Xz)

where X7, X, are sets of input variables and Xy = X; U X, sets X; and X; may
overlap. If X; and X, overlap (X; N X3 # () decomposition is called non-disjoint,

otherwise it is called disjoint.

72

Figure 4.1: One level serial decomposition: fo(Xo) = fo(f1(X1), X2).

Original relation fo(Xo) is being represented in terms of variables of a new rep-
resentation space {Y7, X3}, more suitable for the problem description. The initial
representation space Xo = X7 U X, was divided into two subspaces (not necessarily
disjoint) and one of them used to define a new concept fi1(X;) (see Figure 4.1).
The selection of X, X3, and determination of f; is carried out in such a way as to
minimize the overall complexity measure of the result. According to the general
Occam razor principle this should result in better generalization properties of the
final solution. The decomposition process is repeated iteratively until the terminat-
ing criteria are met. At each decomposition level a local optimization is performed
and the resulting blocks represent relations (functions in particular). Once the
decomposition is terminated these relations may provide additional choices for the
final, global optimization.

An example of a relation with binary inputs and a single multiple-valued output
is shown in Table 4.1. Observe, that not all the combinations (minterms) of the
input variable values are present in the table. Values in the column corresponding
to the output variable y; include the so-called set-values defined in Section 3.2. If,
for instance, the values the variable y; can take have the following meanings: 0 - a
chair, 1 - an armchair, 2 - a desk, 3 - a table, 4 - a bench, then the set-value {0,1}
in the first row means “a chair or an armchair”. The value 0 means a definite
answer “a chair”, and the set-value {0,1,2,3,4} corresponds a complete unknown,

“.” Minterms for which the value

often referred to as don’t care and denoted by
of the dependent variable y; is unknown (don’t care) are not stored in the table

(there is no row for the minterm xjx9x524 = 1111). In general, for the relations

73

Ty T2 T3 Ta | Y1
0,1
1,2
0
0,3
0,3
0,4
0,3
1,3
0,1
2.3
1,4
2.3

O 0~ O Ui W~ O
— O Ok, O oo O == = O
_— = = 0000000 oo

—_ =
_ O

O RO oo MR, PO, OD
O OO~ HEH O, RFEFEO OO

Table 4.1: Multiple-valued relation.

with an arbitrary number of dependent variables, the minterm is not stored only if
the values of all the dependent variables for this minterm are equal to dont care.

In multiple-valued systems, the entire classical decomposition approach is con-
siderably more complex than for binary systems because of the associated com-
binatorial explosion. However, this is not the case for weakly specified relations
and functions, and an appropriate decomposition approach can be made efficient
by utilizing dont cares. It can be observed that in the area of circuit design the
percent of don’t cares is not more than 90%. In Machine Learning, this percent is
usually larger than 99%. Arbitrarily, we will define the relations with more than
95% don’t cares to be weakly specified (they will be also referred to as strongly un-
specified relations). Let us also observe, that the greater the cardinality of a don’t
care is ({0,1} vs. {0,1,2} for instance), the more strongly unspecified relation is.
The smaller the cardinality of a don’t cares is, the more the relation resembles a
function.

The chapter is organized as follows: Section 4.2 presents decomposition of
multiple-valued functions and directed relations (non-probabilistic), Section 4.3

presents a new approach to decomposition of probabilistic neutral relations, Sec-

74

tion 4.4 presents an approach to decomposition of non-probabilistic neutral rela-
tions, Section 4.5 introduces cost measures used for the evaluation of decomposed
structures, Section 4.6 discusses optimization issues related to minimization of the
cost of decomposed structures, Section 4.7 presents examples of decomposition
of various multiple-valued and binary relations, and Section 4.8 summarizes the

chapter.

4.2 Decomposition of non-probabilistic directed relations

In this section we only consider a decomposition of directed relations and func-
tions that are discrete and non-probabilistic. The method presented here performs
a multi-level Ashenhurst-Curtis type decomposition [7, 29]. One decomposition
step consists of forming a description of an initial relation fo(Xg) in terms of

another, less complex relation fi(X;) and variables from the set X, (Figure 4.1

p.72).

fo(Xo) = fa(f1(X1), X2)

The relation fi(Xy) is extracted (discovered) in the decomposition process and

introduces a new variable to the original set of system variables.

Lemma 4.1 (conditions for P(X) < P(Y)) Let the directed relation Y = f(X)
be defined by a set of input-output cubes C(X UY). Then P(X) < P(Y) iff for
every subset of input cubes {c;(X)} C C(X) such that their intersection ci(X) is
a proper cube, the intersection of the output cubes {c;(Y)} C C(Y) corresponding
to the inpul cubes in B, (x) is also a proper cube.

PROOF

1. Let us assume that P(X) < P(Y). According to Definitions 3.16 (p.31) and
3.8 (p.29) the intersection of block cubes of P(X) is not empty iff there exists

a cube ¢ (X)) which is contained in every cube of that block. The same is true

for blocks of P(Y'). By Definition 3.18 (p.33) each block of P(X) is contained

75

in at least one block of P(Y'). Since P(X) and P(Y') both partition the same
set of cubes C(X UY') then for every ¢(X) in the block B of P(X) there
exists ¢(Y') in a block of P(Y') such that ¢(X) and ¢(Y') are part of the same
input-output cube ¢«(X UY).

2. Let us now assume that for every subset of input cubes {¢;(X)} C C(X)
such that their intersection c,(X) is a proper cube, the intersection of the
output cubes {c;(Y')} C C(Y) corresponding to input cubes in B, (x) is also
a proper cube. If the intersection cx(X) of a subset of the input cubes is
proper, then, by Definition 3.16 (p.31), cx(X) defines an Ilr-partition block
B, (x) containing that set of cubes. The same is true for the subset of output
cubes. B, (x) contains the largest subset of input cubes having c,(X) as its
intersection. The corresponding block of P(Y') contains at least the same
cubes as the block B, (x) does. Hence by Definition 3.18 (p.33) P(X) <
P(Y).

Corollary 4.1 [fthe directed relationY = f(X) is defined by a set of input-output
cubes C(XUY) and for every ¢;(X), ¢;(X) € C(X), cubes ¢;(X),¢;(X) are disjoint
then P(X) < P(Y).

PROOF Since input cubes are disjoint then by Definitions 3.16 (p.31) and 3.17
(p.33) P(X) consists of single-element blocks only and by Definition 3.18 (p.33)

is not greater than any other partition defined on the set of cubes C(X). Hence,
since C(X) and C(Y) are isomorphic, P(X) < P(Y).

For functions, if a subset of input cubes {¢;(X)} C C(X) has a proper cube
intersection then the corresponding output cubes are equal. This means that the
conditions of Lemma 4.1 are always satisfied and for every function Y = f(X) the
condition P(X) < P(Y) is true.

For relations, the set of input-output cubes defining a relation may not always
satisfy the conditions of Lemma 4.1 but it can always be converted to a form which

satisfies these conditions. For instance two input-output cubes z129y? and z129y}

76

which input parts are equal and output parts do not have proper cube intersection
can be combined into one cube z!29y" that satisfies the conditions of Lemma 4.1.
In general the transition to the form satisfying conditions of Lemma 4.1 can always
be done by making the cubes disjoint (by using sharp operation for instance) and
combining cubes with identical input parts.

The following theorem states the conditions for the existence of serial decom-

position:

Theorem 4.1 (decomposition) Let the relation Yo = f(Xo) be defined by a set
of input-output cubes C'(Xo U Yy) and bound and free sets X1, Xz, X1 U Xy = X,
be given. Then the set of cubes C'(Xo U Yo U Y]) defines a serial decomposition
Yy = fa(fi(X1), Xy), Yo = Yo, YI = fi(X1), of the relation Yo = fo(Xo) if the

following conditions are satisfied:

P(X1) < P(Y1),and
P(X)P(Y]) < P(Y)

PrROOF Condition P(X1) < P(Y1) means that Y1 = fi(X1) is either a func-
tion or relation satisfying the conditions of Lemma 4.1. Condition P(X3)P(Y7) <
P(Y3) means that Yy = fo(X2 UY1) (Theorem 3.2) is either a function or relation
satisfying the conditions of Lemma 4.1. Since relation < on lr-partitions ts tran-
sitive (if P(X) < P(Y') and P(Y) < P(Z) then P(X) < P(Z)) and the partition
product is always less or equal to any of its components so from the first condition
the second condition of the theorem can be rewritten as P(X2)P(X1) < P(Y3). By
Theorem 3.2, P(X2)P(X1) = P(X1 U X3) = P(Xy). Since Yy = Yy then the sec-
ond condition can be finally reduced to P(Xo) < P(Yy) which means that relations
Yi = fi(X1) and Yy = f2(X3 U YY) can be combined into a function or relation
Yo = f(Xo) satisfying the conditions of Lemma 4.1.

According to Theorem 4.1 the decomposition problem can be reduced to the
problem of finding an lr-partition P(Y7) satisfying the conditions of the theorem.
It is easy to check however, that P(Y;) = P(X;) always satisfies the conditions

77

of the theorem. Is this the solution we are looking for? The answer is no. Our
goal is to find a structure which complexity is smaller than the complexity of the
original block. If P(Y;) = P(Xy) then the block fi of the decomposed structure
represents a direct connection of variables from the set X to the input of the block
fa. Therefore the block f; is equal to fo and the decomposed structure is identical
to the original one. To evaluate the cost of decomposed structure and compare
it to the original block an appropriate cost measure is needed. The discussion of
various cost measures and their comparison will be provided in Section 4.5 (p.87).
The problem of determination of P(Y7) satisfying conditions of Theorem 4.1 and
minimizing the complexity will be discussed in Section 4.6.1 (p.104).

Algorithm 6 presents implementation details of the decomposition strategy.
The program inputs are the relation to be decomposed Ry and the minimum size of
the block R; user_min_size to be extracted from Ry. The value of user_min_size
characterizes the smallest decomposition unit and in the current version of the

program is defined by the number of block inputs.

It] Decomposition strateqy

[1] Input: R: X — Y relation to be decomposed user_min_size user specified minimal relation size Output:

Stinat set of the relations after decomposition

Sr =R Sg is a set of the relations to be decomposed Sging =0

Sk is not empty size = user_min_size Ry = neat_element(Sy) sizeof(Ro) > size (R1, R2) = decompose_optimized(Ry,
size) add Ry and Ry to Sg R1 = EMPTY and Ry = EMPTY increase size sizeof(Rg) = size add Ry to

Stinat sizeof(Ro) < size or Ry # EMPTY or Ry # EMPTY

end

The program keeps two sets of relations which are dynamically updated in the
process of decomposition. The first set is a set of relations to be decomposed
Sk and the second set is the set of relations which form the final solution Sy;p.
They are initialized in lines 7 and 8. Set S contains initially only one relation
Ry. At each decomposition step one relation is removed from Si and decomposed

(function decompose_optimized()). The result of decomposition is added to Sg

78

Pool of blocks to be decomposed

. Rle
S

Pool of final blocks —J size=user_min_size
Ro
Ro >size

decompose_optimized
Ro7RR,

W

YES

decomposition
exists

NO

increase size

Figure 4.2: Algorithm 6: Decomposition strategy.

and the whole process repeated again (lines 13-15). If the size of the relation re-
moved from Sgi for decomposition is equal to the current minimal size size, then
the relation is not decomposed but added to the set Syiq (lines 16-17). The
function decompose_optimized() (Algorithm 8 p.124) finds an optimum solution
based on the criteria described in Section 4.6 p.104. However, if the function de-
compose_optimized() can not find a decomposition for a given minimum allowable
block size size then the relations Ry and R returned by decompose_optimized()
are empty. The fact that a block of size size can not be extracted from Ry means
that concepts hidden in the data are too complex to be described by a block of

that size. In such a case the minimum allowable block size size is increased (lines

79

16 and 17) and decomposition for the same Ry attempted again. Increasing size
before the next decomposition attempt allows for extraction of more complex con-
cepts from data. Function decompose_optimized() is described by Algorithm 8 in

Section 4.6 (p.124).

4.3 Decomposition of probabilistic neutral relations

An approach to decomposition of probabilistic relations presented in this section
is significantly different from the approaches used by Ashby, Conant, Klir, and
Krippendorff described earlier. In contrast to the methods developed by these
researchers it doesn’t use uncertainty as a main decomposition tool and introduces
new variables in the decomposition process to decrease the complexity of final
solution.

The main idea is to transform a probabilistic relation to a non-probabilistic
function. A discrete probabilistic relation can be represented by a set of tuples
with corresponding frequency or probability distribution. As such, it can be viewed
as a probability density function and decomposed using approach developed for
non-probabilistic directed relations. For the decomposition sake the frequency (or
probability) distribution is considered to be a dependent variable and relation’s
variables to be independent variables. Then, the approach used for the decompo-
sition of non-probabilistic relations presented in Section 4.2 (p.74) can be applied
to perform the decomposition.

A slightly different decomposition algorithm will be presented in the following
sections. It is a close derivative of the algorithm presented in Section 4.2 (p.74)
but the interpretation of the extra variables created in the decomposition pro-
cess is different. In the previous method the extra variables were interpreted as
dependent variables by the decomposition procedures. An opposite approach is
presented below where the extra variables created in the decomposition process
are interpreted as being independent.

To simplify the description of the algorithm, the presentation of the decompo-

80

sition procedure will be based on tabular representation of probabilistic relations.
The software implementation, however, uses Ir-partition representation [44],[43],
which is more suitable for representation and manipulation of large multiple-valued
relations.

Without lost of generalization we will reduce our analysis to binary relations
(two variables) only. It is justified by the fact that any k-ary relation (Definition
3.13) can be reduced to a binary relation R C S, x Sy where S, and 5, are sets of

n-ary and m-ary tuples respectively and n + m = k.

Data transformation

If the data table contains frequency values they can be directly used for the de-
composition but doing so is often impractical. For instance if two frequency values
differ by only 1% of the total range they can safely be treated as the same value.
If the table contains probabilities their values have to be discretized. In both cases
we assign one value to all values from a certain range to reduce the number of pos-
sible choices; we perform discretization of the dependent variable. The most often
used discretization method, uniform binning, divides the space of each variable
values into a number of equally sized bins. Another type of discretization methods
is based on the entropy measure [20], [39] and use minimum entropy criterion to
assign the values to different bins and often yields better results.

Example 4.1 shows an application of a uniform binning procedure for reduction

of the total number of different frequency values in the data table.

Example 4.1

Let’s take the relation from Figure 4.3¢ and assign the values in the table to two
equally spaced bins labeled by 0 and 1. As a result we obtain the table in Figure
4.3b. The tables in Figures 4.3¢ and d correspond to assignments to 5 and 10

equally spaced bins respectively.

Figure 4.4 shows another example of transformation of data. Figure 4.4b was

created from Figure 4.4a by setting up a threshold on cell frequencies. All the

81

cells with frequencies greater or equal to 70 were assigned value 1, those with
frequencies smaller than 70 were assigned value 0. If we designate variables a and
b to be independent variables and variables ¢ and d to be dependent variables
then functions ¢ = fi(a,b) and d = fy(a,b) are binary functions AND and OR
respectively. If the threshold on the cell frequencies will be set up on 50 instead of
70, we will obtain the table from Figure 4.4c.

The Figure 4.4¢ doesn’t represent a function anymore. It can be either in-

cd cd
b 00 01 11 10 s 00 01 11 10
00| 77 | 57 3 2 00| O 0 0 0
01 1(110| 12| 1 o o| o 0| O
11 12| 28 |200| 1 11| 0| 0| O 0
10| O 423 | 21 | 52 10, O 1 0 0
3 b)
cd cd
b 00 01 11 10 s 00 01 11 10
00| O 0 0 0 00| 1 1 0 0
01 0 1 0| 0 o 0| 2| 0| O
1| 0| © 3| 0 11| 0| 0| 4 0
10, O 4 0 0 10, O 9 0 1
0 d

Figure 4.3: Transformation of data (a).

cd cd cd
b 00 01 11 10 b 00 01 11 10 b 00 01 11 10
00| 77 | 57 3 2 00| 1 0 0 0 00| 1 1 0 0
01| 1 (110 12 1 o1 o 1 0 0 o1 o 1 0 0
11| 12 | 28 | 200 1 11| O 0 1 0 1| 0 0 1 0
10| O |423| 21| 52 10| O 1 0 0 10| O 1 0 1
a) b) 0
b b
a 0 1 a 0 1
0| 00| o1 0| 00,01 O1
1] 01} 11 10,10 11
cd cd
d)

Figure 4.4: Transformation of data (b).

82

terpreted as a function with noise or a relation. Karnaugh maps for functions
(relations) ¢ and d corresponding to the tables in Figures 4.4b and ¢ are shown in
Figures 4.4d and e.

Other procedures that can be used for dealing with frequency (probability) val-
ues of dependent variables are the ones described in Section 5.2.1 (p.149). Lossy
decomposition procedures described there can be used instead of procedures pro-

posed in this section.

Disjoint decomposition

Let X = {a;},2 = 1,...,n, be a set of variables, X;, X3 be a partition of X,
and @), be a set of values the variable z; can take. If R is a relation based on the
set of variables X then R C Q. x ... X Q, = Qx, X Qx,, where Qx, = {qrx, }
is a set of combinations (tuples) grx, variables in the set X; can take. The table

for the relation R has |Qx,| columns and |Qx,| rows, one column for every tuple

qex, € Qx,-

Definition 4.1 (column multiplicity) Column multiplicity i is a number equal

to the number of distinct columns in the data table.

Definition 4.2 (row multiplicity) Row multiplicity u is a number equal to the

number of distinct rows in the data table.

Column multiplicity p is greater or equal to 1 (it is equal to 1 if all the columns
are identical) and less than or equal to |Qx,| (all the columns are different). Let’s
create a set of new variables A = {a;} such that |Q4] > p (in particular Q4 = {a}
and |a| = p) and assign tuples ¢j4 € Q4 to distinct columns of the table (identical
columns will have identical tuples assigned to them).

We want to decompose the original relation R into two sub-relations R; and
R;. Let Ry C Qx, X Q4 be a relation created by extending every tuple ¢;x, € Qx,
with a tuple ¢gj4 € Q4 corresponding to the column ¢;x, so that By = {q:x, ¢4}

83

R; has to be now selected in such a way that the composition of Ry and R, results

in R. The selection of Ry will be defined by the following theorem:

Theorem 4.2 (decomposition) Relation Ry C Qx, X Q4 meeting the above
condition can be represented by a table created from the original data table for
relation R by combining the itdentical columns of the table. The new columns will
correspond to the tuples qja € Qa.

PROOF It is enough to show that for every pair of tuples ¢;x,qra € Ry and qjx,qra €
Ry, it holds that the pair of tuples ¢;x,q;x, € R.

Let’s assume that there exists a pair of tuples gix,qua € Ry and ¢;x,qx4 € Ra,
such that ¢;x,q;x, € R. The condition ¢ix,qjx, ¢ R means that the intersec-
tion of column q;x, and row q;x, in the original table contains 0. The condition
q;x,qka € Ry means that the intersection of row qx, and column qy4 in the data
table corresponding to Ry contains 1. By the construction of Ry, column qra cor-
responds to the set of identical columns containing q;x,. Hence, by the condition
q;x,qka € Ry, the intersection of row q;x, and column q;x, conlains I which is in

contradiction to the assumption that ¢;x,q;x, ¢ R. This completes the proof.

Example 4.2 and Figure 4.5 describe a disjoint decomposition of probabilistic
relations.
Example 4.2
The original relation R is defined by the set of tuples in the table in Figure 4.5a
together with their frequencies n. Set X = {1, x5, x3, 24} is partitioned into two
sets Xy = {xg, 23} and X3 = {21, 24}. Given that partition, the table representing
R isshown in Figure 4.5b. The table in Figure 4.5¢ has been obtained from the table
in Figure 4.5b by assigning the frequencies into five equally spaced bins labeled by
numbers 0 to 4. Column multiplicity of this table is equal to 2. The identical
columns correspond to tuples qox, = 00,¢1x, = 01, and ¢x, = 10,¢3x, = 11. A
new variable a with cardinality equal to 2 (column multiplicity) was created and
columns labeled with its values. Columns 00 and 01 with value 0, columns 10 and

11 with value 1.

