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Exiting stuff...



Evolutionary IdeasEvolutionary Ideas
in Computingin Computing



Theory of Evolution - DarwinTheory of Evolution - Darwin

1859

Charles Darwin
(1809 - 1882)



General Principle

Population

Parents

Offspring

Selection

Crossover

Mutation

Replacement



Concepts from Genetics IConcepts from Genetics IConcepts from Genetics IConcepts from Genetics IConcepts from Genetics IConcepts from Genetics IConcepts from Genetics IConcepts from Genetics I

• A gene is a short length of a chromosome which controls a
characteristic of an organism.

• The gene can be passed on from parent to offspring, e.g. a gene for
eye-color.



Concepts from Genetics II

• A chromosome is a chain of
genes

• Each living object has a
particular number of
chromosomes, e.g. human
beings have 46 chromosomes.



GA Structure• Given a problem
that in some way
involves a search, a
genetic algorithm
begins with
chromosome which
represents a
solution (usually a
binary string).

• We will use non-
binary strings also

Human Chromosome

Linear collection of bits (GA Chromosome)



Representation of individuals inRepresentation of individuals inRepresentation of individuals inRepresentation of individuals inRepresentation of individuals inRepresentation of individuals inRepresentation of individuals inRepresentation of individuals in
various various various various various various various various EAsEAsEAsEAsEAsEAsEAsEAs



GA Components

•• PopulationPopulation - consists of individuals who may be able to solve the given
problem

•• Fitness functionFitness function – a function which determines how well each individual
solves the problem

Fitness
function



Contents of the Contents of the Contents of the Contents of the Contents of the Contents of the Contents of the Contents of the Three LecturesThree LecturesThree LecturesThree LecturesThree LecturesThree LecturesThree LecturesThree Lectures
on Evolutionary Algorithmson Evolutionary Algorithmson Evolutionary Algorithmson Evolutionary Algorithmson Evolutionary Algorithmson Evolutionary Algorithmson Evolutionary Algorithmson Evolutionary Algorithms

• Taxonomy and History;
• Evolutionary Algorithms basics;
• Theoretical Background;
• Outline of the various techniques: plain genetic algorithms,

evolutionary programming, evolution strategies, genetic
programming;

• Practical implementation issues;
• Evolutionary algorithms and soft computing;
• Selected applications;
• Evolutionary Hardware;
• Summary and Conclusions.



BBBBiiiibbbblllliiiiooooggggrrrraaaapppphhhhyyyyBBBBiiiibbbblllliiiiooooggggrrrraaaapppphhhhyyyy
• Th. Bäck. Evolutionary Algorithms in Theory and Practice.

Oxford University Press, 1996
• L. Davis. The Handbook of Genetic Algorithms. Van

Nostrand & Reinhold, 1991
• D.B. Fogel. Evolutionary Computation. IEEE Press, 1995
• D.E. Goldberg. Genetic Algorithms in Search, Optimization

and Machine Learning. Addison-Wesley, 1989
• J. Koza. Genetic Programming. MIT Press, 1992
• Z. Michalewicz. Genetic Algorithms + Data Structures =

Evolution Programs. Springer Verlag, 3rd ed., 1996
• H.-P. Schwefel. Evolution and Optimum Seeking. Wiley &

Sons, 1995
• J. Holland. Adaptation in Natural and Artificial Systems.

MIT Press 1995



Evolutionary computing is a family of stochastic
search techniques that mimic the natural
evolution.

Finonacci Newton

Direct methods Indirect methods

Calculus-based techniques

Evolutionary strategies

Centralized Distributed

Parallel

Steady-state Generational

Sequential

Genetic algorithms

Evolutionary algorithms Simulated annealing

Guided random search techniques

Dynamic programming

Enumerative techniques

Search techniques

Evolutionary AlgorithmsEvolutionary AlgorithmsTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of Evolutionary
Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)

Monte Carlo Methods Taboo Search



Evolutionary algorithms as a subdivision of soft
computing:

Neural
Networks

Evolutionary
Programming

Evolution
Strategies

Genetic
Algorithms

Genetic
Programming

Evolutionary
Algorithms

Fuzzy
Systems

COMPUTATIONAL
INTELLIGENCE

or
SOFT COMPUTING

Evolutionary AlgorithmsEvolutionary AlgorithmsTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of Evolutionary
Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)Algorithms (1)



Taxonomy

Distinctive Properties of Evolutionary Algorithms
• verification of correctness of solution ;
• consideration of instances in the population of candidate

solutions ;
• deriving solutions from solutions ;
• Probabilistic transition rules

Taxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of EvolutionaryTaxonomy of Evolutionary
Algorithms (2)Algorithms (2)Algorithms (2)Algorithms (2)Algorithms (2)Algorithms (2)Algorithms (2)Algorithms (2)
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TU Berlin, ‘60s
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History (2)

1859 Charles Darwin: inheritance, variation, natural selection
1957 G. E. P. Box: random mutation & selection for optimization
1958 Fraser, Bremermann: computer simulation of evolution
1964 Rechenberg, Schwefel: mutation & selection
1966 Fogel et al.: evolving automata - “evolutionary

programming”
1975 Holland: crossover, mutation & selection - “reproductive

plan”
1975 De Jong: parameter optimization - “genetic algorithm”
1989 Goldberg: first textbook
1991 Davis: first handbook
1993 Koza: evolving LISP programs - “genetic programming”

