DECOMPOSITION OF MULTIPLE-VALUED RELATIONS

Marek Perkowski, Malgorzata Marek-Sadowska t, Lech Jozwiak +, Tadeusz Luba e,
Stanislaw Grygiel, Miroslawa Nowicka e, Rahul Malvi, Zhi Wang, and Jin S. Zhang
Portland State Univ., EE Dept., Portland, OR 97207, Tel: 503-725-5411,
mperkows@ee.pdx.edu, 1 U.C., Santa Barbara, ECE Dept., CA 93106, mms@ece.ucsb.edu,
+ Faculty of EE., Eindhoven Univ. of Techn.,P.O. Box 513, 5600 MB Eindhoven,
The Netherlands, lech@eb.ele.tue.nl, « Warsaw Univ. of Techn.,

Inst. of Telecomm., Warszawa, Nowowiejska 15/19, Poland, luba@tele.pw.edu.pl

Abstract— This paper presents a new decomposi-
tion problem: decomposition of multi-valued (MV) re-
lations, and a method of its solution. Decomposition is
non-disjoint and multi-level. A fundamental difference
in decomposition of MV functions and MV relations
is discussed: the column (cofactor) pair compatibil-
ity translates to the group compatibility for functions,
but not for relations. This makes the decomposition
of relations more difficult. The method is especially
efficient for strongly unspecified data typical for Ma-
chine Learning (ML). It is implemented in program
GUD-MV.!

I. INTRODUCTION.

Functional Decomposition of switching functions has
applications in binary and multiple-valued circuit design,
Machine Learning (ML), and Knowledge Discovery from
Data Bases (KDD). Despite the fundamental nature of
the MV decomposition problem and many possible appli-
cations of its solutions, efficient MV decomposers do not
exist yet, with the exception of [1]. (The Curtis decom-
position of binary functions is presented in detail in [4],
Curtis-like decomposition of multi-valued functions based
on graph coloring was presented in [6]). In this paper we
will focus on a new problem of Curtis-like Decomposition
of MV Relations. We present also an efficient computer
program for this task. The solution of the MV Relation
Decomposition Problem finds numerous applications in
Machine Learning, binary circuits and Finite State Ma-
chine design.

An example of a relation with binary inputs and a sin-
gle MV output is shown in Table 1. Observe, that only
the care minterms (care cubes) are present in the rela-
tion table as its rows. Standard don’t cares ("unknown
data samples” in ML) are represented by the remaining,
implicit, minterms. The values in the column for out-
put variable f include also the so-called “generalized don’t

! This research was partially supported by the Dutch Technology
Foundation (STW) under project EEL 55.3958

=]
[N

o N N)
HOOHOOOKOHRRO|
CoOOrRKHOKRKKOOO|R

oroOOORRHOKOO|R
HHEHRERHHODODOOOOO|0

NHNOHODOO
[F R N Ry M AR N)

o
= o

Table 1: Multivalued Relation

cares”. For instance, assume the meaning of the values of
decision variable f: 0 - a chair, 1 - an armchair, 2 - a desk,
3 - a table, etc. Then, the position {0,1} in the first row
will mean ”a chair or an armchair”, which means, some-
thing is known but the answer is not precize. The value 0
means a definite answer ”a chair”, and a value {0,1,2,3,4}
would mean a complete unknown, a standard don’t care,
denoted by ”-”. Observe in Table 1 that there is no row
for a standard don’t care at all (like there is no row for
a minterm abed = 1111). In general, for a single-output
relation (like one from Table 1), there will be no row for
a standard don’t care. In case of relations with two or
more output variables, it can happen, however, that one
of these variables, say f, is a standard don’t care, and
another one, g, has a proper subset of its possible values.
In such case the row will exist in the table (the standard
don’t care for f has the meaning of a generalized don’t
care, with all possible values of this variable). Similar
tables can be presented for multi-valued inputs as well
[5].

In multiple-valued systems, the entire classical decom-
position approach is considerably more complex than for
binary systems because of the associated combinatorial
explosion. However, this is not the case for weakly spec-
ified relations and functions, and an appropriate decom-
position approach can be made efficient by utilizing don’t
cares. It can be observed that in the area of circuit de-
sign the percent of don’t cares is not more than 90%.
While in Machine Learning, this percent is usually larger
than 99%. Arbitrarily, we will define the functions with
more than 95% don’t cares to be weakly specified (they

Cc
0o 1 G
ab H\ 00 01 11 10 @ColorA w0 1 pe 0 1
o o0 o o) o)~ 1~ ool o| — oA |A
o1 1 0 color B
o —|—1] 0| 1
@ color o1 0| 1 1B |A|G
mrpo u-j—-]0p1 1l o 1
€
o g o0 1] 1] —]y o 1 -|RH
a) co\orA
b) Iy
A B
bc 0 1 color A G c o 1 c 0 1
colorB 45 0 1 b b
oo e 00 00 0 |AB|AB 0 - |-
color B or B B
color
1 1 Y G @ color@ o1l o 1 1 B | A G 1 1 0 G