84

R x2x3 x2x3
X1x2x3x4] n Wxa\ 00 0L 10 11 Wxa\ 00 0L 10 11
0000 5
0001 2 | 5| 16/ 88| 100 o o| o| 4| 4
0010 16
0011 37 01| 21| 37| 11| 13 o1 1| 1| o o
0100/ 88
01011 100 11| 8| 66| 74 100 0| of 3| 3
0110100
0111 13 11| 56| 46| 0| o0 1l 2| 2| o] o
1000 11 o o0 1 1 — a
1001 56 b)
1010 8 X2x3)
1011 46 N\ 00 0L 10 11 RL
1100 56 al x2 x3 al
111074 ot 1050 0 oo xuan 0 1
a) 1l o] o 1| 1 001 w ol 4
110 R2
d) 111 o1l 1| o x1x4al|n
o 0014
X1 X2 X3 x4 X2 x3 x1 x4 100 O 3 0101
[1013
e 1 2,0 110]2
R
f) 9)

h)

Figure 4.5: Disjoint decomposition.

The data table for relation R is shown in Figure 4.5d and corresponding set
of tuples in Figure 4.5e. The data table for relation R; is obtained by combining
identical columns of the table for R. The result is shown in Figure 4.5f, g. A

block diagram of the whole decomposition process is shown in Figure 4.5h.

The example above shows the process of decomposition in respect to the columns
of the table. The decomposition process is symmetric, however, and it could be

performed in respect to the rows of the table as well.

Non-disjoint decomposition

We will call the decomposition non-disjoint if the sets X; and X, are non-
disjoint, X; N Xy # (). The decomposition process alone is very similar to the

disjoint case. The input data, however, have to be appropriately rearranged in

85

order to reduce this case to the previous one. The Example 4.3 and Figure 4.6

present the details of the decomposition procedure.

Example 4.3

The process of decomposition is shown in Figure 4.6. The relation itself is shown

in Figures 4.6a and b.

R

123 xa Xx3x4 Xx3x4
X1 XZ Xo X n
WoN 00 01 10 11 WboN 00 0L 10 11
0000/ 5
0001 87 | 5| 87| 19| 100 W 0| 4| 0| 4
0010/ 19
001110 01| 21| 76| e8| 29 o1 1| 3] 3| 1
010021 b) <)
0101 76 10| s8] 8| s0| 17 10| 2| o 2| o
0110] 66
0111 29 11| o| 59| 43| o 1) of 2| 2| o
100058 o 1 2 3 — a
1001/ 8
1010] 50 X1 X2 x3 x4 x3 x4 X1
1011 17 || ‘
11001] 59 X2
— n
1110)] 43 R R1 R2 d)
a
a)
X2x3x4 X2x3x4
«xo\ 000 001 010 011 100 101 110 111 xIx2_ 000 001 010 011 100 101 110 111
w o 4] of 4| -| -| -] - W 0| 4] 0| 4] o 4] 4| o
o] - | -] -| -| 1] 3| 3| 1 o1 1| 3| 1| 3] 1| 3] 3| 1
e) f)
0l 2| o 2] 0o -] -| -1 - 100l 2| o| 2| of| 2| o] o] 2
1l - | - -] -] o] 2| 2] o0 1 ol 2| o 2| 0| 2| 2] o
0 1 0 1 0 1 1 0 __a
R1
>3 x4 Xx3x4 a
a XZ2X3X
axa \ 00 01 10 11 Wbow 0 1
0000 R2
1001 00 0 wl 0| 4
0010 x1x2a| n
1011 01 0 001 4 o1 1| 3
0100 010|1
1101 10 1 0113 0 20
1110 1002
0111 1 1 1112 1) 0] 2
9 h)

Figure 4.6: Non-disjoint decomposition.

The relation is incompletely specified, two tuples are missing from the table

86

in Figure 4.6a and the corresponding entries in the table in Figure 4.6 are equal
to zero. These are so called observational zeroes, meaning that a given data tu-
ple was not observed so far but it would be if enough measurements were taken.
The frequency values have been assigned to ten equally spaced bins and relabeled
accordingly. The resulting data table is shown in Figure 4.6¢. Let us select the
following sets X; and Xy: X7 = {aq, 22}, Xy = {a3,23,24}. They don’t form a
partition of X anymore, they are non-disjoint. The data table corresponding to
selected X; and X5 is shown in Figure 4.6e. Some of the cells of the table contain
so called structural zeros (denoted by “-” in the table) and correspond to combi-
nations of variable values for which observations are impossible [62]. In our case
they correspond to situations where variable x5 would take value 0 and 1 at the
same time which never happens. Since structural zeroes correspond to impossible
observations we can replace them with any values for column multiplicity compu-
tation. Replacing structural zeroes as it was done in Figure 4.6 f results in column
multiplicity equal to 2. This value is smaller than the value of column multiplicity
of the table from Figure 4.6¢ (four) corresponding to the non-disjoint case. Rela-
tions Ry and Ry can be now determined the same way as for the disjoint case. The

result of the decomposition is shown in Figures 4.6¢g and h.

4.4 Decomposition of non-probabilistic neutral relations

The approach presented in this section follows closely the approach developed
for decomposition of probabilistic relations presented in Section 4.3. A non-
probabilistic neutral relation is first transformed to a function and then one of
the algorithms presented in Section 4.3 can be applied to perform decomposition.

The transformation is based on the following theorem:

Theorem 4.3 (relation) An k-ary relation based on a set of variables X = {x;},

| X| =k, is equivalent to a function f(X) which associates values 0 or 1 to every

k-tuple @1, 29,..., 25 (f: X — {0,1}).

87

PROOF Let R be a relation defined by Definition 3.13 (p.30). Then the equiv-

alence can be shown by selecting a function [as follows:

f(k-tuple) =

L if f(k-tuple) € R
{ 0 otherwise

The transformation described above can be applied to any relation. However,
the algorithms presented in Section 4.2 (p. 74) are more efficient if a directed
relation is not transformed to function. This is due to the fact that such a trans-
formation increases the number of independent variables which may results in
increased decomposition time. Also, this approach can only be used if we have a

representative sets of both, tuples which are contained in R and those which are

not. Or, if the relation is completely specified.

4.5 Complexity measures

An appropriate complexity measure together with variable partitioning algo-
rithms are of crucial importance for the quality of the hypothesis selection process.
Hypotheses are generated by different partitions Xy, X5 of the input variables. The
best solution is selected based on the cost function used. The complexity measure
used as a starting point in this dissertation was the normalized circuit complexity
proposed by Abu-Mostafa [2] for binary functions. He defined complexity €, of a
binary function Y = f(X) as follows:

C.(f) =logy, min{cost of I': 1T simulates f} (4.1)

where I' is a combinational circuit realizing function f and cost is equal to 2"
for n-inputs universal block and the cost of a collection of blocks is the sum of the
costs of the blocks.

Following his definition the cost of a single | X|-inputs |Y|-outputs universal

block is equal to:

88

cost(f) = 2XNy| (4.2)

where: | X|,|Y] are cardinalities of sets of input and output variables respec-

tively.

From Abu-Mosatfa’s definition the cost of a binary function realized by a single
block is equal to the number of cells of the Karnaugh map representing the function
which is equal to the total number of tuples defining the function. The larger
that number is, the more variety the function can store, the more details can be
described, and more difficult will be the physical realization of the function.

The cost of a single block defined above can also be related to its Kolmogorov
complexity. Every relation (function in particular) can be represented by a binary
vector of length n, n equal to the total number of tuples representing the function
or relation, and can be considered to be a program describing that relation. The
length n of the vector can be interpreted as the length of the program. This length

is the upper bound of Kolmogorov complexity K(-) for that relation.

4.5.1 Cardinality

The first definition of cost that will be used in the dissertation is an extension
of Abu-Mostafa’s definition on multiple-valued variables. We will call this cost

measure cardinality and define it as follows:

Co= [lvil tog, T lusl (4.3)

l’,‘EX Yy ey

where: |z;| cardinality of an independent variable z; € X
ly;| cardinality of a dependent variable y; € Y.

If we define the cost as being equal to the maximum number of tuples then

it is equal to the product [], cx [#:]. If the number of dependent variables y; is

89

greater than one, then each y; will correspond to a separate function. If all of
them are of equal cardinality m then the maximum number of tuples (cost) will be
equal to [, cx |zi| times the number of outputs. If we allow y; to have different
cardinalities |y;| then the number of equivalent m-valued outputs will be equal to
log,, H%GY ly;| and the total cost equal to [], . x [%:log,, H%GY ly;|. By selecting
m = 2 we normalize the equation to the number of equivalent binary outputs
obtaining Equation 4.3.

If the function or relation is represented by a composition of blocks the total

cost is equal to the sum of costs of the blocks.

4.5.2 Functionality

Another cost measure can be defined by taking a cost as being equal to the total
number of functions that can be realized by a given functional block. We will call
this cost measure functionality. For a single output binary function y = f(X)

the functionality is equal to:

Cp =22 (4.4)

The above formula can be extended to multiple-valued, multi-output functions

and directed relations as follows:

H.rl' ex |l’l|

Cr= 11 lvil (4.5)

v €Y
Notice that C, = log, (s, hence, both cost measures provide the same informa-
tion about a single functional block. In the text that follows the value of log, Cy
will be called log-functionality.
If the function or relation is represented by a composition of blocks the total
cost is equal to the product of the costs of blocks. If we take a logarithm of the
total cost we will get again the value equal to the value of cardinality cost measure

for the same circuit.

90

log, Cy =logy [[O = 3 Jloga € = 3 C, (4.6)

However, the total cost computed as a product of the costs of blocks is greater
than the total number of distinct functions that can be realized by a given struc-
ture. It includes repeated functions count and can only be considered as an upper
bound for the number of functions that can be realized by this structure. A deriva-
tion of the exact value for the functionality cost measure will be discussed in the

following sections.

Functionality: disjoint structure

For the disjoint case of the structure shown in Figure 4.7 (X; N Xy = 0) the
total number of different functions N that the structure can realize is given by

Equations 4.7, 4.8, and 4.10.

Figure 4.7: Serial decomposition.

Theorem 4.4 The total number of different functions the structure from Figure
4.7 can realize for X, N Xy = 0 is equal to:

py;—1 ppx2
C; = (v) K(pxospvi — i) (4.7)
=0

fx’<c,u>=uc—§(" Yt (1.3)

H—=J

91

where:

px, =[] [l v =[] Il

z,€X yi€Y1
p, = I =l =[] vl
z,€X2 yi€Ys

PRrROOF The structure from Figure 4.7 can in general be represented by a two
dimensional table (Figure 4.8) where the number or rows is equal to the number
of combinations the variables from the set Xy can take and the number of columns
is equal to the number of combinations the variables from the set Xy can take.
FEach cell of the table stores values of the dependent variables corresponding to the

combination of values of independent variables from X1 and Xs.

Figure 4.8: Karnaugh map for Figure 4.7.

Consequently, the numbers of rows and columns in the table in Figure /.8 are
equal to px, and px, respectively. The number of different values each cell of the
table can take is equal to py,. The mazimum value of the column multiplicity index
pois equal to py, (it is always less than or equal to the number of columns px,).
Given px, - the number of elements in each column of the table, and py, - the

2

number of possible values each element can take, the value pffx is equal to the total
2
number of different columns than can possibly be generated. The total number of
PX
different p-element subsets of that set is equal to (p%2>. Let K(px,,) be the total
number of different ways the elements of each of these u-element subsets can be
arranged to form a table with px, columns. This has to be done in such a way that

at least one of each of y elements is present in the table (this forms a p elements

partition of a set of px, columns). Then, the number of functions with py, = p

92

that can be represented by the table is equal to (pYz)[& (px,»). All the cases which
result in column multiplicity index p < py, however, can also be represented by
this table. Hence, the total number of functions that can be realized, given the
constraint p < py, , is equal to C; = S 247 ! <;Y12)[& (px,spy, —1).

Let us now analyze the expression for K(c,p). The total number of different ways
the elements of a p-element subset of columns can be arranged to form a table
with ¢,c > p, columns is equal to p°. This number however, includes not only the
cases where all p columns of the subset are used to form a table but also the cases
where only subsets of the set of p columns are used. For instance if p = 3 and
¢ = 4 then not only sequences like abce,acbb, ... are counted but also sequences

like aabb,ccee,ete. Since K (e,) corresponds to exactly p-elements partitions, the

later cases have to be subtracted from p®. The number of these cases is equal to
-1
;:1 <p,])IX(C ILL—-])

If all the variables are binary then |Yi| = |Y3| = 1 and py, = py, = 2. For this

case Equation 4.7 reduces to:

! 9IPX,

o =Y (37) K2 -0

=0

9IPXy i 9IPXy i
(2]?)(2) le? _|_ 9P, (49)
_ (2
1

QPX _2 QPX
9) 1 —|- 2

= 2pX2 2PX2 — 1)(2PX1 — 2) 4 2P%2
and this special case of Equation 4.7 was previously derived in [71].

Corollary 4.2 The total number of different functions the structure from Figure
4.7 can realize for X, N Xy = 0 is equal to:

93

Py; —1

Cy= > Py v —)S(px,spy, — i) (4.10)
=0
where:

P(n,r) is an r-permutation of n distinct things
S(n,m) is a Stirling number of the second kind defined as the number of ways of
partitioning a set of n elements into m nonempty sets

and

px, = [l=l pvi= 11 lul

z,€X yi€Y1
px = [l=l o=][] Iwil
z,€X2 yi€Ys

PROOF FEzxpressing K(c,u) from Theorem 4.4 in terms of Stirling numbers of

the second kind we obtain K(c,p) = plS(c,i). Hence from Fquation 4.7 we have:

py; —1 ppx2
Cf = Z (.) [((pmeYl - Z)

— 1
=0 vy

py; —1 DXy
- Z (pY2) (le - i)!S(pmeYl - Z)

— 1
=0 vy

pyl—l pXQ’

== Py, -

— (py, — D)(py? — pyy +1)!

(le - i)!S(pmeYl - Z)

pXQ’

Py,
(pif —py; +1)!

S(px,,py; — 1)

I
=3
|
AN

=0

Py; —1

—_

PXy

= P(pY2 y Pyp — i)S(le,pyl - Z)

1=

o

Functionality: non-disjoint structure

The formula derived in [71] covered only disjoint decompositions of binary
functions. Let us now analyze the non-disjoint case using a simple example of the

binary function shown in Figure 4.9.

94

XXX
X%y 000 001 010 011 100 101 110 111
00
X5 f
% 11y
01
Xl f y2 p—
2 f—
X — 10

11

Figure 4.9: Functionality: non-disjoint case.

Non-disjoint structure consists of two subfunctions f; and f, and X; = {zq,
T, w3}, Xo = {x1, 24}, Xz = X1 N Xy = {21}. The table corresponding to this

structure consists of three separate regions:
o v = 0: shaded area corresponds to variable x; set up to 0.
e 1; = 1: shaded area corresponds to variable x; set up to 1.

e non-shaded area corresponds to forbidden combinations of input variables,
it corresponds to the cases when the variable x; had to simultaneously take

the values 0 and 1.

As we can see in Figure 4.9, first two cases correspond to two identical disjoint
structures (each structure may realize a different function however) obtained from
the non-disjoint structure by removing all the variables contained in set X3. The
number of the disjoint structures is equal to the number of different combinations
of values variables from X3 can take. In our case X3 contains one binary variable
so there are two disjoint structures in the table in Figure 4.9. If X3 contained a
binary and ternary variable we would have six disjoint structures, etc. The total
number of functions that can be realized by the non-disjoint structure is therefore

equal to the product of the numbers of functions that can be realized by each of

95

the disjoint structures. Since all the disjoint structures are identical it is enough
to compute the number of functions realized by one of the disjoint structures and
raise it to the power n, where n is the number of disjoint structures.

Extension of the above reasoning to multiple-valued variables is straightforward

and results in the following formulas (Equations 4.11, 4.12, and 4.13):

Cp=(Cp)P* (4.11)
Py; —1 ,
P , .
Cr= D Pl pvi — 5Py, pyy — 1) (4.12)
1=0
where:
px, = [] lwils if Xo =0 then py, = 1
7,€X3
ple = H |x2|
zi€X1—X3
o | B
zi€X2—X3
Since X3 C X; and X3 C X, then py = %7 Py, = ;’%7 and
Py; —1)
P= > PO py —) S(px, /P pv — 1) (4.13)
1=0

Notice that Equations 4.11, 4.12, and 4.13 (non-disjoint case) reduce to Equa-
tion 4.10 (disjoint case) for X5 = ().

To compare cardinality and functionality measures let us analyze few simple
examples. In Tables 4.3 and 4.2 the values of cardinality and log-functionality
cost are provided for some simple decomposed structures along with the cost of
the original data (it is the same for both cost measures). All the variables are for
simplicity taken to be binary.

Three interesting observations can be derived from Tables 4.2 and 4.3:

1. Functionality cost measure (C) makes distinction between structures which

are equal from the point of view of cardinality cost measure (C.) (see Ta-

ble 4.2(a) and 4.2(Db)).

96

decomposed | cardinality | log-functionality | original data
structure C. log, Cy (CY) cost
12 10.6 (1528) 16

12 10.7 (1696) 16

16 12.9 (7744) 16

20 16 (65536) 16

24 16 (65536) 16

(e)

Table 4.2: Comparison of cardinality and log-functionality cost measures for 4-input
binary functions.

2. In some cases cost of the decomposed structure is smaller than the cost of
original data for functionality cost measure while cardinality cost measure

doesn’t change for the same structure (see Table 4.2(c) and Table 4.3(a)).

decomposed | cardinality | log-functionality | original data
structure C. log, Cy (CY) cost
8 6.5 (88) 8

10 8 (256) 8

12 8 (256) 8

97

Table 4.3: Comparison of cardinality and log-functionality cost measures for 3-inputs

binary functions.

3. If the cost of one of the blocks of the decomposed structure taken alone is

equal to the cost of the original data then functionality cost measure is equal

to the cost of the original data (and can not grow further). Cardinality cost

measure however can become greater that the cost of the original data (see

Table 4.2(d) and 4.2(e) and Table 4.3(b) and 4.3(c)).

From 1 and 2 we can conclude that the functionality cost measure provides

finer distinction between decomposed structures than the cardinality cost measure.

From 2 and 3 we can conclude that the cardinality cost measure for non-disjoint

structures doesn’t take into account certain repetitions due to the overlapping

parts of the blocks of the structure.

98

Functionality: directed relations

Functionality equations derived in the previous sections for functions can be
extended to the case of directed relations (see Definition 3.14). To show the way
how this extension can be made, let us analyze the difference between function
and directed relation on a Karnaugh map. Figures 4.10a and b show examples of

Karnaugh maps for function and directed relation, respectively.

))
x\L 0 1 2 3 N0 1 2 3
0 O 3 3 2 o 0 3| 34| 2
1] 1 4 0 1 1| 12| 41012 1
2| 2 2 4 1 2| 2| 23| 4 1
3 0 3 2 0 3] 0 3 2102
a b)

Figure 4.10: Function vs. relation.

As we can see in the figure the difference is that for a function each square of
a map contains only one value and for a relation the square can contain a subset
of a set of possible values the dependent variable can take. This is exactly what
was defined as a set-value in Section 3.2. Cardinality of a variable allowed to take
such values will be equal to 2" (there are 2" subsets of a set of n elements) where n
is the cardinality of a variable in the sense used when deriving Equations 4.7, 4.8,
4.11, 4.12, and 4.13. Using this extended definition of cardinality for the variables
in the sets ¥} and Y, we can apply equations derived for functions to compute

functionality of directed relations as well.

4.5.3 Number of degrees of freedom

The complexity of the result of decomposition described in the previous sections
depends of the selection of set X; defining relation R;. The common cost measure
for probabilistic relations discussed in Section 4.3 is the number of degrees of
freedom defined in [62]. The number of degrees of freedom d; of a relation R is

equal to the number of probability values needed to specify that relation.