HHHHiiiissssttttoooorrrryyyy    HHHHiiiissssttttoooorrrryyyy    (2)(2)(2)(2)(2)(2)(2)(2)



Evolutionary Algorithms BasicsEvolutionary Algorithms BasicsEvolutionary Algorithms BasicsEvolutionary Algorithms BasicsEvolutionary Algorithms BasicsEvolutionary Algorithms BasicsEvolutionary Algorithms BasicsEvolutionary Algorithms Basics

• what an EA is (the Metaphor)
• object problem and fitness
• the Ingredients
• schemata
• implicit parallelism
• the Schema Theorem
• the building blocks hypothesis
• deception



A A A A A A A A metaphoremetaphoremetaphoremetaphoremetaphoremetaphoremetaphoremetaphore

Environment Problem to solve

Individual

String of characters

Candidate solution

Fitness function

EVOLUTIONEVOLUTION PROBLEM SOLVINGPROBLEM SOLVING

Population Set of alternative solutions

Generation Iteration step

Parents Individuals chosen for reproduction

Genotype
Adaptation measure

Phenotype Decoded solution (circuit,plant)

Metagenesis Process of  transition from the
current to the next generation



Object problem and Fitness

genotype solution
M

c S
c
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fitness



Ingredients of an evolutionary algorithm

generation t

mutation

recombination

reproduction

selection

Population of solutions 

“DNA” of a solution

generation t + 1



Let us go into more details…..

• EA Structure

• EA Operators

• EA Applications

• Specific types of Eas: GA, GP, ES…

• EA Examples



EA Structure



Example 1:Example 1:Example 1:Example 1:Example 1:Example 1:Example 1:Example 1: Genetic AlgorithmGenetic Algorithm Genetic AlgorithmGenetic Algorithm Genetic AlgorithmGenetic Algorithm Genetic AlgorithmGenetic Algorithm
for MAXONE profor MAXONE profor MAXONE profor MAXONE problemblemblemblemfor MAXONE problemfor MAXONE problemfor MAXONE problemfor MAXONE problem

• The MAXONE problem
• Genotypes are bit strings
• Fitness-proportionate selection
• One-point crossover
• Flip mutation (transcription error)



The MAXONE Problem

Problem instance: a string of l binary cells, γ ∈  {0, 1} l
 :

Objective: maximize the number of ones in the string.

f i
i

l

( )γ γ=
=
∑

1
Fitness:



Genetic Algorithm InspiredGenetic Algorithm InspiredGenetic Algorithm InspiredGenetic Algorithm InspiredGenetic Algorithm InspiredGenetic Algorithm InspiredGenetic Algorithm InspiredGenetic Algorithm Inspired
by natural evolutionby natural evolutionby natural evolutionby natural evolutionby natural evolutionby natural evolutionby natural evolutionby natural evolution

• Population of individuals
• Individual is feasible solution to problem

• Each individual is characterized by a Fitness function
• Higher fitness means a better solution

• Based on their fitness, parents are selected to reproduce
offspring for a new generation
• Fitter individuals have more chance to reproduce
• New generation has same size as old generation; old generation dies

• Offspring has combination of properties of two parents
• If well designed, population will converge to optimal solution



select mating partners

mutateevaluate

select
survivors

recombine

(terminate)

Initialize population, evaluate

Evolutionary Computing



Example 2:Example 2:Example 2:Example 2:Example 2:Example 2:Example 2:Example 2: Discrete Representation of Discrete Representation of Discrete Representation of Discrete Representation of Discrete Representation of Discrete Representation of Discrete Representation of Discrete Representation of
various type of data in Geneticvarious type of data in Geneticvarious type of data in Geneticvarious type of data in Geneticvarious type of data in Geneticvarious type of data in Geneticvarious type of data in Geneticvarious type of data in Genetic

AlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithms
• Genotype: 8 bits

• Phenotype:
• integer

1*21*27 7 + 0*2+ 0*26 6 + 1*2+ 1*25 5 + 0*2+ 0*24 4 + 0*2+ 0*23 3 + 0*2+ 0*22 2 + 1*2+ 1*21 1 + 1*2+ 1*200  = 163= 163
• a real number between 2.5 and 20.5

2.5 + 163/256 (20.5 - 2.5) = 13.96092.5 + 163/256 (20.5 - 2.5) = 13.9609
•• scheduleschedule



GA Process

• GAs will cycle
through
populations of
binary strings
until a solution is
found or a
maximum number
of generations
have been
created

• Various stopping
criteria



GA Steps

• A GA will implement the following:

generate a random population of n chromosomes

evaluate the “fitness” of each population element

randomly select two elements to serve as parents

combine the parents to create new solutions

randomly mutate the children

Selection

Crossover

Mutation



GA FLOW CHART



PPPPsssseeeeuuuuddddooooccccooooddddeeee    PPPPsssseeeeuuuuddddooooccccooooddddeeee    ooooffff    EEEEAAAAooooffff    EEEEAAAA
generation = 0;
SeedPopulation(popSize); // at random or from a file
while(!TerminationCondition())
{

generation = generation + 1;
CalculateFitness(); // ... of new genotypes
Selection(); // select genotypes that will reproduce

Crossover(pcross); // mate pcross of them on average
Mutation(pmut); // mutate all the offspring with Bernoulli