CO|DVA 10/ 1 1 H

9) "
Figure 1: RVM Maps and Decomposition: (a) The stan-
dard map of the function f from Ezample 1, (b) the RVM
map of the function f from Ezample 1 created from the
map in (a). Coloring: (c) the coloring graph with col-
ors of nodes for a Binary Ashenhurst Decomposition of
f from Ezample 2, (d) map of incomplete function H to
Ezample 2, (e) map of function G, (f) encoded map of
function G. Multi-Coloring: (g) the multi-coloring graph
for f from Ezample 2, (h) map of function H to Example
2, (i) map of relation G, (j) encoded map of incomplete
function G.

are called also the strongly unspecified functions). Sim-
ilarly, we will define the relations with more than 95%
don’t cares (total, standard and generalized), the weakly
specified, or strongly unspecified relations. Observe also,
that the more values exist in generalized don’t cares, the
more is the relation unspecified. The less values exist in
generalized don’t cares, the relation is more similar to a
function.

II. REPEATED VARIABLE MAPS AND NON-DISJOINT
DECOMPOSITIONS

We discuss Curtis-like decomposition F = H(G(BU
C),AUC). The set X of input variables is partitioned
to two sets: free variables AU C (using Curtis terminol-
ogy) are direct inputs to the successor block H, and bound
variables B U C are inputs to the predecessor block G of
the non-disjoint decomposition. For relation F with C
= 0 represented as a Karnaugh map with B variables as
columns and A variables as rows, the column multiplic-
ity indexz u is the number of different types of column
patterns. By columns we will understand the cofactors
of F' with respect to the variables from the bound set.
The problem that we want to formulate and solve in this
paper is the following. Given is a multivalued, strongly
unspecified relation, with many input variables, and many
output variables. Each variable can have a different num-
ber of values (from 2 to hundreds). Find the hierarchi-
cal decomposition of this function to a DAG (Directed

Kmap of relation f

H from Figure 2d

Figure 2: Compatibility for Decomposition of MV Rela-
tions to Example 3. G is a function, H is a relation.

Acyclic Graph), with nodes of the multi-level DAG rep-
resenting blocks (each block representing a relation or in
particular a function), and arrows representing variables
and intermediate variables, in such a way that the total
cost RC of the network of these blocks will be the mini-
mum. The intermediate signals created in the decompo-
sition may be multivalued, but smaller numbers of values
in them are preferable to decrease the cost. Similarly,
nonempty sets C may be assumed (non-disjoint decom-
positions), but smaller sets C are preferable with respect
to the total cost. This is a decomposition model more
general than known in the literature [6].

First, we explain how to perform non-disjoint decompo-
sitions of multi-output relations with use of the Repeated
Variable Maps. A multivalued relation can be stored in a
tabular representation (such as a Karnaugh map or MV
map) in which for every entry there exist one of the follow-
ing: (1) a single value of the output (as in mv functions),
(2) a standard don’t care represented by a dash, (3) a gen-
eralized don’t care represented by a set of values of the
output variable. Example of such map for relation from
Table 1 is shown in Figure 2a.

Definition 1 A Repeated Variable Map (RVM) of a mul-
tivalued relation is its tabular representation in which en-
tries store the values corresponding to the input combina-
tions assigned to the rows and columns. The row variables
correspond to the free set A U C, and the column variables
correspond to the bound set B U C. Note that the vari-
ables from the non-empty set C are repeated (called also
shared variables). The entries of RVM whose row and
column combination values of C variables are the same,
take the values specified for these variables in the origi-
nal standard map. The entries can be any of the three
cases (1),(2),(3) specified above. The entries for which
the C-values are different, are set to standard don’t cares
(represented by dashes). (This is because the same vari-
able cannot have different values simultaneously).

Example 1. An example of an RVM is shown in Figure 1.

Fig. la presents a standard Kmap of a 3-input function
f. Assuming b is a repeated variable, the Bound Set {b,c}
(the columns) and the Free Set {a,b} (the rows), one cre-
ates the RVM from Fig. 1b. The set of Rows of rows is
composed of {Ry = @b, R; = @b, Ry = ab, Rs = ab}. The
set of Columns = {Co = b¢, Cy = bc, Cy = b¢, C3 = bc}.
This map illustrates the principle of repeating variables
that leads to a new, strongly unspecified function. In
other representations than Karnaugh Maps, a repetition
of variable b means creation of two variables: b,,, and
beotumn. While RVM is only a dydactic concept, the
functions with repeated (renamed) variables can be repre-
sented in any known data structure that allows for don’t
cares [5, 2, 3, 1].

Definition 2 Two single-output MV relations F1 and
F2 are a relation tautology if for every entry in their
standard maps they have at least one value in common.
Two multi-output MV relations F1 and F2 are a relation
tautology if they are single-output tautologies for every
output separately.

Obviously this definition is a generalization of the def-
inition of incomplete tautology, where for each entry the
functions are either the same, or at least one is a standard
don’t care.