99

For single block structure defined by a set of variables X it is equal to [], . [x:]—1
where [],.cx |#:] is the number of cells in the data table and -1 component results
from the fact that all probabilities must sum to 1. For decomposed structure let
X1, X3 be sets of variables for relations Ry and R, respectively, X = X; U X, be
a set of variables of the relation R, X3 = X; N X5 be the non-disjoint part of sets
X; and X, and a be the extra variable. Let py = [[, cx, zil, p2 = [L,.ex, [%il;
and p3 = [[, cy, |il- By definition p; = 1 if X; = 0.

Then the number of degrees of freedom of the decomposed structure is equal

to (see [62] p. 49):

de(X1:Xa) = dp(X1U{a}) +df(XyU{a})
—dg(XsU{a})
= (pilal = 1) + (p2la| = 1) = (psla| — 1)
= (p1+p2—ps)la] —1 (4.14)

where |a| is the cardinality of variable a.
For disjoint decomposition X5 =}, p; = 1 and the above equation reduces to:

de(X1: Xz) = (pr+p2 —] -1 (4.15)

As we can see from these equations introducing an extra variable a always
increases dy of the decomposed structure. One may then ask a question why to
introduce an extra variable? The answer is that without it decomposition of R into
R; and R, may not be possible at all. If the decomposition of R into R; and R,
is possible without an extra variable it is better to do so. If such a decomposition
is not possible then introducing an additional variable(s) makes it always possible
and the problem is how to select the sets X;(Xz) and X3 as to minimize the
complexity of the result (d; in this case, but other complexity measures may be

used as well).

Comparison: disjoint vs. non-disjoint decomposition

Let us start our analysis from an example.

Example 4.4

100

In Figure 4.11 the procedure of disjoint decomposition of the relation from Figure

4.6 is presented (disjoint decomposition is the one for which X; N X, =).

R
x3x4 x3x4
X1x2x3x4| n WhoN\ 00 01 10 11 wlxo\ 00 01 10 11
00O00O0 5
000 1| 87 00| 5 87| 19| 100 00| O 4 0 4
0010 19
0011|100 01| 21| 76| 66| 29 o1 1 3 3 1
0100 21 b) ©
0101]| 76 10| 58| 8 50 17 101 2 0 2 0
0110]| 66
01111/ 29 11| O 59| 43| O 11| O 2 2 0
n n
1000 58 0 1 2 3 =—a
1001 8
1010 5 X1 X2 x3 x4 X3 x4 X1 x2
1011 17 SN - -
1101]| 59 f— a n d)
1110] 43 R RL R2
3 R2
x1lx2a| n
x3x4 001 4 a
a 00 01 10 11 00 3| 4] .\ 0 1 2 3
010|1
o 1 0 0 0
R1 011 3 00| O 4 0 4
012 3
a X2x3 11 O 1 0 0
e 013 1 o1 1 3 3 1
100| 2
2| 0 0 1 0
; 2 é 10 2| 2 10| 2 0 2 0
111 2
3] O 0 0 1
311 11 2| 2 11| O 2 2 0 N
e

Figure 4.11: Disjoint decomposition.

f)

The number of degrees of freedom dy of the structure resulting from disjoint

decomposition is equal to 27. Non-disjoint decomposition of the same relation

yields d; equal to 19. This reduction was possible because the selection of non-

disjoint sets X; and X, significantly reduced the value of column multiplicity. But

101

this is not always the case and disjoint decomposition may provide simpler results

as well.

The relation in Examples 4.3 and 4.4 was selected to demonstrate possibility
of improvement when applying non-disjoint decomposition. The reduction in cost
is possible only if the selection of non-disjoint sets X; and X3 results in decrease
of column multiplicity. For larger relations this reduction can be quite significant.
The following paragraphs provide a formal analysis of the differences in d; for
disjoint an non-disjoint decompositions.

In order to determine the difference in the number of degrees of freedom for
disjoint and non-disjoint cases let us follow the following procedure. First, we
perform disjoint decomposition of relation £ = X; U X, with resulting column
.

multiplicity ¢/ = |a’|. Then according to Equation 4.15 we have:

d/f(Xl . Xz) == (pl —|—p2 — 1)|Cl/| —1 (416)

For non-disjoint decomposition of the same relation R let us create X3 by taking
off some parts of sets X; and X, so that X, C Xy, X! C X, and X3 = XU XJ.
Thus the sets of variables for relations Ry, Ry for non-disjoint decomposition will

be: X] = X; U X7 and X] = Xy U X} (see Figure 4.12).

Figure 4.12: Determination of sets X, X,, X5, X|, X), X}, and X/.

102

Let the column multiplicity index in this case be ¢ = |a

4.14 we have:

//|

Applying Equation

d7(Xy: Xp) = (py +py — ps)la”| = 1 (4.17)

where: p} = Hx,EX{ 2| = pipf,
Py = [Lex; |2l = pops,
p3 = [lo,ex, 2] = phpl
Py = Hx,‘EXé |z

|

The difference between d’; and d’f will be a measure of what we can gain when

performing a non-disjoint decomposition.

Ady = d), —d!
= (p1+p2 — Dla’| = (p) + p3 — p3)[a”|
= pi(ld| = p3 [a"]) + p2(la’| = p5]a”])
—(|d'] = p3a"]) (4.18)

We will now prove that if |¢’| = |a”| then disjoint decomposition always results in

lower d;.

Theorem 4.5 [f |d'| = |a"| then Ad; < 0.

PROOF For |d'| = |a"| = |a| the Fquation 4.18 reduces to:

Ady = [pi(1 = p5) + p2(1 = p) — (1 = ps)] - |a]

Ad; <0 iff
pr(1 —ps) 4+ p2(1 = ph) < (1 — phph) (4.19)

From the definition of py, p2, ps, ps, py we have three additional conditions:

ps<pi ps<ps p1,p2>2

103

This results in the following:
L—ps>1l=p L1=py>1-py L—psps>1—pipy

Constdering the above, inequality 4.19 can be rewritten as follows:

pr(l —p2) + pa(1 = p1) < (1 = pip2)

and then reduced to:
p1+p2 < (1 + pip2)

which always holds for py, py > 2.

Let us now consider the situation when one of the sets Xi, X is empty. Let
X} =0, then p, = 1 (by definition), ps = p4, p} = p1ps, and p, = py. The Equation
4.18 reduces then to:

Ady = py(la’| = |a"]) + (pr = D)(la’] = psa”]) (4.20)

In the Table 4.4 the comparison of d; of original and decomposed structure
is presented. For simplicity, we assume that the cardinalities of all the variables
x; € X are equal to 2, and X} =). |X3| = 0 corresponds to disjoint decomposition
and | X5| = 1 to the non-disjoint one. We use Equation 4.17 to compute d¢(X7 : X3)
in the table.

As we can see from the table, non-disjoint decomposition may improve d; if
la"| < |a’|, which is in agreement with Theorem 4.5. Further, the reduction of d;
resulting from decomposition can be quite significant when the number of variables
x; grows. For small relations (with number of variables equal to 3 or less) the
decomposition of neutral relations presented in this chapter will never decrease d;
comparing to the original structure.

This suggests that the number of degrees of freedom cost measure may not
be able to capture fine dissimilarities of different structures. This means that a
decomposed structure can be rejected as not providing any improvement when in
fact it does. For larger structures however, dissimilarities are coarser and possibility

of rejecting a good structure is very small.

104

X [Tl [1] | Tl [el [(X [d(Xs : Xa)
3 2 1 0 2 7 9
4 2 2 0 2 15 13
4 2 2 0 3 15 20
4 3 2 1 2 15 19
5 3 2 0 2 31 21
5 3 2 0 3 31 32
5 3 3 1 2 31 27
6 3 3 0 2 63 29
6 3 3 0 3 63 44
6 4 3 1 2 63 43

Table 4.4: Disjoint vs. non-disjoint decomposition: comparison.

4.6 Complexity minimization

The optimization problem discussed in this section is the one of minimizing
the cost of the structure Yy = f5(Y7, Xy) resulting from the decomposition of a
directed relation Yy = fo(Xo) where Y7 = fi1(X1), Y2 = Yo, and X; U Xy = X.
The cost functions have been discussed in Section 4.5 (p. 87) and they all depend
on cardinalities of variable in the sets X7, X5, Y], and Y3. From the optimization
point of view the set Y; = Yj is constant and cost of the decomposed structure
depends only on the selection of the sets Xi, X5, Y]. Determination and selection
of the set Y7 (P(Y7)) is discussed in Section 4.6.1. The selection of sets X; and X,
is referred to as variables partitioning and is discussed in Section 4.6.2. Reduction
of number of variables in the sets X; and X, is referred to as vacuous variables
removal and 1s discussed in Section 4.6.3. The implementation details of the above

algorithms are discussed in Section 4.6.5.

4.6.1 P(Y)) determination

Let us notice first that for given X; and X, the complexity reduction depends
directly on the number of blocks of P(Y7) (number and cardinalities of variables

in Y7). The smaller the number of blocks, the greater the complexity reduction.

105

So given X; and X we want to minimize | P(Y7)| under the constraint that P(Y})
satisfies the criteria of Theorem 4.1.

The above problem can be reduced to the problem of clique covering of a graph.
Nodes of the graph correspond to the blocks of P(X7), there is an edge between
two nodes if and only if the corresponding blocks are compatible. The set of cliques
covering all the nodes of the graph corresponds to the blocks of P(Y7). To minimize
the number of cliques we select maximum cliques for the cover.

For the following definitions we assume that the original directed relation is
defined by Yy = fo(Xo) and the decomposed structure by Yy = f5(Y7, X32), where
Y1 = fi(X1), Y2 =Yg, and X; U X, = Xo.

Definition 4.3 (block pair compatibility) Blocks B;, B; € P(X1) are compat-
ible, denoted by B; ~ B;, iff P(X2)(B:|JB;) < P(Yo).

Definition 4.4 (block set compatibility) A set of lr-partition blocks B = {B;},
B C P(Xy) is a compatible set of blocks iff P(X2)(UB,EB B;) < P(Yy).

Definition 4.5 (block compatibility graph) Block Compatibility Graph (BCG)
is a graph that has nodes corresponding to blocks of partition P(X1) and there is

an edge between nodes v and j if corresponding blocks B; and B; are compatible.

Definition 4.6 (compatibility clique) Clique of nodes of BCG graph is called
compatibility clique iff the set of blocks corresponding to the nodes of the clique is
a compatible set of blocks.

Definition 4.7 (multiplicity index) Multiplicity index p is a number equal to
the number of compatibility cliques in BCG graph.

Theorem 4.6 Lr-partition P(Y1) = {B;|B; = UBiGCC] B;} where B; are blocks
corresponding to the nodes of compatibility clique CC; and cliques CC; cover all
the nodes of the graph, satisfies requirements of Theorem 4.1.

PROOF Since compatibility cliques CC; cover all the nodes of the graph then P(Y)

106

is a legitimate lr-partition on the set of cubes C(Xo U Yy). By Definitions 4.4 and
3.20 (p.33) the second condition of Theorem 4.1, P(X3)P(Y1) < P(Yy), is true.
By Definition 4.4, every block B; € B; is also a block of P(X1). Hence the first
condition of Theorem 4.1, P(X1) < P(Y1), is true.

For functions, every clique forms a compatible set of blocks. For relations how-
ever, it is not always true and only cliques of compatible sets of blocks (Definition

4.4) may be used for graph covering.

Example 4.5

Given a relation with 4 binary variables and a 5-valued output variable from Table
4.5 the map from Fig.4.13a is created. The bound set X; = {x3, 24}, free set
Xy = {1, 22}, and output set YV = {y}.

Ty T2 T3 Ta | Y2
al| 0 0 0 01]0,1
bl o0 1 0 01,2
c| 1 1 0 - 0
d| 1 0 0 0103
el 0 0 0 1 10,3
)1 0 0 1104
gl 0 0 1 1 11,3
h|o0 1 1 1 10,1
110 0 1 0123
710 1 1 0123
k|1 0 1 014

Table 4.5: Multiple-valued relation from Example 4.5.

P(X1) = {Bg, By, Bio, Bi1} = {{a.b, ¢, d}oo, {c. €, fYo, {2, 5, k}o, {9 A1t Faams,
P(Xz) = {By. By, Biy, Bii} = {{a,e.9,1}00, {6, 1, 5}01, {d, f, k}o, {chiitara,,
P(Y)={By, By, Bs, B3, By} ={{a,e,d,e, f,h}o, {a,b,g,h,k}1,{b, 7,7}, {d, €, 9,
1t {f K tadys-

The BCG graph is presented in Fig. 4.13b. The minimum number of cliques to

cover the graph is 2. If we want the cliques to be disjoint we can select either

X%

00

01

11

10

Bow Bor B B
00 01 11 10
i
0,1 |0,3 1,3g2,3
h j
1,2 - 101 |23
(o]0 9| - | -
d K
0,3 |04 - 114
Y,
a)
Y1
X X 0 1
" 44 1 1%
00| 3 1
0 1|10
01| 2,3 1
1 0 1
Y, 11| O 0
©)
10| 4 | 0,3

Figure 4.13:

d)

b)

Decomposition of relation from Table 4.5.

107

108

By, Bl and Bj,, Bj, or Bj, and Bj,, Bl,, Bj;.- In the clique Bj,, B}, B,
all the blocks are pair compatible but the whole set of blocks is not compatible
because (Definition 4.4): P(X2)(B U By U Byy) = P(X3){a,b, e, de, f,g,h} =
{{a,e,q},{b,h}{d, [}, {c}}. Since the set {a,e, g} is not included into any of the
blocks By, B, By, Bs, By of partition P(Y), the conditions of Definition 4.4, 4.6
and Theorem 4.6 are not satisfied. The second selection of cliques satisfies the
compatibility clique conditions and according to Theorems 4.1 and 4.6 it can be

used to create partition P(Y7). Fig. 4.13¢ and 4.13d show the realization of f; and
fo.
Example 4.6

Given a relation with 4 binary variables and a 5-valued output variable from Table
4.6 the map from Figure 4.14a is created. The bound set X; = {x3, 24}, free set
Xy = {x1, 235}, and the output set Y = {y2}. P(X1) = {Bly, By, Bio» B} =
Ha, b ¢, d}oo, {e, f1g}tor, {5. kLo, {hy i} beany, P(X2) = {Bg, By, Bio, Bli} =
{Ha,e,h, 5}oo, 16,7, k}or, {d, 9,1} 10, {¢ [Hiitarwss P(Y) = {Bo, By, Bz, B3, By} =
Ha,e,de, frg.130, {0, b0,k U, {b, g}, {a, dye, £y 5, ks, {9, Uty

The BCG graph is presented in Fig. 4.14b. The minimum number of cliques to
cover the graph is 2. Let us select cliques Bj,, By, B, and B, By, Bj; to cover
the graph. Both cliques satisfy requirements of Definition 4.4 and according to
Theorems 4.1 and 4.6 can be chosen to create partition P(Y;). Tables for relations
f1 and fy are shown in Fig. 4.14¢ and 4.14d respectively. Since the cliques selected
to cover BCG graph were non-disjoint, f; is a relation. If the cliques were disjoint
f1 would be a function.

As we can see from this example f; and f, can be relations. If the final re-
alization is required to be unambiguous however, we have to reduce relations to
functions some time. We can do it after every decomposition step or we can post-
pone the reduction until the decomposition process is finished. The second solution

allows for a global optimization of the final solution.

109

Ty T2 T3 Ta | Y2
al| 0 0 0 0103
bl o0 1 0 01,2
cl| 1 1 0 0 0
d| 1 0 0 0103
el 0 0 0 1 10,3
)1 1 0 1 10,3
g | 1 0 0 1104
h|o0 0 1 1 11,3
110 1 1 1 10,1
j10 0 1 0123
k{0 1 1 01,3
11 0 1 014

Table 4.6: Multiple-valued relation from Example 4.6.

X3X4 B,OO B101 B,ll B,10
00 01 11 10
X
1’2 a € h i
00(03 |03 |13 |23
b i ki
o1{12 | - (01 |13
c f
11 0]03 | - | -
d s/ |
1003 (04 | - |14
Y2 b)
a) Yq
X% 0 1
X
4 o 3| 3
X 0 1 Xy f Y,
0| 0|01 o1l 1| 1 ¥3— ! ¢ Y2
2
1| 1] 01 11| 0| 03 2
’ X
) ¢! 10 o 4
C
Y,)
d)

Figure 4.14: Decomposition of relation from Table 4.6.

110

4.6.2 Variable partitioning for decomposition

Variable partitioning for decomposition is a process of splitting up the set of
relation’s variables X into subsets X; and X, in such a way that the decomposed
relation is less complex than the initial one. Even though the problem of variable
partitioning is very important not much has been done in this domain so far. This
is mainly because most of the published decomposition algorithms were tested on
small functions only and exhaustive search for partitions was possible in reasonable
amount of time. In general the problem of optimal variable partitioning is NP-
complete and fast heuristic procedures are needed to perform this task effectively.
One such procedure called “Pair Weighting Method” (PWM) was developed in
[127] for binary functions, it was extended to the case of multiple-valued relations
and used in the dissertation.

The method developed in this dissertation generates a limited set of pairs
{X1, X3} and selects the one which would minimize the cost of the decomposed
relation. The idea is to have the set X3 (inputs of the block f,, see for instance
Figure 4.16 on p.113) contain the variables which are the most relevant for the
determination of the output variables Yy and the remaining variables being in the
set Xi. The method uses entropy [112] or variety [27] measure to order input
variables according to their relevancy for the output variable determination (see
Figure 4.15).

To satisfy the condition). p(x = x;) = 1 for computation of uncertainty the
set of data cubes must be disjoint. So, if the original data cubes are non-disjoint
they have to be made disjoint before uncertainty computations start.

In Figure 4.15 uncertainty u(y) of the dependent variable y is computed first.
Then, the conditional uncertainties of independent variables in respect to the de-
pendent variable are computed and compared to u(y). The variable which results
in the highest uncertainty reduction (variable b in the Figure) is selected as the
most relevant variable. In the next step conditional uncertainties of all the remain-

ing independent variables in respect to the variables y and b are computed and the

111

e Uncertainty:

u(y)
u(y | b)

i ufy | bd)

e Conditional Uncertainty:

u(y | bda)

u(zly) = u(zy) — u(y) u(y | bdac)

Figure 4.15: Variables ordering.

most relevant variable is appended to the ordered list. This process is repeated
until all the variables are ordered. The probabilities for calculating uncertainties

presented in Figure 4.15 can be computed directly for Ir-partitions as follows:

ple =) = Bal (4.21)

Ui Be,

where | B, | is a cardinality of block B, of lr-partition P(x) and a; is a block label

(value of variable z).

Ordered set of input variables is then partitioned into sets X; and X, for
decomposition. The optimal partitioning criteria can be determined based on the
cost function used in the decomposition process. Criteria for the cost measures
discussed in Section 4.5 will be developed in the sections that follow. The details
of the entropy based variable partitioning procedure are described by Algorithm
7.

Ihtbp] Variable partitioning: entropy method

[1] X set of independent variables Y set of dependent variables finallist empty final list of ordered variables
Sy =Y

each ©; € X compute conditional entropy u(z;|sey) w(Zi|szy) < Umin tmin = & Umin = w(Z;|szy) remove
@i, ;. from X and add it to szy append x;_ . to finallist X 0 or umin == 0

partition final list into sets X1 and Xo

end

entropy %
entropy %
by balance 50.0
H5xpl 52.9
balloonl 100.0
9sym 100.0
balloon?2 100.0
9symml 100.0
balloon3 100.0
add4 100.0
balloon4 100.0
b12 76.0
breastc 66.7
bw 73.7
) flag 64.3
clip 11.8 ..
irish 100.0
exoHp 89.2
lensesmv 100.0
Hlm 30.0
. 4.0 monklte 71.4
io .
&P monkl1tr 71.4
house 25.0
) monk2te 71.4
inc 57.9
) monk2tr 85.7
misex1 70.6
) monk3te 75.0
parity 100.0 monk3tr 33.3
rd53 100.0 censor 50.0
rd73 100.0 50Ty
ships 100.0
rd84 100.0
shuttlem 50.0
root 71.4 Shome 233
5202 64.3 pong
tic-tac-toe 33.3
sqrt8 85.7 .
5 63.6 trains 100.0
squar . i
! trains20 100.0
XorH 100.0
Total 75.28 209 [
ota .
Total 77.27

112

Table 4.7: Effectiveness of entropy variable partitioning procedure.