// probability pmut  over genes
}



BEGIN

Generate initial population;

Compute fitness of each individual;

REPEAT /* New generation /*

FOR population_size / 2 DO

Select two parents from old generation;

/* biased to the fitter ones */

Recombine parents for two offspring;

Compute fitness of offspring;

Insert offspring in new generation

END FOR

UNTIL population has converged

END

Pseudocode Pseudocode Pseudocode Pseudocode Pseudocode Pseudocode Pseudocode Pseudocode of EA (another variant)of EA (another variant)of EA (another variant)of EA (another variant)of EA (another variant)of EA (another variant)of EA (another variant)of EA (another variant)



Example of convergence
Usefulness of analyzing such
curves



Link between GA and a
Problem

• Reproduction mechanisms have no
knowledge of the problem to be solved

• Link between genetic algorithm and problem:
• Coding
• Fitness function



Basic principles: genotype andBasic principles: genotype andBasic principles: genotype andBasic principles: genotype andBasic principles: genotype andBasic principles: genotype andBasic principles: genotype andBasic principles: genotype and
phenotypephenotypephenotypephenotypephenotypephenotypephenotypephenotype

• An individual is characterized by a set of parameters: Genes
• The genes are joined into a string: Chromosome

• The chromosome forms the genotype
• The genotype contains all information to construct an

organism: the phenotype

• Reproduction is a “dumb” process on the chromosome of
the genotype

• Fitness is measured in the real world (‘struggle for life’) of
the phenotype



EEEEnnnnccccooooddddiiiinnnnggggEEEEnnnnccccooooddddiiiinnnngggg

• Design alternative � individual (chromosome)
• Single design choice � gene
• Design objectives � fitness

Each of us is a
design alternative,
thanks to our parents

Chromosomes are strings of bits,
symbols, lists of atoms, etc,



• Parameters of the solution (genes) are concatenated to form
a string (chromosome)

• All kind of alphabets can be used for a chromosome
(numbers, characters), but generally a binary alphabet is
used

• Order of genes on chromosome can be important
• Generally many different codings for the parameters of a

solution are possible
• Good coding is probably the most important factor for the

performance of a GA
• In many cases many possible chromosomes do not encode

feasible solutions



Example of problem Example of problem Example of problem Example of problem Example of problem Example of problem Example of problem Example of problem fomulationfomulationfomulationfomulationfomulationfomulationfomulationfomulation

• Problem
• Schedule n jobs on m processors such that the

maximum span is minimized.

Design alternative: job i ( i=1,2,…n) is assigned to processor j  (j=1,2,…,m)

Individual: A n-vector x such that xi = 1, …,or m

Design objective: minimize the maximal span

Fitness: the maximal span for each processor



Reproduction
• Reproduction operators

• Crossover
• Mutation



Example
• Assume the

parents
selected are:

(1 0 1 0 0 1) (0 1 1 0 1 0)

Find a random crossover point
Swap the bits after the crossover point

(1 0 1 0 1 0) (0 1 1 0 0 1 )

These are the two children which
are now part of the next generation



Crossover algorithmCrossover algorithm
• Select two random parents

• Using the preset probability of a crossover,
pc, throw a random number, r.

• if r < pc then perform a crossover operation
on the two parents

• otherwise pass both parents on to the next
generation

• Repeat this process until the next
generation is full

• Two parents produce two offspring
• There is a chance that the chromosomes

of the two parents are copied
unmodified as offspring

• There is a chance that the chromosomes
of the two parents are randomly
recombined (crossover) to form
offspring

• Generally the chance of crossover is
between 0.6 and 1.0



1  1  1  1  1  1  1 0  0  0  0  0  0  0 parents
cut cut

1  1  1  0  0  0  0 0  0  0  1  1  1  1 offspring

Recombination: genotype versus phenotype

• Each chromosome is cut into 2 pieces which are recombined



One-point crossover 1
• Randomly one position in the chromosomes is chosen
• Child 1 is head of chromosome of parent 1 with tail of

chromosome of parent 2
• Child 2 is head of 2 with tail of 1

Parents: 1010001110 0011010010

Offspring: 0101010010 0011001110

Randomly chosen position

Generating offspring from two selected parents
1. Single point crossover
2. Two point crossover (Multi point crossover)
3. Uniform crossover



Crosover Operators comparison

• Single point crossover

Cross point

�

�

• Two point crossover (Multi point crossover)



One-point crossover - Nature

1 2

12

1

2

2

1

But we do not have to
follow the Nature in EA



Two-point crossover

Parents: 1010001110 0011010010

Offspring: 0101010010 0011001110

Randomly chosen positions

• Randomly two positions in the chromosomes are chosen
• Avoids that genes at the head and genes at the tail of a

chromosome are always split when recombined

Remember the elephants
example?



Uniform Crossover
•• PROCESSPROCESS:

• each bit in the first offspring is selected sequentially from parent 1 with
probability p and from parent 2 with probability (1-p),

• the second offspring receives the bit not selected for the first offspring.
• Probabilities of next bits can be constrained on previous values and choices

• EXAMPLE:

• P(parent1) = 0.9
• P(parent1) = 0.3

Parents: 1 0 0 1 0 0 1 1 0 1

Children: 1 1 0 1 1 0 0 1 0 0

These choices correspond
to create dynamically a
mask for both parents



Uniform crossover (other variant)
• 1. A random mask is generated
• 2. The mask determines which bits are copied from one parent and which

from the other parent
• Bit density in mask determines how much material is taken from the other

parent (takeover parameter)

• This mask may be biased - not totally random but user-influenced.