The sets of partitions computed by the two variable partitioning procedures
(entropy based, and a procedure based on PWM developed in [127]) are used to
find minimum cost decomposition. Table 4.7 shows the result of comparison of
effectiveness of the entropy based procedure and the one based on PWM method.

The left table contains MCNC benchmarks [81] and the right one UCI bench-
marks [121]. The second column of each table contains the percentage of cases in
which the best decomposition was produced from a variable partition generated
by entropy partitioning method. As we can see from the table in more than 75%

of cases entropy based method resulted in the lowest cost decomposition. It means

113

that in more than 75% cases entropy based method could have been the only vari-
able partitioning method used and result wouldn’t be worse than obtained when

both methods were used.

Optimal size of sets X; and X;: cardinality cost measure

In this section we will be analyzing the cost measure developed in Section 4.5.1

for the structure shown in Figure 4.16.

Figure 4.16: Serial decomposition.

cost(fo) = px, log, py; (4.22)
cost(f1: fa) = px, logy pyv, + px,py, logy py, (4.23)
where:
pxo = [[lel o= I] il =»pm
z;€Xo y; €Yy
e | N |
z;€X4 ¥ €Y
px, = Il v =] loil
z;€X> Y €Yo

Disjoint structure For disjoint case of the structure shown in Figure 4.16, X1 N
X; = 0 and px, = px,px,. To determine the partition X; : X3 for which the
cost function cost(f; : fy) takes the minimum value we compute the following

derivative:

dcost(fi: f Px
% = log, pv; — " pv; log, py, (4.24)
le le

114

where we substituted px, for % in Equation 4.23. To find the minimum of
1
function cost(f1 : f2) we compare the derivative to zero and obtain the following

relation:

dcost(f1: f2)
——— =0 & o . = px,py, lo :
3 px, PXx, 1085 Py, PX, Py, 1085 Py; (4‘25)

& cost(f1) = cost(fz)
which means that the minimum value of the cardinality cost measure of a
decomposed structure is obtained for the blocks f; and f; having their costs equal.
Of course achieving equality of costs may not always be possible but we try to get

as close to it as we can. Table 4.8 shows examples of different structures where for

simplification we assumed that all the variables were binary and |Y;| = |Y3| = 1.
T[T | %] [costia] | cost(fa) [cosils - Fo)
3 2 1 4 4 8
4 2 2 4 8 12
4 3 1 8 4 12
5 2 3 4 16 20
3 3 2 8 8 16
5 4 1 16 4 20
6 2 4 4 32 36
6 3 3 8 16 24
6 4 2 16 8 24
6 5 1 32 4 36
10 4 6 16 128 144
10 5 5 32 64 98
10 6 4 64 32 98
10 7 3 128 16 144
11 5 6 32 128 160
11 6 5 64 64 128
11 7 4 128 32 160

Table 4.8: Cost for different structures.

115

Non-disjoint structure The non-disjoint structure is the one for which X;NX, =
X3 # 0 and px, = [[,,cx, [#i]- In this case the relation px, = px,/px, is no longer
true and must be replaced by px, = px,px,/px, when computing the derivative in

Equation 4.24. This results in the following relations:

dcost(fy: o PX5
= 10g2 Py — Ix 2pX Py 10g2 Py, (426)
le le
and
dcost(fi: fr) PXoPXs

=0 & px, log,py, = pv, log, py,

dpx, Px,
& px, log, py; = px,py; log, py,

& cost(fi) = cost(f2)

(4.27)

which is exactly the same as for the disjoint case.

Conclusions for cardinality cost measure

As we can see from Equations 4.25 and 4.27, in order to minimize the cost
of the decomposed structure the variables have to be partitioned in such a way
as to make the costs of decomposed blocks equal. The problem with these result
however is that the set Y7 (we need it to compute py, in Equations 4.25 and 4.27)
is not known until decomposition is almost finished. One way to proceed is to
perform decomposition for every two-subsets partition of the ordered set of input
variables obtained in the variable partitioning process (see Section 4.6.2) and select
the solution which is closest to the optimum. The number of decompositions to
perform in such a case is equal to n — 3 where n is the number of input variables
(we exclude decompositions with single input variable blocks). This solution is
acceptable if the number of input variables is small. If n is large we have to limit
the number of decompositions. The way to address this problem is to start from
decompositions (partitions) which are the most likely to provide solutions close to

the optimum and stop if either the optimum was found or the assumed maximum

116

number of decompositions performed. How to find such partitions? From the

decomposition of MCNC benchmarks

(30 binary, completely specified functions)

[81] we found that py, takes most often the values 2 and 3 (88.9% of the total 1661

cases, see Table 4.9). Similar result

valued benchmarks see Table 4.10 (11

was obtained when decomposing multiple-

MV benchmarks, 55 cases, [121] and [17]).

% of total

@OO\ICTJO‘!»-&OJ[\D?

10 - 27

66.2
22.7
3.0
3.0
2.0
0.7
0.7
0.5
1.4

Table 4.9: Cardinality of variables in Y; for MCNC benchmarks.

py, | % of total
3 36.4
2 16.4
4 12.7
7 12.7
5 3.6
6 3.6
11 3.6
13 3.6
8 1.8
14 1.8
22 1.8
24 1.8

Table 4.10: Cardinality of variables in Y] for MV benchmarks.

Assuming a most probable value for py, we can reduce the optimality condition

(Equation 4.25 or 4.27) to the following:

117

px, _ 1 log,py,
px, Pv; log, py,

= const (4.28)

Assuming for instance py, = 2 (only binary variables) we have iﬁ = % which

X1
results in | X;| = | X3
Using this simplified condition we can limit the number of decompositions per-
formed to select the solution closest to the optimum.

We implemented two approaches to decomposition:

1. top-down: block Fy is decomposed into blocks F} and F; of approximately

equal number of inputs (| X;| = | X3| condition).

2. bottom-up: block F) extracted from Fy is of the minimal size specified by
the user (usually 1 input).

The first approach used for the binary functions implements closely the opti-
mality condition of Equations 4.25 and 4.27. For multiple-valued relations however
this implementation can be quite far from optimality due to unequal cardinalities
of the variables.

In the second approach we always extract the smallest possible unit from the
block Fy. The reason for implementing it was that it is faster for the data sets
which result in large compatibility /incompatibility graphs for top-down approach.

Table 4.11 shows the comparison of the two approaches in terms of cardinality
cost measure (cost after decomposition), number of decomposition steps performed
to complete the decomposition, and the decomposition time. The benchmarks
listed in Table 4.11 are benchmarks for which compatibility graphs for the top-
down approach are not too big.

As we can see from the comparison the top-down implementation which follows
optimality conditions from Equations 4.25 and 4.27 is better than the bottom-up
approach in all three compared aspects. The reason the top-down implementation

decomposes faster is that at each decomposition step the cost reduction is near the

118

i/o top-down bottom-up
cost | FEsteps | t [s] cost | #steps | t[s]
dxpl 7/10 | 285.4 17 0.69 311.7 28 0.87
9sym 9/1 | 117.4 4 1.66 129.1 6 2.77
9symml | 9/1 | 1174 4 1.26 129.1 6 2.53
add4 8/1 4 2 0.17 4 6 0.08
adr2 4/3 28 2 0.04 28 3 0.04
b12 15/9 | 295.1 25 6.99 323.5 42 1.35
bw 5/28 | 612.5 38 1.07 629.1 45 1.12
clip 9/5 | 689.2 17 5.23 918.6 22 8.81
conl 7/2 | 76.68 3 0.17 79.02 5 0.14
exop 8/63 2321 194 27.1 2516 298 | 14.92
f51m 8/8 | 234.2 10 0.59 274.4 23 0.86
house 16/1 | 209.8 41 24.93 46.94 13 3.66
inc 7/9 | 411.6 19 0.92 409.3 26 1.18
misex1 8/7 | 305.3 17 0.79 325 24 0.58
parity | 12/1 44 6| 403.1 44 9| 848.8
rd53 5/3 | 71.02 3 0.13 74.19 5 0.13
rd73 7/3 | 155.3 9 0.61 153.4 12 0.94
rd84 8/4 226 14 3.29 231.3 20 3.95
root 8/5 | 458.1 14 6.14 487.9 20 | 10.21
sao?2 10/4 | 543.7 14 | 35.75 918.7 26 | 10.94
sqrt8 8/4 153 7 0.62 158.4 9 0.83
squarh 5/8 | 157.2 11 0.27 150.2 10 0.33
XO0TH 5/1 16 1 0.01 16 2 0.03
Total 7531.9 435 | 521.53 | 8357.85 660 | 915.07

Table 4.11: Top-down vs. bottom-up approach to decomposition: binary functions.

maximum value so the fewer steps are needed to reach the final result. And also,
the final result is of lower cost in most cases.

The same kind of comparison was also performed for multiple-valued functions
with varying cardinalities of the variables. In this case simple implementation of
the top-down approach (blocks Fy and F3 have equal number of inputs) was often
far from the optimality conditions and comparison appeared to be more favorable
to the bottom-up approach (see Table 4.12). The number of steps needed to

perform decomposition is still significantly lower but the time to perform them is

119

i/o top-down bottom-up
cost | #steps |t [s] cost | #steps | t [s]
balance 4/1 424.5 2 30.07 424.5 2 7.7
breastc 9/1 504.2 12 1821 310.8 11| 37.79
flag 28/1 941.8 14 54.17 1034 32 | 81.67
irish 4/1 19.02 1 0.28 19.02 3 0.33
monklte 6/1 23 7 2.26 17 5 1.07
monkl1tr 6/1 23 7 1.23 17 5 0.16
monk2te 6/1 23 7 1.59 17 5 1.19
monk2tr 6/1 70.68 7 7.04 52.85 6 1.05
monk3te 6/1 24.34 4 1.89 22 5 0.6
monk3tr 6/1 95.79 3 6.03 80.9 3 0.36
sensory 11/1 2139 2 81.53 2050 71 196.2
ships 4/1 93.4 1 0.21 80 1 0.05
shuttlem 6/1 45.36 2 1.54 50.45 5 0.14
sponge 44/1 46.7 6 1.49 65.02 45| 19.37
tic-tac-toe | 9/1 863.5 3 1719 720.5 8| 198.4
trains 32/1 6 5 0.1 10 25 0.21
trains20 29/1 25 5 0.29 55.85 28 0.96
Z00 16/1 96.14 8 0.29 89.95 15 0.52
Total 5522.96 107 | 3730.18 | 5169.37 219 | 547.86

Table 4.12: Top-down vs. bottom-up approach to decomposition: multiple-valued
functions.

longer. This is because the compatibility graphs grow larger in many cases and
creating them and finding clique covering takes more time. To improve the results
for top-down approach in this case more sophisticated variables selection algorithm
for Fy and F; should be used (clearly the value for py, in Equation 4.28 should be

greater than 2 in this case).

4.6.3 Data reduction

Real life data are often redundant, containing many vacuous variables (having
no significant impact, if at all, on the classification result), which may obscure,
otherwise obvious, relations and dependencies. Vacuous variables (attributes) and

data samples may also significantly increase time complexity of the learning algo-

120

rithms and lead to more complex solutions. The data and cardinality reduction
becomes though an important step of the learning algorithm and may significantly
decrease not only the time complexity but may also lead to simpler solutions, with
better predictive accuracy.

In this section two different methods of reduction of vacuous variables are
proposed, one incorporated into the variable partitioning process and the other,
based on different principles, will be included in the decomposition algorithm.
The reduction of redundant data will be performed at each level of multi-level
decomposition process.

The first method, based on the conditional uncertainty, will be incorporated
into the variable partitioning procedure (see Section 4.6.2 p.110). The procedure of
variable ordering computes conditional uncertainties of input variables in respect
to the output variables. If, after investigating a successive variable, uncertainty
reduces to zero, it implies that all the remaining variables are irrelevant for the

output variables determination and can be eliminated from further investigation

(Figure 4.17).

o e Variables b and d reduce uncer-
u(y

tainty of y to 0 which means they
u(y | b) provide all the information neces-

sary for determination of the out-

u(y | bd) =0.0

put y

e Variables ¢ and ¢ are vacuous

Figure 4.17: Vacuous variables removing.

The second method can be applied at each step of decomposition procedure. If
in a given decomposition step (Figure 4.16 p.113) function fi(X;) is a constant
function then the function fo(f1(X1), X3) doesn’t depend on variables z; € Xj.

Hence, all the variables x; € X; are vacuous and can be removed from further

121

analysis.

4.6.4 Discretization of continuous variables

The inference method described earlier in this chapter was developed for dis-
crete functions and relations. Continuous variables have to be discretized in order
for the method to be applied. There exist many discretization methods, some of
them mentioned in Section 4.3, but in this section we will focus on a new method

which is an intrinsic part of our decomposition procedure.

1 11y

N 2
2

Figure 4.18: Discretization: general procedure.

As it was described earlier, in the decomposition process user specifies a min-
imal decomposition block which is the smallest size unit that can be extracted
from the block being decomposed (block f; in Figure 4.18). If the smallest decom-
position block has only one input variable x; then the decomposition procedure
attempts finding a block f; with smallest possible cardinality of the output vari-
able y;. If y; can be found such that |y;| < |z1| then the block f; presents a
mapping from the set of values the variable x; can take to a smaller set of values
the variable y; can take. One may say that what we’ve just described has nothing
to do with continuous variables. This is true but if we discretize a continuous
variable z; using a simple uniform binning method and the number of bins is large
enough then the decomposition procedure provides a mean for optimizing both
the number and the size of the bins. Moreover the function f; doesn’t even have
to be monotonic. It is discovered in the decomposition process in such a way as

to minimize the cost of the decomposed structure. Therefore, the discretization

122

scheme discovered is directly related to the way the dependent and independent
variables relate to each other and, as such, can better fit the data than any other
independent discretization procedure.

An example of application of this procedure is presented in Figure 4.19.

clump
usize
ushape 0]
adhesion —— |2 type —
sesize A
bare e
bland .
normal T
Mitoses —

Figure 4.19: Discretization: Univ. of Wisconsin breast cancer data.

The original data file had 9 continuous independent variables and one discrete
dependent variable. Independent variables have been uniformly discretized into 10
bins each and in this form the data file is available in [121]. Specifying minimal
decomposed block with only one input variable forces decomposer to investigate
possibility of reducing cardinality of data variables. As a result, variables which
were discretized into too many levels can be discovered and better discretization
scheme determined for them. What is interesting here is that often the discovered
discretization scheme is not monotonically dependent on the variable values. Com-
monly used discretization procedures assign consecutive discrete values to adjacent
intervals of the values being discretized. In concept, the discretization scheme is
determined in such a way as to minimize the cost of decomposed structure. Two
examples of discretization scheme discovered in the decomposition process for vari-
ables Mitoses and bare are shown in Figure 4.19. For the first variable 10 original
discretization levels are reduced non-monotonically to only two levels, for the sec-
ond variable we have monotonic reduction from 10 to 3 discretization levels. For
the remaining variables similar reduction in the number of discretization levels was

possible. Similar procedure can be applied for any continuous variable. Initially

123

Mitoses | fi(Mitoses) bare | fi(bare)
9 0 9 0
8 1 8 1
7 0 7 1
6 0 6 1
5 0 5 1
4 0 4 1
3 0 3 1
2 0 2 2
1 0 1 2
0 1 0 2

Figure 4.20: Discretization schemes discovered in breast cancer data.

they are to be uniformly discretized into larger number of bins without any opti-
mization and then, by applying our inference method, the optimal discretization

scheme can be discovered.

4.6.5 Implementation

In the preceding sections three optimization levels have been described:

1. determination of P(Y7)
2. selection of the best partition of input variables

3. removing of vacuous variables

The first level of optimization is provided by function decompose() which per-
forms a decomposition of relation Ry into two relations Ry and Ry minimizing the
cost in respect to Y7 only. The second level of optimization is performed in func-
tion variable_partitioning() and in the main loop of the procedure. Selection of the
best partition of input variables is performed by calling function decompose() for
every partition from the set Sy and comparing costs of different solutions. The
third level of optimization is performed in function decompose() and in the main

loop of the procedure.

124

The general framework of the optimization procedure is described in Algorithm
8 (function decompose_optimized()) and illustrated in Figure 4.21. The sets of vari-
ables X7 and X5 that form a variables partition can in general be non-disjoint, i.e.
X1NXz = X3 # 0 (non-disjoint decomposition). If X3 =) then the decomposition
is disjoint. Function decompose() returns a result of decomposition Ry, Ry and the
cost of decomposed structure cost. If the relation Ry returned by function decom-
pose() is empty it means that the dependent variables Y; of the relation Ry are
constant and all the variables contained in the set X, are vacuous. In this case the
decomposition loop (lines 11-19) is interrupted and function terminates returning
relations Ry, Ry (lines 14-15). This earlier termination can significantly speed up
the decomposition process in the presence of vacuous variables. If none of the
partitions from the set Sx results in the decomposition with the cost smaller than
the cost of the relation Ry then both Ry and R; are returned empty. It means that
usable decomposition does not exist. Variable partitioning procedure is described

on page 111.

Figure 4.21: Algorithm 8: lllustration.

Ihtbp] Optimization strategy (function decompose_optimized())

125

[1] Input: Ry : Xo — Yy relation to be decomposed min_size cardinality of set X1 Output: Rimin, Ramin
minimal decomposed structure

Yo =Yy Rimin = EMPTY, Ropin = EMPTY costpyn = cost_func(Ro) Sx = variable_partitioning(Rg, min_size)
Sx ={(X1,X2);} set of partitions every (X1,X2); € Sx X3 = X1nX> (R1, Ry, cost) = decompose(Ro, X1,X2,X3,Y2)
Ry = EMPTY return (R1, R2) cost < costimin (Rimin: Romin, c0stmin) = (R1, Ra,cost) return (Rimin,

Romin)

end

The details of implementation of function decompose() are described in Al-
gorithm 9. The main part of the procedure is performed in lines 18-24 where
compatibility graph is created and clique cover determined. Then, multiplicity
index p calculated and lr-partition P(Y]) is created. Based on P(Y]) the relations
Ri, Ry are determined and the cost of the decomposed structure is calculated.

To increase the speed of the decomposition procedure the code in lines 12-16
is used for a fast check for ¢ = 1. Function lower_bound_g() calculates lower
bound value for p (Algorithm 10). If the lower bound value is equal to 1 then also
i = 1. Calculation of the lower bound value can be performed without creating
compatibility graph and can significantly reduce decomposition time if the vacuous

variables are present.

t] Serial decomposition (function decompose())

[1] Input: Ro : Xo — Yo relation to be decomposed {X1, X2, X3,Y2} Output: Ry, Rz, cost Create lr-partitions
P(X1),P(X32), and P(Y2) P(X1) = make_partition(Rg, X1) P(X2) = make_partition(Ry, X2) P(Y2) =
make_partition(Ro, Y2) u; = lower_bound_pu(P(X32), P(Y2)) Compute lower bound for u, it is faster than com-
puting u pu; = 1 Ry = EMPTY Ry = make_new_relation(P(X32),P(Y2)) cost = cost_func(R1,R2) graph =
create_compatibility_graph(P(X1), P(X2), P(Y2)) cliques = find_cliques(graph) p = multiplicity_index(cliques)

P (Y1) = make_partition Y1 (Ro, cliqgues, u) Ry = make_new_relation(P(X1),P(Y1)) Ry = make_new_relation(P(X3)-
P(Y1),P(Y2)) cost = cost_func(R1,Rz)

return (Ri1, Ra, cost)

end

Algorithm 10 describes a process of computing the lower bound value for mul-
tiplicity index p. For every block B; of Ir-partition P(X3) the product B; - P(Y3)

is computed and its cardinality ¢ compared to the current lower bound value of p,

126

pi. If ¢ > p; then the value of y; is updated. At the end of the procedure py; is

equal to the lower bound of p and returned from the function.

Ihtbp] Computation of lower bound for p (function lower_bound_ji())

1]

P(X3),P(Y2)

w = 1 every block B; of lr-partition P(X2) ¢ = cardinality of the product B; - P(Y2) ¢ > p py = ¢

return

end

4.7 Experimental results

4.7.1 Multiple-valued functions

We start our presentation from a well known in the machine learning community
benchmark trains. The problem was proposed more than 20 years ago by Ryszard
Michalski [66]. The set of 10 trains in question is shown in Figure 4.22. The task is
to develop decision rules distinguishing trains traveling west from those traveling
east.

The data file is available from [121] and contains 10 data tuples (each tuple
corresponds to one train from Figure 4.22) with 33 attributes (including one class
attribute). This data file has been transformed to the format accepted by concept
and is listed below for illustration.

.type mv

.1 32

.01

.11b size load wO 10 sO n0 1s0 w1l 11 s1 nl 1sl w2 12 s2 n2 1s2 w3
13 s3n3ls3abcdefghi]j

.ob direction

.imv 3422104422103 422734228232222222
222

.omv 2
2301632008131 16110061001000100100
12009130071200020=----- 01010000000

127

1. TRAINS GOING EAST 2. TRAINS GOING WEST

v Lo H o HaHooorIby . LafoooH]

2[00l A\ a ST 2 [s o B
s [v J<a>|o -0 2 Lo 35
o O Coddal\a/] o \o/ 1o [N\ o/ [HY

s [0 1 a) @Y s oo o

O N OB, O, N+
O, Pk P P~ NP =
O O, O O O O O
O O, O r O O O
© N O - O, N O
o e e N O VI o
N ON OO W WwOo
O O O O O~ O O

.end

Figure 4.22: Michalski’s trains.

041311013 ----- 00001010000
0113002120061211001000000
101200010----- 01010000000
0613--------=--=- 00000010001
09130150------ 00000010001
0910--------=-- 00010000001
1512006120071010010000001
1622---------- 10000000001

Where 33 attributes are:

size
load

1s

1.
2.
3-22:

Number of cars (integer in [3-5]—[0-2])

Number of different loads (integer in [1-4]—[0-3])

5 attributes for each of cars 2 through 5:

(20 attributes total)

number of wheels (integer in [2-3]—[0-1])

length (short or long)—[0-1]

shape (closedrect, dblopnrect, ellipse, engine, hexagon,
jaggedtop, openrect, opentrap, slopetop, ushaped)—[0-9]
number of loads (integer in [0-3])

load shape (circlelod, hexagonlod, rectanglod,
trianglod)—[0-3]

128

23-32: 10 Boolean attributes describing whether 2 types

of loads are on adjacent cars of the train
- Rectangle next to rectangle (0 if false, 1 if true)
- Rectangle next to triangle (0 if false, 1 if true)
- Rectangle next to hexagon (0 if false, 1 if true)
- Rectangle next to circle (0 if false, 1 if true)
- Triangle next to triangle (0 if false, 1 if true)
Triangle next to hexagon (0 if false, 1 if true)
- Triangle next to circle (0 if false, 1 if true)
- Hexagon next to hexagon (0 if false, 1 if true)
- Hexagon next to circle (0 if false, 1 if true)
- Circle next to circle (0 if false, 1 if true)

33. Class attribute (east or west)

direction (east = 0, west = 1)

G R B0 O O T
]

The format we use is a derivative of the well known in the logic synthesis
community espresso format for binary functions. The first four lines of the header

have the same meaning as in the original format, namely:

.type - type of the data file,

1 - number of inputs (independent variables),
.0 - number of outputs (dependent variables),
.11b - list of input variables names,

.ob - list output variables names.

We extended the format to the multiple-valued cases by adding two description

lines to the header:

.imv - list of input variables cardinalities,

.omv - list output variables cardinalities.

and allowing a variable to take any integer value, not only 0 or 1 as it was in the
original espresso format. In a fact, since in general we want to be able to represent
multiple-valued functions and relations and input data can be represented by cubes,
we allow a variable to take a set of integers as its value, for instance 2,4,5. These

set values have to be separated by spaces in the data file. One special case of a set

129

value is present in the data, it is the so called “don’t care” value represented by
“” (notation taken from the logic synthesis domain) and it corresponds to the set
of all values the variable can take. It doesn’t of course mean that the variable can
take all the values from the set at the same time, it only means that any single
value from the set can be assigned to it. For instance let’s take the first “don’t
care” value in the second tuple in the data, it corresponds to variable w3 which
cardinality is 2 (can be read from the .imv header line), and means that variable
w3 in this tuple can be assigned either value 0 or 1.

In the context of the trains data file “don’t cares” correspond to the variables
which are not applicable for a given train (for instance the variable w3 in the second
tuple corresponds to the number of wheels of the fourth car of the second train
going east; this train, however, is composed of only three cars so there is no data for
description of the fourth car; see Figure 4.22 and variables description). This means
that during decomposition we can assign to them any value without affecting the
original description. In a fact, it is used by the decomposition procedure to simplify
decomposed structure, “don’t cares” are assigned the values which minimize the
cost of the solution.

The result of the decomposition is written to files in the same format as de-
scribed above, one file per block of the final solution. Running concept on the
trains data file resulted in the data files shown in Figure 4.23.

The first data file represents a boolean function OR on the variables b and
e, $2.0 = bV e. The second data file is a simple boolean negation of the binary
variable s2.0, direction = s2.0. So the classification of the trains can be described

by a very simple boolean equation:

direction = bV e

or equivalently:

direction = bV e

130

.type mv

.12 .type mv
.o 1 .11

.11b b e .o 1

.ob s2.0 .11b s2.0
.imv 2 2 .ob direction
.omv 2 .imv 2

.p 4 .omv 2
101 .p 2
111 10

00O 01

011 .end

.end

Figure 4.23: Decomposition of trains benchmark.

Taking the meaning of the variables from the data file description we can write

the following rule:

If a train has triangle next to triangle or rectangle next to triangle

on adjacent cars, then it is Fastbound and otherwise Westbound.

The best rules discovered for the same problem and reported in literature are:

1. If a train has a short closed car, then it is Fastbound and otherwise West-

bound.

2. If a train has two cars, or has a car with a jagged roof then it is Westbound

and otherwise Fastbound.

As we can see the complexity of the solution obtained by concept is comparable
to the best known solutions for this problem.

Analyzing the solution to the trains problem one thing particularly strikes
a reader, out of 32 independent variables present in the initial description of the
problem only two are relevant for determination of the dependent variable! These
kind of problems are not rare in Machine Learning and effective detection and

removal of such variables can significantly improve the learning process. Concept is

131

able to detect and remove irrelevant (vacuous) variables “on fly” in a very effective
manner as a part of the decomposition process (see Section 4.6.3).

Another data file we want to analyze here is breastc. This is a University of
Wisconsin breast cancer data base that has been used for Machine Learning algo-
rithms testing by various researchers [13][131]. It contains 699 data tuples which
are classified into two classes: benign and malignant. There are 9 independent
variables corresponding to different measurements, each variable takes 10 discrete
values. The results of decomposition of this data file for two different options are

shown in Figure 4.24.

10

E usize 106 9

sesize — | 3 clump 10 4 4 7

2
type
clump 10— 10 yP bare %>—‘10 2
bland 10 bare Mitoses ED—T

adhesion

Figure 4.24: Decomposition of Univ. of Wisconsin breast cancer data.

The left-hand side structure has been obtained as a result of selecting a min-
imal decomposed block with two input variables. The cardinality cost measure
of this structure is 624.6 and the number of relevant variables is reduced from 9
to 5. The second structure was obtained by selecting one input variable minimal
block and its cardinality cost measure is equal to 310.8. As we can see selecting
smaller minimal decomposition block reduces the cost of the final solution (the
decomposition time increases however). More examples of comparison of the two
decomposition approaches are presented in Tables 4.7.1 and 4.7.1 where columns
'i/o” and cost’ specify the number of inputs/outputs and cost for the original data
file, and columns “final(1)’ and 'final(2)’ show the decomposed structures for mini-
mal blocks with 1 and 2 inputs, respectively. The total cost value for the structures
in column “final(1)” includes the cost of blocks which optimize the discretization
scheme of the variables.

Choosing minimum block with a smaller number of inputs usually results in a

132

lower cost structure but decomposition time is longer than for larger blocks. With
the increase in the size of the minimal block the final structure becomes coarser
but the decomposition time shortens. Since each block is basically a set of human
understandable rules the whole process can easily be made interactive. By starting
decomposition from relatively large minimal block, a human expert can analyze
the decomposition results and, if the results are not satisfactory, decide on further
finer decomposition for selected blocks. This iterative refinement can be stopped
at any time provided the result is satisfactory. Such interaction provides usually

much better performance than “only machine” or “only human” approach.

133

Table 4.13: Decomposition of MV functions (a).

initial final (1) final (2)
i/o | cost
5 5
lw s 14 1 lw s 14 1
Id d 5 5 3 baance Id d 5 5 3 baance
balance | 4/1 | 9.9¢02 ' w : w
1 =4, cost = 424.5 1 =4, cost = 424.5
t=7.27s t=6.17 s
stripes 12
botright
ba:r:: e colours
topleft 7
aron 6 landmass 6 landmass
o e
flag 28/1 | 2.9¢16 sripes religion
1 =38, cost = 983.1 1 =238, cost = 938.2
t =81.18 s t =45.28 s
sx 2 3
. 12 3) 12 school
irish 4/1 6.8e02 education_level =21~ © school | education level
1=1, cost = 19.02 1 =2, cost = 38.04
t =0.38s t =0.27 s
Columns 4 Columns 4
Trellis 4 Trellis 4
Occasion 6 11 score Occasion 6 11 score
sensory | 11/1 | 7.7¢05 Position Position
1 =15, cost = 2050 1 =25, cost = 2050
t = 196.8 s t = 148.2 s
period_operation 2) 2
construction_year 4| |4 damage incidents p:ﬁﬁ:f:::z 5 j ’_<D5 4 damage incidents
ships 4/1 | 4e02 type % eosncion yex T
1 =3, cost =80 1 =4, cost = 78.58
t =0.02s t =0.16 s

134

Table 4.14: Decomposition of MV functions (b).
initial final (1) final (2)
i/o | cost
magnitude 4.3 3
wind 2 3 3 2
w%wo
shuttle 6/1 | 2.6e02 visbilty
1 =06, cost = 50.45 1= 06, cost = 70.34
£=0.125 £ =0.08s
A
B
A4 2 3 SUSTRATO
n 9.4 3 SUSTRATO L2
9
sponge 44/1 | 2.8e23 | b 3
1 =3, cost = 47.36 1 =4, cost = 62.04
t =15.4s t=7.93s
tic-tac-toe | 9/1 | 204 s T
1 =238, cost = 692.2 1=9, cost = 871
t =189 s t =117.6 s
trains20 | 29/1 | 1.6el5 | 57> size
1 =3, cost = 27.51 1 =3, cost = 36
=042 £ =0225
2
) eggs 2
eggs 3 2 b—
8Quaticz]: p har — ,
9
legs 3 7 type tzoothed 2 6 pe
milk 2 aquatic ol
200 16/1 | 8.3¢05 | toothed 2 w0 |
1=25, cost = 112.2 1= 06, cost = 138.4
t =043 s t=10.35s

4.7.2 Binary functions

135

In this section we present the results of decomposition of binary functions [81].

Table 4.15 presents comparison of costs before and after the decomposition. As

we see from this comparison the cost reduction is sometimes very significant (c8,

cc, gpio, i1, b12 for instance).

initial final time
i/o cost i/o cost [s]

addd S/1 256 | 2/1 1011
adr2 4/3 48 4/3 | 32.34 | 0.05
c8 28/18 | 4.83184e+09 | 28/18 | 718.8 | 11.57
cc 21/20 | 4.1943¢+07 | 21/20 | 282.9 | 0.83
f51m 8/8 2048 8/8 | 386.8 | 0.83
gpio 131/91 | 2.47726e+41 | 131/91 | 1480 | 87.6
house 16/1 65536 8/1 | 50.45 | 3.54
il 25/16 | 5.36871e+08 | 25/16 | 188.3 | 6.63
parity 12/1 4096 12/1 44 | 740.8
root 8/5 1280 8/5 610 | 7.34
dxpl 7/10 1280 7/10 | 319.7 | 0.79
9sym 9/1 512 9/1 | 126.3 2.7
9symml 9/1 512 9/1 | 129.1 | 2.56
b12 15/9 294912 15/9 | 330.4 | 1.08
bw 5/28 896 5/28 | 629.1 | 1.15
clip 9/5 2560 9/5 | 918.6 | 8.87
conl 7/2 256 7/2179.02 | 0.11
exop 8/63 16128 8/63 | 2523 | 13.26
inc 7/9 1152 7/9 1 409.3 | 1.02
misex1 8/7 1792 8/7 | 316.7 | 0.58
rd53 5/3 96 5/3 | 74.19 | 0.14
rd73 7/3 384 7/3 | 153.4 | 0.83
rd84 8/4 1024 8/4 | 231.3 | 3.65
sao2 10/4 4096 10/4 | 856.3 | 9.08
sqrt8 8/4 1024 8/4 | 158.4 | 0.75
squarh 5/8 256 5/8 | 150.2 0.3
xord 5/1 32 5/1 16 | 0.03

Table 4.15: Decomposition of binary functions.

136

Table 4.16 shows the results of comparison of our decomposer to leading binary
decomposers in terms of cost of the final results. The cardinality cost measure has

been used for decomposition.

cardinality cost measure

File i/o | TRADE | MISII | DSGN174 | concept [time]
Bxpl 7710 196 | 384 292 285 [11.0]
9sym 9/1 640 984 400 117 [26.4]
9symml 9/1 644 908 796 117 [23.7]
conl 7/2 80 68 60 7 [2.3]
duke2 22/29 6516 | 2428 2200 6664 [2562.0]
f51m 8/8 372 | 392 240 234 [10.1]
misex1 8/7 472 208 224 305 [8.6]
misex2 | 25/18 548 464 436 669 [2568.0]
misex3c | 14/14 19816 | 4204 3028 5045 [1700.0]
rd53 5/3 120 96 84 71 [1.8]
rd73 7/3 320 352 256 155 [13.1]
rd84 8/4 508 672 320 226 [32.6]
sao?2 10/4 1848 516 468 544 [47.2]
Total 32380 | 15396 10072 14509

Table 4.16: Decomposition of binary benchmarks.

TRADE is a decomposer developed at Portland State University [127], MISII
at University of California, Berkeley, and DSGN174 is a decomposer developed
under supervision of Prof. Steinbach in Germany [119]. The binary functions for
testing are selected from MCNC benchmarks [81] and are the same as in [119]
where results of decomposition of MISII and DSGN174 are compared. The final
cost value is computed as a sum of the costs of single blocks of the result of the
decomposition. The cost of a single block is computed using Equation 4.2. For
our program (concept) the execution time is given in the last column of the table
(DECstation 5000/240, 64 MB of memory, user time in seconds). The lowest cost
result for every benchmark is underlined in Table 4.16. As we can see from the
table our decomposer provided the best result in 7 out of 13 cases, DSGN174 in 5
out of 13, and MISIT in 1 out of 13 cases. Taking into account that the other three

137

decomposers were optimized specifically for decomposition of binary function and
our decomposer is a general purpose decomposer of multiple-valued functions and

relations these results are promising.

4.8 Summary

In this section we formulated a research problem not yet tackled by previous
researchers - decomposition of multiple-valued relations, and we proposed a method
to solve it.

The method we proposed and described in this chapter is in its general frame-
work based on the works of Ashenhurst [7], Curtis [29] and Karp [50]. They
developed a theory of decomposition of boolean and multiple valued functions and
proposed a set of decomposition algorithms based on the Karnaugh maps repre-
sentation. The method consists of splitting a functional block into two blocks,
interconnected by a new attribute(s), in such a way as to minimize a certain cost
measure. The method described in this chapter is an extension of their work on
multiple-valued directed (at least one variable is a dependent variable) and neu-
tral (all the variables are independent) relations. Decomposition algorithms we
developed in this chapter are based on a much more efficient data representation,
Ir-partitions (developed in Chapter 3). Decomposition of directed relations was
described in Section 4.2 (p.74) and decomposition of neutral relations in Section
4.3 (p.79).

The whole decomposition process is optimized in respect to certain cost mea-
sures. Three such measures were analyzed in this chapter, cardinality, function-
ality, and number of degrees of freedom (Section 4.5). Cardinality cost measure
developed in this chapter (Section 4.5.1, p. 88) is a straightforward extension of the
measure proposed by Abu-Mostafa [2] for binary functions. The second measure,
we call it functionality, is based on a formula developed by Lendaris and Stanley
for disjoint decomposition of binary functions [73]. We developed a more general

formula (Section 4.5.2, p.89) that covers not only binary and disjoint but also

138

multiple-valued and non-disjoint cases. The third cost measure used in this work,
number of degrees of freedom [62], was analyzed in this chapter in the context of
disjoint and non-disjoint decomposition of neutral relations (Section 4.5.3, p.98).

One decomposition step consists of splitting a functional or relational block into
two blocks in such a way as to minimize one of the cost measures. The number of
possible splits grows exponentially with the number of independent variables so in
order to make this problem tractable heuristic procedures have to be used. The
procedure developed in this chapter is based on conditional entropy calculation
(Section 4.6.2, p.110). The second procedure used in the implementation was
borrowed from the work of Wei Wan [127]. It was experimentally shown that
splits based on the entropy based procedure resulted in the minimal cost measure
in more than 75% of cases.

The heuristic procedures of variable partitioning generate few candidate so-
lutions which are then used for decomposition. Given a variable partition the
decomposition consists primarily in finding the Ir-partition P(Y7). This is done
by mapping data interrelations into a graph and performing clique covering or
node coloring on the graph. The idea of using graph coloring for decomposition
has previously been used by Wan Wei and Perkowski [127][126], but the trans-
formation algorithms they developed were related to binary functions represented
by sets of cubes. We developed new transformation algorithms for Ir-partitions
data structure, and extended their clique covering and node covering algorithms
onto multiple-valued relations case (see Section 4.6.1, p.104). The search for a
low cost solution consists of two-level heuristic optimization: selection of variable
partitions and finding minimum clique covering (node coloring) of a graph. The
cost of each decomposed structure is evaluated and the best of them is selected as
a final solution.

Real life data often contain significant number of irrelevant (vacuous) variables,
and their detection and removal may significantly speed up the decomposition

process and simplify the resulting structure. Therefore, effective procedures to

139

perform this task are highly desirable. We propose two such procedures (Section
4.6.3, p.119) as an intrinsic part of the decomposition process, which makes them
very time effective.

The algorithms presented in this chapter were developed for a very general
case of nominal (symbolic) variable values. The assumption therefore is that the
variables are discrete. If they happen to be continuous they have to be discretized
before our algorithms can be applied to them. As a part of the decomposition
procedure we developed an algorithm for analysis of existing variable discretization
schemes and, if possible, developing better ones (fewer discretization levels, non-
monotonic discretization) (see discussion of decomposition of breastc data set in
Section 4.6.4, p.121).

It is quite common for Machine Learning data that some of the variable values
are missing or irrelevant. Different techniques have been proposed in the past
to deal with this problem. The decomposition approach used in this work deals
with this problem in a very natural way. The unknown values are either replaced
with “don’t cares” in the decomposition process and replaced with values which
minimize the cost of decomposed structure or kept as unknown if possible. This
is again an intrinsic part of the decomposition procedure and is performed for no
extra computational cost (see discussion of decomposition of trains data file on
p.127 for an example).

The decomposition process is iterative; in one decomposition step, a block is
decomposed into two smaller blocks and the process is repeated automatically un-
til a certain stopping criterion is satisfied. The stopping criterion used by the
implementation is a minimal block size specified by the number of independent
variables. Therefore, the granularity of decomposition can be specified by a user.
Interactive decomposition process can be controlled by a human expert by start-
ing with a low granularity decomposition, investigating the results, and proceeding
with higher granularity decomposition of selected blocks if needed. The opposite

approach would start from the lowest possible granularity decomposition, investi-

140

gating possible meanings of the discovered concepts and composing blocks which
don’t provide any additional explanation to the data. The advantage of the first
approach is speed, the disadvantage is that large data blocks may be difficult for
analysis. In the second approach the analysis of small data block is much easier

but the decomposition time may be significantly larger.