Mask: 0110011000 (Randomly generated)

Parents: 1010001110 0011010010

Offspring: 0011001010 1010010110

• Is uniform crossover better than single crossover point?
– Trade off between

• Exploration: introduction of new combination of features
• Exploitation: keep the good features in the existing solution



Problems with crossover
• Depending on coding, simple crossovers can have

high chance to produce illegal offspring
• E.g. in TSP with simple binary or path coding, most

offspring will be illegal because not all cities will be in the
offspring and some cities will be there more than once

• Uniform crossover can often be modified to avoid
this problem
• E.g. in TSP with simple path coding:

❘ Where mask is 1, copy cities from one parent
❘ Where mask is 0, choose the remaining cities in the order of the

other parent



Reproduction Operators

• Generating new offspring from single parent

• This operator helps maintaining the diversity of the
individuals

❘ Crossover can only explore the combinations of the current
gene pool

❘ Mutation can “generate” new genes

�

MutationMutation



Mutation (Mutation (contcont))
• As each chromosome is added to the next generation, it is

examined bit by bit
• each time a bit is examined, a random number is thrown, r
• if r < Pm then that bit is complemented otherwise it is left

unchanged

• The whole cycle begins again - it will stop when either a
solution is found or the maximum number of generations
have been produced

There is a chance that a gene of a child is changed randomly
Generally the chance of mutation is low (e.g. 0.001)



Example: Binary Mutation

• A bit in a child is changed (from 1 to 0 or from 0 to 1) at
random

This is a usually small probability event but in
some approaches it may be quite high

The effect is to prevent a premature convergence 
to a local minimum or maximum



Mutation

11101 0101 0

pmut

01101 0101 1

independent Bernoulli transcription errors

Sometimes there is high mutation rate and its
probability is generated for each gene,
dynamically with analyzing previous changes.
Many bits can change in one generation.



Example: Binary Mutation

1  1  1  1  1  1  1 before

1  1  1  0  1  1  1 after

Mutation happens with probability pm for each
bit

mutated bit



Reproduction Operators
•• Control parameters:Control parameters: population size, crossover/mutation

probability
• These parameters are problem specific
• P1. Increase population size

❘ Increase diversity and computation time for each generation
• P2. Increase crossover probability

❘ Increase the opportunity for recombination but also disruption of
good combination

• P3. Increase mutation probability
❘ Closer to randomly search
❘ Help to introduce new gene or reintroduce the lost gene

• P4. Vary the population
❘ Usually using crossover operators to recombine the genes to generate the

new population, then using mutation operators on the new population



EA Performance: Diversity

• Increasing diversity by genetic operators
• mutation
• Recombination

• Decreasing diversity by selection
• of parents
• of survivors



GA: crossover OR mutation?GA: crossover OR mutation?GA: crossover OR mutation?GA: crossover OR mutation?GA: crossover OR mutation?GA: crossover OR mutation?GA: crossover OR mutation?GA: crossover OR mutation?

If we define distance in the search space as Hamming distance then:

• Crossover is explorativeexplorative, it makes a big jump to an area somewhere ‘in
between’ two (parent) areas.

• Mutation is exploitativeexploitative, it creates random small variations, thereby staying
near the parent.

• To hit the optimum you often need a lucky mutation.

• GA community: crossover is mission critical.



Genetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimization

Numerical Example:

4)4cos(3.0)3cos(2),( 22 +++−−= yxyxyxF ππ
11 ≤≤− y11 ≤≤− x



Genetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic Algorithms
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Genetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimization



Genetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic AlgorithmsGenetic Algorithms

Evolution of average fitness

Genetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimizationGenetic Algorithm for function optimization



Parent Selection

• The process in which individual strings in the population are selected to
contribute to the next generation is called parent selectionparent selection

• based on fitness
• strings with a high fitness have a higher probability of contributing one or more

offspring to the next generation

• Example: Biased Roulette Wheel Selection

1
2 5

3

46

When you spin the wheel,
items 1 and 5 have the
greatest chance of coming up
while item 2 has the smallest

PPPPaaaarrrreeeennnntttt    sssseeeelllleeeeccccttttiiiioooonnnnPPPPaaaarrrreeeennnntttt    sssseeeelllleeeeccccttttiiiioooonnnn

Best
individuals
obtain this

much
Worst

Specifically: Fitness proportionate selection

• Expected number of times chromosome with  fi  is selected
equals  fi / average fitness



Fitness Proportionate SelectionFitness Proportionate SelectionFitness Proportionate SelectionFitness Proportionate SelectionFitness Proportionate SelectionFitness Proportionate SelectionFitness Proportionate SelectionFitness Proportionate Selection

Implementation: “Roulette Wheel”

P
f

f
( )

( )
γ

γ
=
∑

Probability of γ being selected:

2π
γf
f

( )

∑

γ



Example: Selection for MAXONEExample: Selection for MAXONEExample: Selection for MAXONEExample: Selection for MAXONEExample: Selection for MAXONEExample: Selection for MAXONEExample: Selection for MAXONEExample: Selection for MAXONE