141

Chapter b

LEARNING

5.1 Introduction

What is learning? What is a learning system? Learning is a very broad no-
tion and is usually defined as acquiring knowledge or skill by study, experience,
instruction, etc. This may mean, in the simplest case, memorizing and directly re-
trieving memorized knowledge without any additional transformation, or, in more
complex cases, understanding and creating concepts from existing knowledge. Un-
derstanding how things work often implies predictive ability, being able to predict
the future. Using other terminology, it means creating new theories (concepts)
which would explain the future behavior of a system. Learning implies increase in
knowledge and improved performance.

From the point of view of the type of inference strategy or methods used in the

learning process we can distinguish the following learning methods:

e Memorization (rote learning): the simplest form of learning, the knowledge
is simply stored in the same form as it will be used. Memorizing multiplica-

tion tables is an example.

e Direct instruction (by being told): more complex form of learning which
require transformation of knowledge before storing. Learning from a teacher

presenting facts is an example.

e Analogy: is a process of learning new concepts based on similar concepts

or solutions.

e Deduction: or inference, is a process of logical derivation of new facts from

142

other, already known, facts. Enough information has to be available to per-
mit this kind of learning. For instance, if we know that an animal is a bird

and that all birds have wings we can deduce that that animal has wings.

e Induction: consists of generating a general concept after seeing a limited
number of instances or examples of the concept. This is almost always the
case in real problems; there is only partial information available and based
on this partial information we have to derive general concepts. For instance,
we learn a concept of horse by seeing several (but not all) horses, possibly
of different color, size, age, etc., so that we could grasp what they have
in common. And these features, common for all horses, define the general

concept of horse.

Many learning tasks in real life can not be defined well except by examples.
The relationship between different features (variables) is often unclear and difficult
to discover and translate into rules understandable by humans. Decision making,
which is one of the most fundamental processes of human activity, is a process
of deciding what to do if presented with a variety of evidence (also referred to as
features, attributes or variables). In other words, it is a process of establishing a
correspondence between input values and a decision to be made, or the process
of selecting a class (decision) for a given combination of attribute values, and is
commonly referred to as a classification task. In statistics, the classification
problem is also known as prediction problem, in machine learning, as concept
learning.

The quality of the decision making process heavily depends on the decision
maker’s experience and knowledge in the area of interest. Since a need for accurate
decisions is common and expertise in many fields is scarce, computers are used to
facilitate these, often difficult, tasks. Decision-making computer programs are
called classifiers or predictors.

Learning System will be defined here as a computer program whose fun-

damental goal is to build a classifier in the inductive learning process (which is

143

always biased). Learning system is presented with a finite number of samples of
solved cases, and building a classifier is usually based on adjusting parameters of
a selected classifier model (linear discriminator, nearest neighbor classifier, deci-
sion tree, neural network, etc.) according to certain performance criteria. Using
different terminology, building a classifier is also referred to as finding the best
hypothesis or theory which explains the data.

Constructive Induction (concept proposed first by Michalski [83]) is a two
level learning method which consists of searching first for new concepts in data
(search for an adequate representation space), and then searching for the best hy-
pothesis within the space of new concepts. The process of discovering new concepts
is equivalent to specifying a vocabulary (variables) to be used while writing a pro-
gram (hypothesis) using certain programming language (functional architecture).

Constructive induction is based on a number of ideas and assumptions [5]:

o It is based on the idea that the quality of the knowledge representation
space 1s the most important factor in concept learning. If the representation
space is of high quality (i.e. chosen attributes or descriptive terms are of
high relevance to the problem at hand), learning process will be relatively
easy and will likely produce hypotheses with high predictive accuracy. If the
quality of the representation space is low (i.e. attributes are of little relevance
to the problem), a learning process will be complex and no method may be

able to produce good hypotheses.

o It searches for patterns in data and/or learned hypotheses, and uses them
for proposing knowledge space transformations (that may expand or/and

contract the space).

e [t creates new descriptors (attributes or terms) that may be very complex,

multilevel functions or transformations of the original descriptors).

o It postulates that produced concept descriptions should be comprehensible

to human experts, so that they are relatively easy to interpret and express

144

in terms and forms used by experts.

Many constructive induction methods have been developed and they are usually
classified based on the strategy employed for generating new representation spaces.

They may be classified into the following categories:

e Data Driven Constructive Induction
The input data are analyzed and, based on the relationships between the

input variables, changes are made in the representation space. [104], [14],

[64], [65], [36], [42], [82], [41], [L11].

e Hypothesis Driven Constructive Induction
Hypotheses generated in the second step are used for selection of the represen-
tation space. The whole process (both steps) is iterated until the satisfying
solution is found [35], [90], [132], [93], [80], [129], [130].

e Knowledge Driven Constructive Induction

The new representation space is generated based on expert-provided domain

knowledge [66], [68], [69], [33], [56].

e Multistrategy Constructive Induction is a combination of any of the

above types [66], [83], [84], [89], [122], [123], [91], [92], [53], [54], [103].

The method of induction presented in this work, decomposition, extracts from
data new variables (concepts) to reduce complexity of the solution. The idea of
using new variables to represent concepts that can not be measured directly has
been used in latent class analysis technique. Latent class analysis is a technique
of analyzing data that has been very popular in the social and behavioral sciences
for a very long time [67],[12]. This technique introduces new variables, not ob-
served directly in the data (latent variables) to represent concepts that can not be
directly measured. For instance there is no way to directly measure intelligence of

a person, intelligence can only be identified based on the results of certain tests,

145

observable variables. Latent class analysis is a technique that determines relation-
ships between observable and latent variables within a predefined stochastic model.
Different models have been proposed for different applications and the selection of
the right model is usually based on the experience and knowledge of a researcher.

The idea of using decomposition in order to construct a network of functional
blocks (concepts) matching given data was presented first by Lendaris and Stanley
[73], [72], [71]. They use the theory of decomposition of binary functions devel-
oped in [7], [29], and [50] as a tool for the development of self-organizing systems,
networks of adaptive logic elements in particular. The structure of the network
(hypothesis) is modified according to the constraints in the environment pertinent
to the task (function to be learned known by the teacher). Structure of the network
analyzed in [73] and [72] is a disjunctive cascade of universal logic elements similar
to Maitra cascades [76]. Subfunctions relevant to the task are discovered in the
process of adjusting parameters of universal logic elements until they match the
learning data. The approach was applied to completely and incompletely specified
binary functions.

The standard machine learning approach is focused on learning a single con-
cept from data. In this dissertation Ashenhurst-Curtis type decomposition is
used to decompose data into an organized multi-level structure of primitive (non-
decomposable) functional blocks (concepts). As an example of this approach let
us consider a decomposition process shown in Fig. 5.1.

buying

maint buying

doors maint

persons
doors

4
lug_boot comfort 3
lug_boot 8
safety 3
persons

safety
cost = 3456 cost =125

Figure 5.1: Discovering new concepts.

The benchmark car described in [15] was developed for evaluating cars based

146

on their price and technical characteristics. Three new concepts (variables) have
been discovered in the decomposition process: cost, comfort, and tech. Concept cost
depends on independent (input) variables buying (buying price), and maint (main-
tenance cost). Concept comfort depends on independent variables doors (number
of doors), lug_boot (luggage boot), and persons (number of persons). Variables
safety and comfort define concept tech (technical characteristics), and the original
concept car can be now expressed in terms of the concepts tech and cost. The com-
plexity of the new structure is much smaller than the original one and according
to the Occam Razor principle should have better generalization properties (more

detailed treatment of generalization issue is provided in [70][73][72]).

5.2 Learning from noisy or incomplete data

Real life data sets used for building classifiers are hardly ever perfect and have
often incorrect or uncertain values of variables (attributes). The way to deal with

the problem usually depends on whether it is an input or output variable.

The most common types of errors are:

e Missing value.
The most common technique to handle missing value is to either neglect the
whole data sample or substitute the value with a value selected according
to certain criteria, for instance select the value the variable takes most often
in the same class. If the value of the output variable is unknown the whole

data sample is neglected.

e Uncertain value.
In some situations it is more appropriate, or even necessary, to allow a vari-
able to take multiple values. It doesn’t mean that the variable can take
different values at the same time however, it only means that we are not

sure which of the set of values is the correct one and we want to postpone

147

the decision until more information will be available. For instance dependent
(output) variables, their values, in the case of supervised learning, have to
be determined by a teacher, expert in the area (class assignment). However,
since experts do not always agree on what class a given set of input values
has to be assigned to, it is better to postpone the final decision in the hope
that additional information will be available to help us select the right value.
In cases where ambiguity can not be resolved based on available knowledge,
we can apply some general criteria, like Occam razor principle, to select the
value for a variable. The decision can be postponed until the learning process
is finished and then a value can be selected to minimize overall complexity
of the classifier. The situations described above can not be described by
using functions; the more general notion of relation is needed to capture the

problem.

In this dissertation missing values and uncertainties are represented by set-
values presented in Section 3.

The presence of noise in the data adds a new dimension to the problem of
hypothesis selection. If we want to avoid overfitting problem the procedure of
construction of the compatibility graph (Example 4.6 p.108) has to be modified (a
hypothesis which perfectly fits the data with noise has usually poor generalization
properties). For instance the curve in Figure 5.2b follows all the small details (or

noise) in data but may work poorly in extrapolation or interpolation.

3 b)

Figure 5.2: a) A good fit to a noisy data b) Overfitting on the same data

148

In the presence of noise, complexity measures discussed earlier are not sufficient
anymore. In the absence of noise, the least complex solution perfectly fitting the
data would be selected. If noise is involved however, this procedure could result
in selecting solutions with poor generalization properties (overfitting problem). In
order to select the best solution both the complexity and error (losses) have to be
taken into account. One of the most often used approaches is to asses Kolmogorov
complexity of these two factors and minimize their sum (minimum description
length principle described in Section 1.1.2). In practice, encoding schemes tend to
overestimate the number of bits used for hypothesis description compared to the
description of errors. To compensate for this inaccuracy, the minimum description

length equation is modified by introducing an empirical factor k:
MDL = k- hypothesis description length + error description length — (5.1)

which was by default set up to 0.5. In our implementation we use cardinality (or
log-functionality) cost measure as hypothesis description length and the approach
presented in [102] to calculate error description length.

The number of errors when classifying a set of n objects can be in general en-
coded by an n-bit string of 0’s and 1’s, 0 corresponding to the correct classification,
1 to an error. The string of length n will always work fine but for some combina-
tions of 0’s and 1’s we can encode the same information with smaller number of

bits. The encoding procedure proposed in [102] is the following;:

1. First encode the number of 1’s, this requires log,(n 4 1) bits (the number of

ones can be in the range 0...n)

2. Let the number of 1’s be k. Then the number of strings of length n containing
k 1’s is equal to (Z) and we need log, ((Z)) bits to describe which one it is.

Hence, the total number of bits needed for the error encoding is equal to:

logy(n + 1) + log, ((Z)) (5.2)

149

This equation can be approximated using Stirling’s formula to obtain:
1
ntl(k/n) +logy(n) — o (logy (k) +logy(n — k) +log,(2m)) + O(1/n) (5.3)

where H(k/n) = —k/nlog,(k/n)— (1 —k/n)log,(1 —k/n) is the familiar Shan-

non’s entropy function.

5.2.1 Lossy decomposition

The decomposition procedure described in Chapter 4 creates solutions which
perfectly fit training data. In the presence of noise such solutions would very likely
do poorly on the data not present in the training set. In order to address the
overfitting problem we have to modify the decomposition procedure in such a way
as to be able to create solutions with error level and complexity related to each
other. We should be able to create simpler solutions at a cost of higher error rate
on the training data and vice versa. In other words, we should be able to perform
lossy decomposition.

A good place for modification of the decomposition procedure is where the
compatibility graph is constructed (see Section 4.6.1 p.104). The graph in Figure
5.3b is constructed for data represented by the Karnaugh map in Figure 5.3a. It
is a full graph with a weight assigned to every edge. Each weight takes values
between 0.0 and 1.0 and is equal to the minimum number of mismatches between
the columns connected by that edge, normalized to the maximum possible number
of mismatches (number of rows). YES or NO selection criterion removes all the
edges from the graph which weights are greater or equal to certain value d. Figure
5.3¢ shows the graph obtained for d = 0.5. Of course if we know the threshold
value d before we start creating the graph, then the full graph doesn’t have to be
created at all.

The algorithm described above was developed for the general case of nominal
data (as were the decomposition algorithms described in Chapter 4). For such data
the variable values are mere symbols and no distance measure can be defined in such

spaces. This is the most general approach for discrete data spaces. If the system

150

o Bly Bly, Bl Bl

ab 00 01 11 10

4 7 9
0 0|3 [13]2
1 8 1q
o117 -|o1]1
2 El
1{ 073
3 q 11
000747 -4
f
3 b) <)

Figure 5.3: Compatibility graph for lossy decomposition in nominal spaces.

variables are metric and a distance can be computed, then the decomposition
algorithms can be improved. For instance in the decomposition of probabilistic
relations described in Section 4.3 (p.79), the frequency (probability) distribution
variable is metric. The lossy decomposition algorithm for metric spaces is very
similar to the one developed for the nominal spaces. The only difference is that
the column compatibility is determined based not on the number of mismatches
but on a distance metric defined for columns.

o Bloo Bloy Blyy Blyg

ab 00 01 11 10

4 7 9
0l 0 |3 |13]2 Bly
1 8 10
o1l 1] - o111
2 | BlOO BllO
1] 073
3 [§] 11
0007147 -]|2a Bly
f
a) b) ©)

Figure 5.4: Compatibility graph for lossy decomposition in metric spaces.

Figure 5.4 shows a construction of compatibility graphs in two cases: nominal
data without loss and metric data with loss. The graph in Figure 5.4b was con-
structed assuming nominal data space and no loss. Two columns are compatible
only if they have a common value in every row of the table. The graph in Figure
5.4c was created assuming metric data space. In the example in Figure 5.4 two
columns are considered to be compatible if the difference (distance) between values
of the corresponding row cells is not greater than 1. The resulting graph (5.4¢) can

be covered by fewer cliques (2 vs. 3) than the graph for lossless case (Figure 5.4b)

151

and results in simpler decomposed structure. Other distance metrics that could

be used here are Fuclidean distance and correlation coeflicient.

5.3 Estimation of performance

In chapter 4 we created our new decomposer, ran it on several data files and
got beautifully decomposed and simplified structures. Here, we want to evaluate
it as a learning method. We want to know how good is it in learning underlying
structures from data, how accurately the concepts discovered by decomposition
describe the data, or how closely the network of decomposed blocks models the
true structure of the system described by the data file. In other words we want to
determine how much our model is in error when used to model the true system.

The most common definition of an error rate is:

number of test cases in error

error rate =

(5.4)

total number of test cases

This equation is very simple but there is one problem with it. The problem is
how to select the test cases. If we use the whole data file to discover new concepts
and use the same data file for testing them, then the error rate is called apparent
error rate and it is very likely to be close to zero. This is perfect, one may say.
Not really so. It is perfect if the data file contains a complete description (or
close to it) of the underlying problem. But for real world problems it is almost
never so. The common situation is that we only have a very small subset of the
full description. We hope it captures all the essential features of the underlying
system and try to build a model which would describe that system as closely as
possible. Building a model which perfectly describes this limited sample does not
necessarily mean that it will correctly model the whole system. What we really
want is to be able to estimate a true error rate, i.e. the error rate obtained if the
whole system were available for testing. So the question really is: How to evaluate

a true error rate when only a limited sample of data is available? Below we will

152

provide a short review of the most commonly used methods together with their

range of application.

5.3.1 Trial-and-test error rate estimation

The simplest method of evaluation of a true error rate is to partition the data
set into a training set and a testing set, develop a model using only data from
the training set and estimate the true error rate based on evaluation of the model
performance on the testing set. How close this estimation will be depends on the
size of the testing set. If the size of the testing set is 1000 then the estimation is
off the true error rate by no more than 1%. If the test sample size is 5000 then the
estimate is virtually equal to the true error rate. Traditionally, a fixed percentage
of data available is used for training and the remaining data used for testing. The
usual split ratio is 2/3 and 1/3. However, if 1/3 of the data is greater than 1000

(or 5000) more of the data can be used for training.

5.3.2 Resampling techniques

If large amounts of data are available, a single trial-and-test method can be
used with good accuracy. If we are short of data however, multiple trial-and-test

experiments will do better.

Random subsampling

This method consists of repeating a single trial-and-test experiment many times
and averaging error rates to get a true error rate estimate. Partitions for each
trial-and-test experiment have to be determined independently and randomly. By
averaging, this method can provide better true error estimate than a single trial-

and-test experiment but it is more time consuming.

153

K -fold cross-validation

In k-fold cross-validation method the data is randomly partitioned into & sub-
sets. A single trial-and-test experiment is repeated k times where each time dif-
ferent subset is selected as a testing set and the remaining data as a training set.

A special case of this method, for k£ equal to the sample size n, is called leave-
one-out method. In each of n experiments n — 1 samples are used for training and
1 sample for testing. The method is known to be an almost unbiased estimator of
the true error rate but is computationally expensive and is usually used only for
small sample sizes.

Another special case of this method which is used when the data sets are large
is the so called inverse k-fold cross-validation method. The procedure of data
partitioning is the same as for k-fold cross-validation but the selected subset is
used not for testing but for training. Since it is much smaller than the remaining

data the training time can be significantly reduced for large data sets.

Which method to use?

Selection of the true error rate estimation method depends of the size of the

available data set. Here are the guidelines [128]:

o For sample sizes greater than 100 use k-fold cross-validation method. The
most often used are 10-fold cross-validation which is reliable for sample sizes
of couple of hundreds and greater or leave-one-out (may be computationally

expensive).

e For sample sizes less than 100 (but greater than 50) use leave-one-out method.

5.4 Experimental results

In this section we will present results of running concept on various benchmarks

and compare it to the results obtained from C4.5, one of the best known learning

154

programs in the machine learning domain. C4.5 is a program which constructs a
decision diagram that best fits the data. Three different versions of the program
will be used for comparison: before pruning, after pruning, and rules. The first
version is the decision tree constructed directly from the data and may often overfit
the data. The second version is a decision tree constructed from the first version
by removing parts that contribute very little to the classification of unseen cases.
The third version is constructed from the second version by extracting human
comprehensible rules (disjunctive normal form) from the decision tree which may
even further simplify the description of data.

In Table 5.1 we compare concept and the three versions of C4.5 on selected
machine learning benchmarks from [121]. Only discrete variable benchmarks were
selected for comparison (concept doesn’t have a discretizer build in, C4.5 does). For
each benchmark the number of inputs and data tuples is listed in the table. All the
benchmarks in Table 5.1 have between 200 and 1000 data tuples, so according to
the rules specified in Section 5.3 we used 10-fold cross-validation method for true
error rate estimation. Underscore indicates the best result for a given benchmark.
From this comparison we can see that concept outperforms both the first and the
second versions of C4.5 in 6 out of 10 cases. It is outperformed by the third version
of C4.5 in 5 out of 9 cases.