0111011011 f = 7 Cf = 7 P = 0.125
1011011101 f = 7 Cf = 14 P = 0.125
1101100010 f = 5 Cf = 19 P = 0.089
0100101100 f = 4 Cf = 23 P = 0.071
1100110011 f = 6 Cf = 29 P = 0.107
1111001000 f = 5 Cf = 34 P = 0.089
0110001010 f = 4 Cf = 38 P = 0.071
1101011011 f = 7 Cf = 45 P = 0.125
0110110000 f = 4 Cf = 49 P = 0.071
0011111101 f = 7 Cf = 56 P = 0.125

Random sequence: 43, 1, 19, 35, 15, 22, 24, 38, 44, 2

Number of bits 1
in the string

Cumulative f

Probability of
being selected

hits



Example continued: Recombination & Mutation

0111011011 → 0111011011 → 0111111011 f = 8
0111011011 → 0111011011 → 0111011011 f = 7
110|1100010 → 1100101100 → 1100101100 f = 5
010|0101100 → 0101100010 → 0101100010 f = 4
1|100110011 → 1100110011 → 1100110011 f = 6
1|100110011 → 1100110011 → 1000110011 f = 5
0110001010 → 0110001010 → 0110001010 f = 4
1101011011 → 1101011011 → 1101011011 f = 7
011000|1010 → 0110001011 → 0110001011 f = 5
110101|1011 → 1101011010 → 1101011010 f = 6

TOTAL = 57

Total increased in
next generation



Roulette wheel
• Sum the fitness of all chromosomes, call it T
• Generate a random number N between 1 and T
• Return chromosome whose fitness added to the running total

is equal to or larger than N
• Chance to be selected is exactly proportional to fitness

Chromosome: 1 2 3 4 5 6

Fitness: 8 2 17 7 4 11

Running total: 8 10 27 34 38 49

N (1 ≤≤≤≤ N ≤≤≤≤ 49): 23

Selected: 3

Parent selection: another  ExampleParent selection: another  ExampleParent selection: another  ExampleParent selection: another  ExampleParent selection: another  ExampleParent selection: another  ExampleParent selection: another  ExampleParent selection: another  Example



PPPPaaaarrrreeeennnntttt////SSSSuuuurrrrvvvviiiivvvvoooorrrrPPPPaaaarrrreeeennnntttt////SSSSuuuurrrrvvvviiiivvvvoooorrrr
SSSSeeeelllleeeeccccttttiiiioooonnnnSSSSeeeelllleeeeccccttttiiiioooonnnn

• Strategies
• Survivor selection:

❘ 1. Always keep the best one,
❘ 2. Elitist: deletion of the K worst
❘ 3. Probability selection: inverse to their fitness
❘ 4. Etc.



Parent/Survivor Selection

• Too strong fitness selection bias can lead to sub-
optimal solution

• Too little fitness bias selection results in
unfocused and meandering search

Give examples
from biology and
society



Parent selectionParent selectionParent selectionParent selectionParent selectionParent selectionParent selectionParent selection
• In Roulette Wheel the

chance to be selected as
a parent are proportional
to fitness

• If values change by
little, the mechanism
becomes near random.

• Thus other methods may
be used, based on
ranking proportional
(linear selection) or on
tournament

1 2 3 4

F=6 F= 4

Select two
randomly

accept
Throw
away



Parent selectionParent selectionParent selectionParent selectionParent selectionParent selectionParent selectionParent selection
• Threshold method -

select those who have
fitness above some
value T

• Elitist method - kill all
but k best fit individuals

1 2 3 4 5 6

K=3
accept Throw

away

accept

Throw
away



Tournament Selection
Methods

• Binary tournament
• Two individuals are randomly chosen; the fitter of the two is selected

as a parent

• Probabilistic binary tournament
• Two individuals are randomly chosen; with a chance p, 0.5<p<1, the

fitter of the two is selected as a parent

• Larger tournaments
• n individuals are randomly chosen; the fittest one is selected as a

parent

• By changing n and/or p, the GA can be adjusted dynamically



Mixed Parent/Survivor
Selection Strategies

• Strategies
• Parent selection

❘ Uniform randomly selection
❘ Probability selection : proportional to their fitness
❘ Tournament selection (Multiple Objectives)

Build a small comparison set
Randomly select a pair with the higher rank one beats the lower one

Non-dominated one beat the dominated one
Niche count: the number of points in the population within

                      certain distance, higher the niche count, lower the
                      rank.

❘ Etc.



select mating partners

mutateevaluate

select
survivors

recombine

(terminate)

Initialize population, evaluate

Evolutionary Computing



Purpose
• Parent selection
• Measure for convergence
• For Steady state: Selection of individuals to die

• Should reflect the value of the chromosome in some “real”
way

• Next to coding the most critical part of a GA

• A key component in GA
• Time/quality trade off
• Multi-criterion fitness



Problems with fitness range
• Problem #1. Premature convergence

• ∆Fitness too large
• Relatively superfit individuals dominate population
• Population converges to a local maximum
• Too much exploitation; too few exploration

• Problem # 2. Slow finishing
• ∆Fitness too small
• No selection pressure
• After many generations, average fitness has converged, but no

global maximum is found; not sufficient difference between best and
average fitness

• Too few exploitation; too much exploration

Thus we want ∆Fitness to be not too small, not too large



What are the solutions to solve
these problems with fitness range?

• Use tournament selection
• Implicit fitness remapping

• Adjust fitness function for roulette wheel
• Explicit fitness remapping

❘ Method 1: Fitness scaling
❘ Method 2: Fitness windowing
❘ Method 3: Fitness ranking

Will be explained below



Method 1: Fitness scaling
• Fitness values are scaled by subtraction and division

• so that worst value is close to 0 and the best value is
close to a certain value, typically 2

❘ Chance for the most fit individual is 2 times the average
❘ Chance for the least fit individual is close to 0

• There are problems when the original maximum is
very extreme (super-fit)
• or when the original minimum is very extreme (super-

unfit)
❘ Can be solved by defining a minimum and/or a maximum value

for the fitness



Example of Fitness Scaling
… this is a kind of normalization
of shape that allows to make
decisions based on statistics of
other but similar examples…..



Method 2: Fitness windowing

• The method is the same as window scaling,
except the amount subtracted is the
minimum observed in the observed in the nn previous previous
generations.

• For instance, take n  = 10
• There exist the same problems as with

scaling

Other popular method to deal with
fitness function range



Method 3: Fitness ranking

• Individuals are numbered in order of increasing
fitness

• The rank in this order is the adjusted fitness
• Starting number and increment can be chosen in

several ways, and they influence the results

• No problems with super-fit or super-unfit
• This method is often superior to scaling and

windowing



Observe the fitness in generations:
Example run

Maxima and Averages of steady state (St) and generational
(Ge)  replacement
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St_av.
Ge_max
Ge_av.

This line is
monotonically
increasing



Fitness LandscapesFitness Landscapes

• Selection moves organisms over a landscape to find peaks

• Peak indicates high level of fitness

• Some numbers about the space of such a landscape:

• image number of genes = 7

• then 27 = 128 different genotypes

• E. Coli has about 3,000 genes, thus 10900 possible
genotypes

Landscapes are related to selection
and fitness functions



Smooth landscape Rugged landscape

Selection - Fitness LandscapesSelection - Fitness Landscapes

Discuss analogy to travellers who want to
find highest peak in Himalaya Mountains



Selection - Fitness LandscapesSelection - Fitness LandscapesSelection - Fitness LandscapesSelection - Fitness Landscapes

SOS - Lecture 6

Complex organisms -> complex fitness landscape

Problem!

• Random fitness landscape

• Adaptive walk

• Correlated landscapes

• theoretical model -> very nice!

Selection - Fitness LandscapesSelection - Fitness Landscapes
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• Pareto Optimal Set
• If there exists no solution in

the search space which
dominates any member in
the set P, then the solutions
belonging the the set P
constitute a global Pareto-
optimal set.

• Pareto optimal front

• Dominance Check

. . . Sometimes there is no single
best solution criterion. . .

c1

c2

... ..

Minimizing

c1 and c2
red are
Pareto Points



Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness
• Dominance and indifference

• For an optimization problem with more than one
objective function (fi, i=1,2,…n)

• given any two solution X1 and X2, then
❘ X1 dominates X2 ( X1      X2), if

fi(X1) >= fi(X2), for all i = 1,…,n

❘ X1 is indifferent with X2 ( X1  ~  X2), if X1 does not dominate X2,

and X2 does not dominate X1

�

Minimization and maximization
problems can be easily converted to
one another

Maximizing f



Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Weighted sum
• F(x) = w1f1(x1) + w2f2(x2) +…+wnfn(xn)
• Problems?

❘ Convex and convex Pareto optimal front
Sensitive to the shape of the Pareto-optimal front

❘ Selection of weights?
Need some pre-knowledge
Not reliable for problem involving uncertainties



Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Optimizing single objective
• Maximize:   fk(X)

Subject to:
                   fj(X) <= Ki,   i <> k

                           X in F where F is the solution space.



Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness
• Weighted sum

• F(x) = w1f1(x1) + w2f2(x2) +…+wnfn(xn)
• Problems?

❘ Convex and convex Pareto optimal front
Sensitive to the shape of the Pareto-optimal front

❘ Selection of weights?
Need some pre-knowledge
Not reliable for problem involving uncertainties



Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Preference based weighted sum
(ISMAUT Imprecisely Specific Multiple Attribute Utility Theory)
• F(x) = w1f1(x1) + w2f2(x2) +…+wnfn(xn)
• Preference

❘ Given two known individuals X and Y, if we prefer X
than Y, then
      F(X) > F(Y),
that is
 w1(f1(x1)-f1(y1)) +…+wn(fn(xn)-fn(yn)) > 0



❘ All the preferences constitute a linear space
Wn={w1,w2,…,wn}

w1(f1(x1)-f1(y1)) +…+wn(fn(xn)-fn(yn)) > 0
w1(f1(z1)-f1(p1)) +…+wn(fn(zn)-fn(pn)) > 0, etc

❘ For any two new individuals Y’ and Y’’, how to
determine which one is more preferable?

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness
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Where Wn is defined in
previous slide
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'Y'Y }'0 ⇒>µ

Y'Y }''0' ⇒>µ

Then, 

Otherwise, 
Y’  ~ Y’’

Construct the dominant relationship
among some indifferent ones according to
the preferences.