The results of comparison on four benchmarks balance, monk2, parity, and
tic-tac-toe deserve an extra comment here. These are the cases where one of the
programs was significantly better than the others. The benchmark balance mod-
els a balance scale, it can tip to the left, right, or be balanced. The four attributes
are 'the left weight’, 'the left distance’, 'the right weight’, 'the right
distance’. Class assignment is determined based on comparison of the prod-
ucts 'the left weight * the left distance’ and ’the right weight * the
right distance’. This problem is characterized by a significant level of symme-
try between variables and apparently concept is doing much better here than the

other programs. The second benchmark where concept is significantly better is

155

monk2. This problem was created to make it difficult to describe in disjunctive
normal form or conjunctive normal form, it is similar to parity problems (sym-
metry again!) and concept can learn it without error whereas the other programs
report significant (= 30%) error. To fully confirm our observation that concept
is significantly better on symmetrical problems we added a binary parity function
parity to the set of benchmarks. For every combination of the train and test
sets used in 10-fold cross-validation method concept was able to learn this function
without errors. Other programs did poorly on this data set. The fourth data set,
tic-tac-toe, encodes the complete set of possible board configurations at the end
of tic-tac-toe games (3 x 3 board) and a set of simple rules can be extracted from
C4.5 decision tree which describes this problem very accurately (0.6% vs. more

than 10% error for the other methods).

inputs/size | concept [%] c4.5 [%]

unpruned | pruned | rules
audiology 69/200 35.0 28.0 26.0 | 26.0
balance 4/625 3.3 31.5 35.2 | 22.7
breastc 9/699 9.1 6.0 54| 4.6
flag 28/194 56.8 28.4 27.4 | 36.0
house-vote-84 16/435 6.7 5.0 4.6 | 5.7
irish 4/500 0.0 0.0 0.0 | 0.0
monk] 6/556 0.0 4.5 0.7 0.0
monk?2 6/601 0.0 37.1 35.1 | 26.5
sensory 11/576 75.7 82.6 80.9 | 76.5
tic-tac-toe 9/958 11.0 14.9 13.8 | 0.6
parity 12/4096 0.0 97.1 57.3 | 65.4

Table 5.1: 10-fold cross-validation true error estimation: machine learning benchmarks.

For benchmarks presented in Table 5.2 fewer cases were available so we used
leave-one-out method for the true error estimation. The results for different pro-
grams are comparable but surprisingly the unpruned decision tree of C4.5 is the
best and C4.5 rules the worst here.

For benchmarks presented in Table 5.3 more data were available so we used

trial-and-test method for the true error estimation. The training and testing sets

inputs/size | concept [%] c4.5 [%]
unpruned | pruned | rules
lung-cancer 56/32 62.5 56.3 53.1 | 68.8
sleep 9/62 37.1 30.6 38.7 | 35.5
sponge 44/76 7.9 6.6 79| 10.5
700 16/101 4.9 7.9 89| 89

156

Table 5.2: leave-one-out true error estimation: machine learning benchmarks.

were generated randomly, 1/3 of the data for the testing set and remaining data
for the training set. The results for different programs are comparable but concept

is slightly better than the other programs here.

inputs/size | concept [%] c4.5 [%]
unpruned | pruned | rules
chess?2 36/3196) 1.1 09| 0.9
mushroom 22/8124 0.0 0.0 0.0 0.2
nursery 8/12960 0.0 2.7 4.1 2.2

Table 5.3: test-and-error true error estimation: machine learning benchmarks.

To show the learning process in more detail, Figures 5.5, 5.6, and 5.7 show
examples of learning curves of concept and C4.5 on the benchmarks we used for
true error estimation. Learning curve is a plot of accuracy versus size of the learning
set. Ten learning sets are drawn randomly for each data set in such a way that
larger sets contain all the smaller ones. The plots are drawn after averaging ten
learning curves for each program. On the plots solid line corresponds to concept,
dotted line to C4.5 before pruning, dot-dashed line to C4.5 after pruning, and short-
dashed line to C4.5 rules. Interestingly, all the learning curves have in most cases
similar character. In most cases concept is doing slightly better than the three
C4.5 algorithms. The exception is the benchmark tic-tac-toe where C4.5 rules is
the best of four programs compared. For balance and monk1 benchmarks concept
learns much faster than C4.5. Notice that for monk1 benchmark learning curve for

concept is missing. It is not because we were not able to get it but because it is

157

reduced to one point. For each of the ten learning curves concept accuracy was
equal to 100% for the smallest learning set, the first point of the curve. The same
situation is for the benchmark parity where accuracy of all C4.5 versions were
about 50% and concept learned without error in the first step (10% subset of the
whole data set).

Comparing results of the true error estimation and learning curves for the
different programs we can notice certain discrepancy of the results. In many cases
one program appears to be more accurate on the learning curve and yet another
program has lower true error estimate for the same benchmark. These are all the
cases where the differences in error and accuracy on the learning curve are not very
large. For some benchmarks however the results remain consistent. These are all
the cases where a given program is significantly better on both true error estimate
and accuracy on the learning curve. The above observations may suggest that for
the cases where the results are inconsistent the differences between the programs
are insignificant and that they are doing equally well on these benchmarks.

The largest benchmarks used for experiments in this section, expressed in terms
of the number of equivalent binary variables (independent), were: lung-cancer
(112), sponge (78), audiology (77), flag (54), mushroom (48), chess2 (37), and
breastc (30). The largest binary benchmark used for testing the decomposition
procedure in Chapter 4 (Section 4.7.2) was gpio (131).

5.5 Summary

In this chapter we presented various issues related to learning systems (Section
5.1). We discussed the problem of noise in data and how it affects the learning pro-
cess (Section 5.2). We also presented the most often used methods of the true error
estimation of the learning systems (Section 5.3). And finally we performed various
experiments on a set of commonly accepted benchmarks to asses the performance
of the program concept we developed based on the theoretical considerations dis-

cussed in Chapters 3 and 4 (Section 5.4). We also ran the same experiments using

accuracy [%)]

accuracy [%)]

accuracy [%)]

100

90

80

70

60

50

40

100

98

96

94

92

90

88

100

98

94

92

audiology

accuracy [%)]

100 150
size of training set

breastc

200

0 100 200 300 400 500

0 100

accuracy [%)]

600
size of training set

house—votes—84

700

accuracy [%]

200 300 400
size of training set

concept

C4.5 before pruning

500

158

balance

100

90

80

50

100

200 300 400 500 600
size of training set

flag

700

100

90

70

50

40

100.0

99.5

99.0

98.5

98.0

97.5

97.0

96.5

100 150
size of training set

200

irish

—emieeees C4.5 after pruning

200 300 400
size of training set

500

C4.5 rules

Figure 5.5: Learning curves for machine learning benchmarks.

lung—cancer
100 T
90 b
80 e
— 70F 1
(8]
g
3 60F 1
(8]
(B 77
5ol |
7
40+ / B
;
/
30 | |
0 5 10 15 20 25 30 35
size of training set
monk2
100
N0r b
S
3
c 80r b
3
3
@
70+ e 1
60 | | | | | |
0 100 200 300 400 500 600 700
size of training set
sponge
100 T T T
98 b
96 - b
~ 94F . AT
(8] L-a
8 - R P
3 92p e gpfmeommmmT 1
(8] J
© K
9Q0F e
88 b
86 | | | | | | |
0 10 20 30 40 50 60 70 80
size of training set
—— concept C4.5 before pruning

159

monk1
100 T =
95, ’,’ // P o -
_ 9ot !]
> ;
© 85- / b
£ ;
Q v
(s} !
@ !
80 b
e a
70 | | | | |
0 100 200 300 400 500 600
size of training set
sleep
100
90 7
80 b
S
— 70F 1
(8]
g
3 60F 1
(8]
©
50 b
a0t 1
30 | | | | | |
0 10 20 30 40 50 60 70
size of training set
tic-tac—toe
100
95+ b
90 b
g
> 85 b
g
3 80 1
Q
@
75 b
70 ! A
65
200 400 600 800 1000
size of training set
R C4.5 after pruning ----- C4.5rules

Figure 5.6: Learning curves for machine learning benchmarks (cont.).

Z00

100

accuracy [%)]

701

65

20 40 60 80 100 120

size of training set
mushroom

100.0

99.9-

99.8 1

99.71

accuracy [%)]

99.6

99.5-

99.4
0

Il Il Il Il Il Il Il
10002000 3000 4000 5000 6000 7000 8000
size of training set

sensory

100

80

accuracy [%)]
(2]
o
T

20

concept

200 300 400
size of training set

C4.5 before pruning

parity

160

100 \ \

40

accuracy [%]

20

O 1 1 1
0 1000 2000 3000
size of training se

nursery

4000
t

5000

100
98
96|

94 -

accuracy [%]

92F i/

90
0 2x10% x10% x10°8 x10%.0 x1@?2 x1@*4 x10*

size of training set

—emieeees C4.5 after pruning

C4.5 rules

Figure 5.7: Learning curves for machine learning benchmarks (cont.).

161

one of the best known machine learning programs C4.5 and compared the results.
The results of comparison were quite interesting. While C4.5 rules was signifi-
cantly better on the tic-tac-toe benchmark (C4.5 rules is known for doing very
well on this benchmark), concept turned out to be significantly better than C4.5
on the benchmarks with certain symmetry of variables (balance, monk2, parity)
and comparable on the others. Also, concept’s learning was very fast on these
benchmarks, and only a small, randomly selected fraction of data was enough to
learn the underlying data patterns. This shows the ability of concept to discover
regular patterns from even a small fraction of data (parity function represented

as a Karnaugh map shows a chess-board like pattern for instance).

162

Chapter 6

CONCLUSIONS

6.1 Conclusions

The two main goals of this dissertation were:

1. Study the applicability of decomposition for machine learning and data min-

ing.

2. Develop a memory efficient data structure which would facilitate extracting

knowledge from large data bases.

Since decomposition is a fairly general concept, we decided to focus our atten-
tion on one specific type of decomposition: Ashenhurst-Curtis type serial decom-
position. The reason for selecting this particular type of decomposition was that
theoretical settings for this method were already developed for functions repre-
sented by Karnaugh maps and could serve as a good starting point for adapting
the theory to a different data structure. The decomposition was used as a tool for
extracting new concepts from data and combine them into a simpler but equivalent
description. The general optimization framework for this procedure was established
based on two general principles: Occam razor’s principle and minimum description
length principle.

The second goal was motivated by the fact that data mining is a process of
extracting knowledge from (large) databases, most of which are relational type
and distributed databases. A good representation matching this type of data and
facilitating the knowledge extraction process seemed to be a crucial part of the

whole system. The data structure developed in this dissertation, lr-partitions,

163

seems to naturally match the structure of relational distributed databases. Lt-
partitions are conceptually simple and almost all the operations on them can be
reduced to set operations on integer numbers. It was experimentally shown that
Ir-partitions can outperform decision diagram type representations in terms of
memory requirements and speed for many applications.

Decomposition algorithms were developed using Ir-partitions data structure
and implemented in program concept. The decomposition process is controlled
by a cost function which is used as a complexity measure. Three different cost
functions were analyzed in the dissertation: cardinality, functionality, and the
number of degrees of freedom. They are all conceptually very close and provide
similar results in most cases. For some percentage of cases however, functionality
cost measure seems to provide more accurate assessment of complexity than the
other two. In the decomposition process new variables are created that serve as
links between decomposed blocks. They correspond to new concepts extracted
from data and the process of extraction can be reduced to the process of graph
coloring of incompatibility graph or clique covering of compatibility graph. These
two approaches are complementary. The current implementation uses the clique
covering method, which is more efficient than graph coloring for lower percentage
of edges in the compatibility graph. For higher percentage of edges however, the
graph coloring method would be faster and a combination of both would definitely
speed up the concept extraction process.

We implemented two approaches for decomposition of discrete directed rela-
tions: bottom-up and top-down. The first one performs decomposition by itera-
tively extracting the smallest possible block from larger blocks. The second one
splits a block into two smaller blocks of approximately equal size. It was shown
that this approach usually leads to better solutions in a smaller number of itera-
tions. However, as the number of variables grows, the concept extraction graph
may become very large and its coloring or covering be very time consuming. In

the bottom-up approach the graphs are usually much smaller but the process of

164

their creation is a time bottleneck here. Overall, the top-down approach usually
provides better results for smaller data sets and bottom-up approach had to be
used for larger ones due to the inefficiency of graph covering algorithms used in
the current implementation.

Two new cost measures were developed in this dissertation to control the de-
composition process: cardinality and functionality. They are both based on similar
measures developed in the past for binary functions. The cardinality cost measure
is closely related to the maximum number of tuples that can be realized by a given
structure to describe the data. The functionality cost measure is equal to the total
number of functions that can be realized by a given structure. The functionality
cost measure provides finer than cardinality distinction between decomposed struc-
tures but is more computationally expensive. There exists an interesting relation-
ship between both measures: log, of functionality cost measure (log-functionality)
is equal to the cardinality cost measure for a single block structure. This rela-
tionship doesn’t hold for decomposed structures. The values of both measures are
close but not equal. The value of log-functionality is smaller than the value of
cardinality cost measure for multi-block decomposed structures.

A new variable partitioning algorithm was developed to generate a limited set
of decomposed structures at each decomposition step. The algorithm is based
on uncertainty measure and is used to heuristically select the most promising (in
terms of the cost) structures for decomposition. Limiting the number of structures
is necessary because the number of all possible structures is exponential in the
number of variables. The new algorithm was compared to another variable parti-
tioning procedure and proved to be more efficient on most of the test cases used.
To increase the quality of the selection, both algorithms are used in the software
implementation.

As a part of the decomposition procedure a novel algorithm for removing vac-
uous variables was implemented. It proved to be very useful; it significantly sim-

plifies the decomposition process, especially for real life Machine Learning data.

165

Usefulness of this procedure for MCNC benchmarks (binary functions) was not as
significant as in the Machine Learning area. This can be explained by the fact
that most of these binary functions were descriptions of already highly optimized
combinational circuits.

The decomposition strategy used in this dissertation provided means for a
development of a new discretization algorithm. The discretization procedure is
automatically performed when a single input smallest decomposition block is se-
lected by the user. Each variable is analyzed and a function is developed which
provides a mapping from existing to a new, better, discretization scheme for that
variable. The discretization procedure takes advantage of the existing relationship
between the independent variable being discretized and the dependent variables.
Our procedure adapts itself to the problem in question; it tries to optimize the
solution within the framework of existing relationships (constraints) between the
system variables. To perform a discretization of continuous variables we have to
perform a preliminary, rough discretization, using for instance the uniform binning
method. The number of bins selected for the primary discretization has to be large
enough for the secondary algorithm to discover an optimal discretization scheme.

The main decomposition procedure proposed in this dissertation was developed
for non-probabilistic discrete directed relations and it constitutes an essential part
of all other decomposition procedures developed in this dissertation. The decompo-
sition algorithms developed for probabilistic and non-probabilistic discrete neutral
relations are based on this procedure. By using our new optimizing discretization
scheme the above algorithms can also be applied to continuous systems.

If available data are noisy or incomplete, then a theory which perfectly fits
the training data may not perform well on unseen data samples. In such cases
a better solution can often be developed by selecting a theory that takes into
account not only an error rate but also the complexity of the solution (minimum
description length principle). For this scheme to be implemented, the means have

to be provided to control the decomposition process in terms of complexity and

166

error rate. Two such algorithms were developed, one for nominal and the other for
metric data.

Implementation of these ideas resulted in the program concept that uses lr-
partitions as a data structure and decomposition as an inference method. Classi-
fiers developed by concept were compared to the results obtained from one of the
best Machine Learning programs, C4.5. In many cases the results obtained from
both programs were comparable, but concept appeared to significantly outperform
C4.5 on the problems with regular, repeating patterns. As a result of decomposi-
tion, a less complex structure of blocks is being discovered by concept. Each block
corresponds to a concept extracted from the original data. These new concepts
can facilitate the description of the data and provide for better understanding of

both the structure and the meaning of underlying ideas.

6.2 Future work

While we attempted to perform as complete a job as possible many questions
still remain open for further investigation and research.

Efficiency of decomposition algorithms proposed in this dissertation depends
on the efficiency of clique covering (graph coloring) algorithms. This is especially
important for the top-down approach to decomposition where compatibility (in-
compatibility) graphs may become large and efficient algorithms and their imple-
mentation is crucial for the overall decomposition performance.

Lossy decomposition algorithms were developed to provide a means for dealing
with incomplete and noisy data. In the current implementation, the trade-off
between complexity and error rate is determined by a user specified parameter. A
good automatic optimization procedure would definitely help in finding solutions
with better predictive accuracy.

Two algorithms for decomposition of probabilistic relations were proposed in
this dissertation. One of them directly uses the algorithm developed for directed

relations for decomposition of probability density functions. The other, although

167

based on the same principles, is different and was not thoroughly tested on real
life data sets yet.

The variable partitioning algorithm developed in this dissertation is very sim-
ple and quite effective. However, when many variables appear to be equally good
at the consecutive ordering step, then the choice of one of them is basically ran-
dom. Some sort of simple look-ahead algorithm would provide better ordering in
these cases. Also, the current algorithm doesn’t take into account any higher level
relations between variables. Exploring this way of thought might lead to further
improvement.

We experimented with two set representations for Ir-partitions blocks: bit-sets
and binary decision diagrams. Any set representation could be used however.
Which one to choose and for which application may still be further explored.
Also, integrating a direct interface to commonly used data base format(s) would
definitely make the whole system better suited for exploration of real life data
sets. Also, it is not clear yet how to effectively select the subsets of variables for Ir-
partitions. Two possibilities were investigated so far: lr-partitions based on single
variables and lr-partitions based on all variables. It is not clear, however, how to
optimize the size and the content of the sets of variables Ir-partitions are based on.
This is still an open research question.

The decomposed structure is an Acyclic Directed Graph structure with nodes
corresponding to functional or relational blocks. In this dissertation we didn’t
explore the possibility of using different representations for these blocks. Fach
block however can be represented according to the kind of concept it represents.
For some blocks decision diagrams would be a good choice, for some others neural
networks or set of cubes or Ir-partitions, etc. This kind of adjustment performed
as a final step following the decomposition process could probably further improve

classification accuracy of the whole structure.

168

Bibliography

1]

Reconstructibility analysis bibliography. [Int. J. General Systems, 24:225—
229, 1996.

Y.S. Abu-Mostafa. Complexity in Information Theory. Springer-Verlag, New
York, 1988.

S.B. Abugharbieh and S.C. Lee. A fast algorithm for disjunctive decompo-
sition of m-valued functions. Part I: The decomposition algorithm. In Proc.

23th ISMVL, pages 118-125, 1993.

S.B. Abugharbieh and S.C. Lee. A fast algorithm for disjunctive decomposi-
tion of m-valued functions. Part II: Time complexity analysis. In Proc. 23th

ISMVL, pages 126-131, 1993.

T. Arciszewski, R.S. Michalski, and J. Wnek. Constructive induction: the
key to design creativity. Reports on machine learning and inference labora-

tory, mli 95-6, George Mason University, April 1995.

W.R. Ashby. Measuring the internal informational exchange in a system.

Cybernetica, 1(8):5-22, 1965.

R. L. Ashenhurst. The decomposition of switching functions. In Proec. Int.
Symp. Theory of Switching, Part I, pages 74-116, Ann. Comput. Lab. Har-
vard Univ., 1959.

L. Nguyen at al. Palmini - fast boolean minimizer for personal computers.

In DAC, 1987.

M. Ciesielski at al. Multiple-valued minimization based on graph coloring.

In International Conference on Computer Design, 1989.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

169

M. Perkowski at al. Kuai-exact: a new approach for multi-valued logic min-

imization in vlsi synthesis. In [EEE International Symposium on Circuits

and Systems, 1989.

R. K. Brayton at al. A new exact minimizer for two-level logic synthesis.
In T. Sasao, editor, Logic Synthesis and Optimization, pages 1-31. Kluwer
Academic Publishers, 1993.

D.J. Bartholomew. Latent variable models and factor anaysis. Charles Grif-

fin, London, 1968.

K.P. Bennett and O.L. Mangasarian. Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software,

1:23-34, 1992.

E. Bloedorn and R.S. Michalski. Data driven constructive induction in AQ17-
PRE: A method and experiments. In Proceedings of the Third International
Conference on Tools for Al San Jose, CA, 1991.

M. Bohanec and V. Rajkovic. Knowledge acquisition and explanation for
multi-attribute decision making. In Proc. of the 8§th Int. Workshop on Fxpert
Systems and their Applications, pages 59-78, Avignon, France, 1988.

K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a
BDD package. In Proc. of 27th Design Automatiom Conference, pages 40—
45, June 1990.

I. Bratko. Private communication, 1996.

R.E. Bryant. Graph-based algorithms for boolean function manipulation.

Trans. on Comput., C-35(8):667-691, 1986.

R.E. Bryant. On the complexity of VLSI implementation and graph rep-
resentations of boolean functions with application to integer multiplication.