Perceptrons, logic decomposition or
Neural Nets can be used to create
cost functions for these kinds of
problems. Linking EA and other
Machine Learning/AI methods



Other parameters of GAOther parameters of GA

• Initialization:
• Population size
• Random initialization
• Dedicated greedy algorithm (smart) to initialize

• Reproduction:
• Generational: as described before (insects)
• Generational with elitism: fixed number of most fit individuals are

copied unmodified into new generation
• Steady state: two parents are selected to reproduce and two parents

are selected to die; two offspring are immediately inserted in the
pool (mammals)



Other parameters of GA
(cont)

• Stop criterion:
• Number of new chromosomes
• Number of new and unique chromosomes
• Number of generations

• Measure:
• Best of population
• Average of population

• Duplicates
• Accept all duplicates
• Avoid too many duplicates, because that degenerates the population

(inteelt)
• No duplicates at all



Other issues

• Global versus Optimal
• Parameter Tuning: hand versus automatic
• Parallelism: software, versus hardware,

versus evolvable hardware
• Random number generators; quality of

software and hardware realizations





EA Applications

• Numerical, Combinatorial Optimization

• System Modeling and Identification

• Planning and Control

• Engineering Design
(logic and architectural synthesis)

• Data Mining

• Machine Learning

• Artificial Life (Brain Building)



Evaluation of EA algorithms

• Acceptable performance at acceptable costs on a
wide range of problems

• Intrinsic parallelism (robustness, fault tolerance)

• Superior to other techniques on complex problems
with
•    lots of data, many free parameters
•    complex relationships between parameters
•    many (local) optima



Advantages of EA algorithms

• No presumptions with respect to problem space
• Widely applicable
• Low development & application costs
• Easy to incorporate other methods
• Solutions are interpretable (unlike NN)
• Can be run interactively, accomodate user

proposed solutions
• Provide many alternative solutions



Disadvantages of EA algorithms

• No guarantee for optimal solution within finite
time

• Weak theoretical basis

• May need parameter tuning

• Often computationally expensive, i.e. slow



Outline of various techniquesOutline of various techniquesOutline of various techniquesOutline of various techniquesOutline of various techniquesOutline of various techniquesOutline of various techniquesOutline of various techniques

• Plain Genetic Algorithms
• Evolutionary Programming
• Evolution Strategies
• Genetic Programming



Evolutionary ProgrammingEvolutionary ProgrammingEvolutionary ProgrammingEvolutionary ProgrammingEvolutionary ProgrammingEvolutionary ProgrammingEvolutionary ProgrammingEvolutionary Programming

• Individuals are finite-state automata
• Used to solve prediction tasks
• State-transition table modified by uniform random mutation
• No recombination
• Fitness depends on the number of correct predictions
• Truncation selection



Evolutionary Programming: IndividualsEvolutionary Programming: Individuals

Finite-state automaton: (Q, q0, A, Σ, δ, ω) 
• set of states Q;
• initial state q0;
• set of accepting states A;
• alphabet of symbols Σ;
• transition function δ: Q × Σ → Q;
• output mapping function ω: Q × Σ → Σ;

q0 q1 q2

a

b

c

state
input

q0

q0

q0q1 q1

q1

q2

q2

q2

q1

q0

q2

b/c c/b
a/b

c/c

a/b

b/c

a/a

c/ab/a

a

c c

c

a

ab

b b



Evolutionary Programming: Fitness

a b c a b c a b

b =?
no

yes

f(γ) = f(γ) + 1

individual γ

prediction

Fitness depends on the number of correct predictionsFitness depends on the number of correct predictions



Evolutionary Programming: Selection

Variant of stochastic q-tournament selection:

γ γ1

γ2

γq
... score(γ) = #{γi | f(γ) > f(γi) }

Order individuals by decreasing score
Select first half (Truncation selection)



EEEEvvvvoooolllluuuuttttiiiioooonnnn    SSSSttttrrrraaaatttteeeeggggiiiieeeessssEEEEvvvvoooolllluuuuttttiiiioooonnnn    SSSSttttrrrraaaatttteeeeggggiiiieeeessss
• Individuals are n-dimensional vectors of real

numbers
• Fitness is the objective function
• Mutation distribution can be part of the genotype

(standard deviations and covariances evolve with solutions)

• Multi-parent recombination (more than two
parents)

• Deterministic selection (truncation selection)





Example 1: coding for TSP
Travelling Salesman Problem

• Binary coding
• Cities are binary coded; chromosome is string of bits

❘ Most chromosomes code for illegal tour
❘ Several chromosomes code for the same tour

• Path coding
• Cities are numbered; chromosome is string of integers

❘ Most chromosomes code for illegal tour
❘ Several chromosomes code for the same tour

• Ordinal
• Cities are numbered, but code is complex (permutative coding)
• All possible chromosomes are legal and only one chromosome for each

tour

• Several others



Example 2: Function OptimizationExample 2: Function OptimizationExample 2: Function OptimizationExample 2: Function OptimizationExample 2: Function OptimizationExample 2: Function OptimizationExample 2: Function OptimizationExample 2: Function Optimization

• Problem:  Find the maximum value of a two-variable
function

F(x1,x2) = 21.5 + x1sin(4ππππx1) + x2sin(20ππππx2)

x1 is in the range [-3.0,12.1] and
x2 is in the range [4.1,5.8]

There are several ways to solve this
problem:  Classical/Search/GA . . .



Representation of a real number
• The first problem is one of representation

• how do you create a binary representation of a real
number?

• SOLUTION:  determine a level of precision and
divide the range into equal sized intervals
• if p is the level of precision and the interval is L then the

number of bits required is the number of bits in the
binary representation of L x 10p

❘ for x1 the interval is -3 to 12.1 so L = 15.1
1 decimal place of precision requires 8 bits (15.1 x 101)
2 decimal places of precision require 11 bits (15.1 x 102)

Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (contcontcontcontcontcontcontcont))))))))



Conversion
• To convert a binary number b to a real number x

use:
Where
    i is the integer value of b
    d is the lower value of the range
    L is the length of the range
    R is the range of binary integers

For example, x1 with 4 digits of precision (18 bits), is found
to be (in binary):   010101110000110010

i is 89136

d is -3

L is 15.1
R is 218-1
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Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (contcontcontcontcontcontcontcont))))))))



Complete Representation

• x2 has a range of 1.7, so for 4 decimal places of precision it
requires 15 bits

• Hence, a single chromosome for both variables requires 18
+ 15 = 33 bits
• the first 18 bits represent x1

• the last 15 bits represent x2

<010001001011010000111110010100010>

x1 = 1.0524                    x2 = 5.7553

For example, this chromosome represents two real numbers

Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (contcontcontcontcontcontcontcont))))))))



Start a GA

• Determine a population size, n

• Using a random number generator,
construct n binary strings

• Determine the fitness of each random
solution

Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (contcontcontcontcontcontcontcont))))))))



Example Run

Point Binary Representation Value
v1 100110100000001111111010011011111 26.0196
v2 111000100100110111001010100011010 7.5800
v3 000010000011001000001010111011101 19.5263
v4 100011000101101001111000001110010 17.4067
v5 000111011001010011010111111000101 25.3411
v6 000101000010010101001010111111011 18.1004
v7 001000100000110101111011011111011 16.0208
v8 100001100001110100010110101100111 17.9597
v9 010000000101100010110000000101100 16.1277
v10 000001111000110000011010000111011 21.2784
v11 011001111110110101100001101111000 23.4106
v12 110100010111101101000101010000000 15.0116
v13 111011111010001000110000001000110 27.3167
v14 010010011000001010100111100101001 19.8762
v15 111011111011100001000111110111110 30.0602
v16 110011110000011111100001101001011 23.8672
v17 011010111111001111010001101111101 13.6961
v18 011101000000001110100111110101101 15.4142
v19 000101010011111111110000110001100 20.0959
v20 101110010110011110011000101111110 13.6669

Population size is 20, 
fitness is the functionfitness is the function
 value value

Best Element (so far)

Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (Example 2: (contcontcontcontcontcontcontcont))))))))



Example: Combinatorial Chemistry



Constraints, rules and partial cost functions



User part of the loop, subjective cost functions,
GA-based Computer Aided Design, Computer-Aided
Art,etc.



Example  GP ProblemExample  GP ProblemExample  GP ProblemExample  GP ProblemExample  GP ProblemExample  GP ProblemExample  GP ProblemExample  GP Problem
• Santa-Fe Trail Problem

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
 

Fitness: How much
food collected

Individual program
on the previous
slide generated on
7th generation
solved the problem
completely



Example GP Problem (Example GP Problem (Example GP Problem (Example GP Problem (Example GP Problem (Example GP Problem (Example GP Problem (Example GP Problem (contcontcontcontcontcontcontcont))))))))
Examples: Artificial Ant Problem.  Given a set environment
with a trail of food, goal is to get as most of the food as
possible in a given timeframe

Functions: IF-FOOD, PROGN
Terminals: ADVANCE, TURN LEFT, TURN RIGHT

After 51 generations with population of 1000, following individual
emerged that got all the food:
(If-Food (Advance)
 (Progn (turn-right)

(If-Food (Advance) (Turn-Left))
(Progn (Turn-left)

(If-Food (Advance) (Turn-Right))
(Advance))))



Variant of Ants - Emergent CollectiveVariant of Ants - Emergent CollectiveVariant of Ants - Emergent CollectiveVariant of Ants - Emergent CollectiveVariant of Ants - Emergent CollectiveVariant of Ants - Emergent CollectiveVariant of Ants - Emergent CollectiveVariant of Ants - Emergent Collective
BehaviorBehaviorBehaviorBehaviorBehaviorBehaviorBehaviorBehavior

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
 

Fitness:  Food
collected by all ants
and returned to nest
in given time period

Programs evolved to
demonstrate
collective intelligent
behavior, lay
pheromone trails



Other known Examples, some of them you will find on
my WebPage

• Evolutionary Art
• Nozzle
• Best Sorter
• ESOP synthesis
• Decision Trees and Diagrams, all kinds of circuits and

architectures
• Reversible logic (KAIST/PSU project)
• Quantum Logic
• Brain Building
• DNA Computing
• Nano-Technologies



Optimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization Techniques

•• Mathematical ProgrammingMathematical Programming
•• Network AnalysisNetwork Analysis
•• Branch & BoundBranch & Bound
•• Genetic AlgorithmGenetic Algorithm
•• Simulated AnnealingSimulated Annealing
•• TabuTabu Search Search

But Genetic Algorithm is also a
representative of Evolutionary
Computing, which is a general problem
solving paradigm taken from Nature

Belong to the machine
learning part of AI
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