IEEFE Trans. on Computers, 40:205-213, 1991.

[20]

[21]

[22]

23]

[24]

[25]

[26]

170

J. Catlett. On changing continuous attributes into ordered discrete at-
tributes. In Y. Kodratoff, editor, Proc. of the Furopean Working Session
on Learning, pages 164-178, Berlin, Germany, 1991. Springer-Verlag.

G. J. Chaitin. On the length of programs for computing finite binary se-
quences. J. ACM, 13:547, 1966.

G. J. Chaitin. On the difficulty of computations. IFEFE Trans. Info. Theor.,
IT-16:5, 1970.

G. J. Chaitin. Information-theoretic limitations of formal systems. J. ACM,
21:403, 1974.

G. J. Chaitin. Algorithmic entropy of sets. Comput and Math. Appls., 2:233,
1976.

G. J. Chaitin. Algorithmic information theory. IBM J. Res. Develop., pages
350-359, July 1976.

R.C. Conant. Detecting subsystems of a complex system. IFEE Transactions
on Systems, Man, and Cybernetics, pages 350-353, 1972.

R.C. Conant. Set-theoretic structure modeling. International Journal of

General Systems, 7(38):93-107, 1981.

R. Cummings. The nature of psychological explanation. MIT Press, Cam-
bridge, MA, 1983.

H. A. Curtis. A New Approach to the Design of Switching Circuits. Van
Nostrand, Princeton, 1962.

A.L. de Oliveira. Inductive Learning by Selection of Minimal Complexity
Representations. PhD thesis, University of California at Berkeley, 1994.

M. DesJardins and D. F. Gordon. Evaluation and selection of biases in

machine learning. Machine Learning Journal, 20:5-21, 95.

32]

[34]

[35]

[36]

38]

[40]

171

S. Devadas. Comparing two-level and ordered binary decision diagram rep-
resentations of logic functions. IEEE Trans. on CAD, 12(5):722-723, May
1993.

G. Drastal, G. Czako, and S. Raatz. Induction in an abstraction space: A
form of constructive induction. In Proceedings of the IJCAI-89, pages 708—
712, Detroit, MI, 1989. Morgan Kaufmann.

E.V. Dubrova, J.C. Muzio, and B. von Stengel. Finding composition trees
for multiple-valued functions. In Proc. 27th ISMVL, 1997.

W. Emde, C.U. Habel, and C.R. Rollinger. The discovery of the equator or
concept driven learning. In Proceedings of [JCAI-83, pages 455—458, Karl-

sruhe, Germany, 1983. Morgan Kaufmann.

B.C. Falkenhainer and R.S. Michalski. Integrating quantitative and qualita-
tive discovery in the ABACUS system. In Y. Kodratoff and R.S. Michalski,
editors, Machine Learning: An Artificial Inteligence Approach, volume 3.
Morgan Kaufmann, Palo Alto, CA, 1990.

K.Y. Fang and A.S. Wojcik. Modular decomposition of combinational
multiple-valued circuits. [EEFE Transactions on Computers, 37(10):1293—
1301, 1988.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowl-
edge discovery: An overwiev. In Fayaad at al., editor, Advances in Knowledge

Discovery and Data Mining. MIT Press, 1996.

U.M. Fayyad, P. Smyth, N. Weir, and S. Djorgovski. Automated analysis and
exploration of image databases: Results, progress, and challenges. Journal

of Intelligent Information Systems, (4):1-19, 1993.

C. Files, R. Drechsler, and M. Perkowski. Functional decomposition of mvl

[41]

[42]

[43]

[44]

172

functions using multi-valued decision diagrams. In Proc. of ISMVL 97, pages
27-32, Halifax, Nova Scotia, Canada, May 28-30 1997.

N.S. Flann. Improving problem solving performance by example guided refor-
mulation of knowledge. In D.P. Benjamin, editor, Change of Representation

and lductive Bias. Kluwer Academic, Boston, MA, 1990.

G.H. Greene. The Abacus 2 system for quantitative discovery: Using de-
pendencies to discover non-linear terms. Reports of machine learning and
inference laboratory, mli 88-4, Center for Artificial Intelligence, George Ma-

son University, Fairfax, VA, 1988.

S. Grygiel and M. Perkowski. New compact representation of multiple-valued

functions, relations, and non-deterministic state machines. In ICCD-98,

pages 168-174, Austin, Texas, October 1998.

S. Grygiel, M. Perkowski, M. Marek-Sadowska, T. Luba, and L. Jozwiak.
Cube diagram bundles: a new representation of strongly unspecified
multiple-valued functions and relations. In Proc. of ISMVL’97, pages 287—
292, Halifax, Nova Scotia, Canada, May 28-30 1997.

R.V.L. Hartley. Transmission of information. The Bell Systems Technical
Journal, 7(3), 1928.

J. Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, Ann Arbor, 1975.

T. Kalganova. Combinational multiple-valued circuit design by generalized
disjunctive decomposition. In Proc. of the Furop. Conf. on Circuit Theory
and Design, FCCTD’97, Budapest, Hungary, 1996.

T. Kalganova. Functional decomposition methods for multiple-valued logic
functions and its system. In Proc. of the 3rd Int. Conf. on Applications of
Computer Systems, pages 75—82, Szczecin, Poland, 1996.

[49]

[50]

[51]

[54]

[55]

[56]

173

T. Kalganova. The studing of the finctional decomposition methods for r-
valued logic functions in the logic design courses. In Proc. of the 3nd Int.

Conf. on the New Information Technologies in Education, volume 2, pages

150-158, Minsk, Bielarus, 1996.

R.M. Karp. Functional decomposition and switching circuit design. SIAM
Journal on Applied Mathematics, 11(2):291-335, June 1963.

G.J. Klir. Identification of generative structures in empirical data. Interna-

tional Journal of General Systems, (3):89-104, 1976.

G.J. Klir. Architecture of Systems Problem Solving. Plenum Press, New
York, 1985.

C.A. Knoblock. A theory of abstraction for hierarchical planning. In D.P.
Benjamin, editor, Change of Representation and Inductive Bias. Kluwer Aca-

demic, Boston, MA, 1990.

C.A. Knoblock, S. Minton, and O. Etzioni. Integrating abstraction and
explanation based learning in PRODIGY. In Proceedings of AAAI-91, pages
541-546. AAAT Press/MIT Press, 1991.

R. Kohavi. Bottom-up induction of oblivious read-once decision graphs. In

FEuropeean Conference on Machine Learning, 1994.

M.M. Kokar. Discovering functional formulas through changing representa-
tion base. In Proceedings of the AAAI-86, pages 455459, Philadelphia, PA,
1986.

A. N. Kolmogorov. On tables of random numbers. Sankhya, A25:369, 1963.

A. N. Kolmogorov. Three approaches to the quantitative definition of infor-

mation. Prob. Info. Transmission, 1(1):1, 1965.

[59]

[60]

[61]

[64]

[66]

[67]

174

A. N. Kolmogorov. Logical basis for information theory and probability
theory. IEEFE Trans. Info. Theor., I'T-14:662, 1968.

I[. Kononenko. Inductive and bayesian learning in medical diagnosis. Applied

Artificial Intelligence, (7):317-337, 1993.

K. Krippendorff. On the identification of structures in multivariate data by
the spectral analysis of relations. In Proc. 23th Annual Meeting of SGSIL,
Houston, Texas, 1979.

K. Krippendorft. Information Theory: Structural Models for Qualitative
Data. Sage Publications, Inc., 1986.

Y. T. Lai, K.R. Pan, M. Pedram, and S. Vrudhula. FGMap: A technology
mapping algorithm for look-up table type FPGA synthesis. In Proc. 30-th
DAC, pages 642647, 1993.

P. Langley, G.L. Bradshaw, and H.A. Simon. Rediscovering chemistry
with the BACON system. In R.S. Michalski, J.G. Carbonell, and T.M
Mitchell, editors, Machine Learning: An Artificial Inteligence Approach.
Morgan Kaufmann, Los Altos, CA, 1983.

P. Langley, H.A. Simon, G.L. Bradshaw, and J.M. Zytkow. Scientific Dis-
covery: Computational Explorations of the Creative Process. MIT Press,
Cambridge, MA, 1987.

J.B. Larson and R.S. Michalski. Inductive inference of VL. decision rules.

ACM SIGART Newsletter, (63):38-44, 1977.

P.F. Lazrsfeld and N.W. Henry. Latent structure anaysis. Houghton Miffin,
Boston, MA, 1968.

D.B. Lenat. On automated scientific theory formation: A case study using
AM program. In Machine Intellience, volume 9. Halsted Press, New York,
1977.

[69]

[70]

[71]

[72]

[75]

[76]

175

D.B. Lenat. Learning from observation and discovery. In Machine Learning:

An Aritficial Intellience Approach. Morgan Kaufmann, Los Altos, CA, 1983.

G.G. Lendaris. On the definiton of self-organizing systems. Pro-
ceedings [TEFE, 52:324-325, March 1964. http://www.sysc.pdx.edu/

res_nnets.html

G.G. Lendaris and G.L. Stanley. On the structure-dependant properties of
adaptive logic networks. Technical report, GM Defense Research Laborato-

ries, Santa Barbara, California, July 1963.

G.G. Lendaris and G.L. Stanley. Self-oranization: meaning and means. In
J. Spiegel and D. Walker, editors, Proceedings of the Second Congress, Infor-

mation System Sciences. Spartan Books, Baltimore, 1965.

G.G. Lendaris and G.L. Stanley. Structure and constraints in discrete adap-

tive networks. In National Electronics Conference, volume XXI, 1965.

M. Li and P. Vitanyi. An Introduction to Kolmogorow Complexity and its
Applications. Springer-Verlag, 1997.

T. Luba. Decomposition of multiple-valued functions. In Proc. 25th ISMVL,
pages 256-261, 1995.

K.K. Maitra. Cascaded switching networks of two-input flexible cells. IRFE

Transactions on FElectronics Computers, April 1962.

P. Martin-Lof. The definition of random sequences. Info. Control, 9:602,
1966.

P. Martin-Lof. Algorithms and randomness. Intl. Stat. Rev., 37:265, 1969.

P. Martin-Lof. On the notion of randomness. In A. Kino J. Myhill
and R. E. Vesley, editors, Intuitionism and Proof Theory, page 73. North-
HollandPublishing Co., Amsterdam, 1970.

[30]

[83]

[84]

[85]

[87]

[33]

176

C. Matheus. Feature Construction: An Analytic Framework and Applica-
tion to Decision Trees. PhD dissertation, University of Illinois, Urbana-

Champaign, 1989.

Logic Synthesis and Optimization Benchmarks. ftp://ftp.mcnc.org/
pub/benchmark/Benchmark_dirs/LGSynth91/twolexamples

J. Michael. Validation, verification, and experimentation with Abacus 2.
Reports of machine learning and inference laboratory, mli 91-8, Center for

Artificial Intelligence, George Mason University, Fairfax, VA, 1988.

R.5. Michalski. Pattern recognition as knowledge-guided computer induc-
tion. Technical report no. 927, Department of Computer Science, University

of Illinois, Urbana-Champaign, 1978.

R.5. Michalski. A theory and methodology of inductive learning. In R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach. Morgan Kaufmann, Los Altos, CA, 1983.

R.S. Michalski and J.B. Larson. Inductive inference of VL decision rules. In
Workshop in Pattern-Directed Inference Systems, Hawaii, May 1977. Also
published in SIGART Newsletter, ACM No. 63, pp. 38-44, June 1977.

G.A. Miller and W.G. Madow. On the maximum likelihood estimate of the
Shannon-Wiener measure of information. Technical Report TR-54-75, Air

Force Cambridge Research Center, Washington, DC, 1954.

S. Minato. Graph-based representations of discrete functions. In Proc. Reed-

Muller’95 Workshop, pages 1-10, Chiba, Japan, August 1995.

M.L. Minsky. Problems of formulation for artificial intelligence. In R. E.
Belman, editor, Proc. of Symposia in Applied Mathematics XIV, page 35,
Providence, RI, 1962.

[89]

[90]

[91]

[93]

[94]

[95]

177

T.M. Mitchell, P.E. Utgoff, and R. Banerji. Learning by experimentation:
Acquiring and refining problem-solving heuristics. In R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial In-
telligence Approach. Morgan Kaufmann, Los Altos, CA, 1983.

K. Morik. Sloppy modeling. In K. Morik, editor, Knowledge Representation
and Organization in Machine Learning. Springer-Verlag, Berlin Heidelberg,
1989.

S. Muggleton. Duce, and oracle-based approach to constructive induction. In
Proceedings of IJCAI-87, pages 287-292, Milan, Italy, 1987. Morgan Kauf-

mani.

S. Muggleton and W. Buntine. Machine invention of first order predicates by
inverting resolution. In Proceedings of the 5th International Conference on

Machine Learning, pages 339-352, Ann Arbor, MI, 1988. Morgan Kaufmann.

G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning.

Machine Learning, (5):71-99, 90.

M. Perkowski and S. Grygiel at. al. A survey of literature on function decom-
position. Technical report, Portland State University, Electrical Engineering

Department, Portland, OR, September 1995.

M. Perkowski, M. Burns, T. Luba, S. Grygiel, C. Stanley, R. Price, Z. Wang,
J. Lu, P. Burkey, D. Manoharan, and S. Mohammad. Development of search
strategies for MULTIS. Technical report, Portland State University, Electri-
cal Engineering Department, Portland, OR, December 1995.

M. Perkowski, T. Luba, S. Grygiel, P. Burkey, M. Burns, N. Iliev, M. Kol-
steren, R. Lisanke, R. Malvi, Z. Wang, H. Wu, F. Yang, S. Zhou, and J.S.
Zhang. Unified approach to functional decompositions of switching func-

tions. Technical report, Portland State University, Electrical Engineering

Department, Portland, OR, June 1995.

[97]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

178

M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel,
M. Nowicka, R. Malvi, Zhi Wang, and Jin S. Zhang. Decomposition of
multiple-valued relations. In Proc. of ISMVL’97, pages 13-18, Halifax, Nova
Scotia, Canada, May 28-30 1997.

M. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and N. Song. Application
of ESOP minimization in machine learning and knowledge discovery. In Proc.

Reed-Muller’95 Workshop, pages 102-109, Chiba, Japan, August 1995.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
Los Altos, California, 1992.

J.R. Quinlan. Induction of decision trees. Machine Learning, (1):81-106,
1986.

J.R. Quinlan. Comparing connectionist and symbolic learning methods. In
S.J. Hanson, G.A. Drastal, and R.L. Rivest, editors, Volume I: Constraints
and Prospects, Computational Learning Theory, chapter 15, pages 445-456.
MIT Press, 1994.

J.R. Quinlan and R.L. Rivest. Inferring decision trees using the minimum de-

scription length principle. Information and Computation, 80:227-248, 1989.

L. De Raedt and M. Bruynooghe. Constructive induction by analogy. In
Proceedings of EWSL-89, pages 189-200, Montpellier, France, 1989. Pitman.

L. Rendell. Substantial constructive induction using layered information
compression: Tractable feature formation in search. In Proceedings of IJCAI-

85, pages 650658, 1985.

John Riordan. An Introduction to Combinatorial Analysis. John Wiley &
Sons, Inc., New York, 1958.

J. Rissanen. Modeling by the shortest data description. Automatica-J. IFAC,
(14):465-471, 1978.

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

179

R.L. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization
for PLA Optimization. [EEFE Transactions on CAD, CAD-6(5):727-750,
September 1987.

T. Sasao. An application of multiple-valued logic to a design of programmable

logic arrays. In Proec. 18th Int. Symp. Mult. Valued Logic, 1978.

T. Sasao. Multiple-valued decomposition of generalized boolean functions
and the complexity of programmable logic arrays. [EFEE Transactions on

Computers, C-30:635-643, September 1981.

T. Sasao. FPGA design by generalized functional decomposition. In T. Sasao,
editor, Logic Synthesis and Optimization, pages 233-258. Kluwer Academic
Publishers, 1993.

J.C. Schlimmer. Learning and representation change. In Proceedings of

AAAI-87, pages 511-515. Morgan Kaufmann, 1987.

C.E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1975 (first published in 1949).

V.Y. Shen, A.C. McKellar, and P. Weiner. A fast algorithm for the disjunc-
tive decompositon of switching functions. IEFE Transactions on Computers,

C-20(3), March 1971.
V. Shmerko, L. Jozwiak, and industry. Private communication, 1996.

R. J. Solomonoftf. Complexity based induction systems: Comparisons and
convergence theorems. Report rr-329, Rockford Research, Cambridge, MA,
August 1976.

R.J. Solomonoff. A formal theory of inductive inference, part 1 and part 2.

Inform. Contr., 7:1-22, 224-254, 1964.

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

180

A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete
function manipulation. In IFEFE International Conference on CAD, pages
92-95, 1990.

Steinbach, Hesse, Kempe, Rhode, and Barthel. Papers and discussions at
the 2nd workshop boolesche probleme. Freiberg, Germany, 19-20 September
1996.

B. Steinbach and A. Wereszczynski. Synthesis of multi-level circuits using

exor-gates. In Proc. Reed-Muller’95 Workshop, Chiba, Japan, August 1995.

Y.H. Su and P.T. Cheung. Computer minimization of multiple-valued switch-

ing functions. IEFE Transactions on Computers, C-21:995-1003, 1972.

U.C. Irvine, Repository of Machine Learning Databases and Domain Theo-

ries. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

P.E. Utgoft. Shift of Bias for Inductive Concept Learning. PhD dissertation,
Rutgers University, 1984.

P.E. Utgoff. Shift of bias for inductive concept learning. In R.5. Michalski,
J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial

Intelligence Approach, volume 2. Morgan Kaufmann, Los Altos, CA, 1986.
L.G. Valiant. A theory of the learnable. Comm. ACM, (27):1134-1142, 1984.

K.M. Walliuzzaman and Z.G. Vranesic. On decomposition of multiple-valued

switching functions. Computer Journal, 13:359-362, 1970.

W. Wan and M. Perkowski. A new approach to the decomposition of incom-
pletely specified multi-output function based on graph coloring and local
transformations and its application to FPGA mapping. In Proc. Euro-DAC,
pages 230-235, 1992.

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

181

Wei Wan. A new approach to the decomposition of incompletely specified
functions based on graph coloring and local transformation. Master’s thesis,

Portland State University, May 1992.

S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classifica-
tion and Prediction Methods from Statistics, Neral Nets, Machine Learning,

and Fzxpert Systems. Morgan Kaufmann Publishers, Inc., San Mateo, Cali-
fornia, 1991.

J. Wnek and R.S. Michalski. Hypothesis-driven constructive induction in
AQI7: A method and experiments. In Proceedings of IJCAI-91 Workshop
on Fvaluating and Changing Representation in Machine Learning, pages 13—
22, Sydney, Australia, 1991.

J. Wnek and R.S. Michalski. Hypothesis-driven constructive induction in
AQI17-HCI: A method and experiments. Machine Learning, (14):139-168,
1994.

W.H. Wolberg and O.L. Mangasarian. Multisurface method of pattern sep-
aration for medical diagnosis applied to breast cytology. In Proceedings of
the National Academy of Sciences, volume 87, pages 9193-9196, U.S.A., De-
cember 1990.

S. Wrobel. Demand-driven concept formation. In K. Morik, editor, Knowl-

edge Representation and Organization in Machine Learning. Springer-Verlag,

Berlin Heidelberg, 1989.

B. Zupan. Machine Learning based on function decomposition. PhD thesis,
University of Ljubljana, 1997.

B. Zupan and M. Bohanec. Learning concept hierarchies from examples
by function decomposition. Technical report, J. Stefan Institute, Ljubljana,

1996.

182

[135] M. Zwick. Control uniqueness in reconstructability analysis. [International

Journal of General Systems, 23(2), 1995.

[136] M. Zwick. Set-theoretic reconstructability of elementary cellular automata.
Advances in System Science and Application, Special Issue I, pages 31-36,
1995.

[137] M. Zwick. Whole and parts in general systems methodology. In G. Wagner,
editor, Fvolutionary Biology and Characterictics. Academic Press, 1999.