Definition 3 We define that MV relation F has a u-
valued Curtis Decomposition of the form H(G(BUC), AU
C), with a given bound set B U C, a given free set A U C,
and with u values in signal G, when relation F and com-
position of relations H(G(B U C), AU C) are a relation
tautology.

Existence of the MV Curtis Decomposition for a given
bound set B U C and free set A U C can be checked
using Theorem 1.

Theorem 1 The non-disjoint u-valued Curtis decompo-
sition exists if the column multiplicity indez in the corre-
sponding RVM map is p. (see proof in [2]).

Observe, that the MV Ashenhurst decomposition, a gen-
eralization of Ashenhurst decomposition for MV func-
tions, which assumes a single binary signal G, is a special
case of MV Curtis decomposition with p = 2. Disjoint de-
compositions are those that decompose function F' to two
subfunctions G and H that have disjoint sets of inputs
variables. Most authors differentiate between disjoint and
non-disjoint decompositions, and most of the MV decom-
positions reported in literature are disjoint. The RVMs
can be used to explain all the decomposition types in a
uniform way. As introduced before, if C' = @ the de-
composition is called disjoint and the RVM becomes a
standard Karnaugh Map. If C' # @ the decomposition is
non-disjoint and the RVM is incompletely specified, even
if the original function is completely specified. The pro-
cess of finding sets A, B and C is called input variable

partitioning, and we have proposed several efficient algo-
rithms for it [7, 2, 1]. Observe, that addition of each
repeated variable increases the map dimension, and all
the newly introduced cells are don’t cares. For instance,
if the original map is completely specified and has 4 vari-
ables a, b, ¢, d, the bound set is {a, ¢, d} and the variable a
is a repeated variable, the new 4 x 8 map will have three
variables for columns and two variables for rows (variable
a appears in both rows and columns). Half of the en-
tries in this RVM are now don’t cares. If variables ¢ and
¢ were repeated, and {a,c,d} is the bound set, the new
8 x 8 map will have three column variables, and three
row variables. There will be 75% don’t cares in this case.
Starting even with a completely specified function, by re-
peating variables, the function becomes very strongly un-
specified. Since "don’t cares” represent ”design freedom”,
this fact shows, why it is possible to find a decomposition
or to find a better decomposition by introducing more
repeated variables. In addition, in ML applications, even
the initial data can have more than 99.99% of don’t cares.
This percent grows with the size of the real life Machine
Learning benchmarks. Therefore, it is absolutely crucial
to represent and manipulate the weakly specified func-
tions and relations efficiently (we use the data structure
introduced in [5]).

I1I. CorLuMN COMPATIBILITY FOR MV FUNCTIONS
AND RELATIONS

For relations [3], the decomposition problem has not
been discussed in the literature, and thus all the notions
below are new.

Definition 4 Two columns Cy and Cy of an MV Rela-
tion form a pair of compatible columns if in each row
there exists at least one value that is the same in both
columns. In other words, if in any row the intersection
of the sets of values of C1[R;] and C3[R;] is non-empty:
Ci =2 Cy & (VRZ S Rows) [[Cl[Rz] n Cz[RZ] ;é @]

Definition 5 A set of columns COL forms a compat-
ible set of columns of an MV Relation iff for any
row there exists some nonempty set of values that is in-
cluded in all columns in COL: COM Pg(COL) <

(VR; € Rows) [[Cj[R] # 0]
C;€COL

For instance, columns Cy and Cj3 in the MV relation from
Figure 2a are compatible. Columns Cy and Cy are not
compatible. Although the columns Cy and Cj3, Cy and
Ci, and C; and Cj, are pairwise compatible, the set of
columns COL = {Cy, Cy,C3} is not a compatible set of
columns. Columns that are not compatible are called in-
compatible. The above compatibility notions can be de-
fined for compatible rows in a strictly analogous manner.

Definition 6 In the Column Compatibility Graph
(CCG) the nodes correspond to columns in the RVM map

(cofactors of the bound set). If two columns are compati-
ble, there is an edge between the corresponding nodes. The
Column Incompatibility Graph (CIG) has the same
set of nodes as the CCG. An edge between two nodes ez-
ists, if the corresponding columns are incompatible.

CCG and CIG are complementary graphs, i.e. their
union forms a complete graph, because any two columns
are either compatible (exclusive)or incompatible.
Property 1. Compatibility inheritance prop-
erty. The Column Compatibility Graph satisfies the
compatibility inheritance property on a set of columns
COL C Columns if compatibility of all 2-column
subsets in COL implies compatibility of the entire
set COL: (YCOL C Columns) (VC;,C; € COL)
[C; ~ Cj] = COMP(COL). For instance, if COL
= {Co,C5,C7,Cq} and all possible pairs in the set are
compatible, i.e. Co ~ C3,Co ~ Cr,Co ~ Cq,C3 ~ Ch,
C3 ~ Cy, C7 ~ Cy, then fulfillment of Property 1 implies
that {Cy, Cs, C7,Co} form a compatible set.

Theorem 2 In an MV function, the relation of compat-
ibility & satisfies Property 1. In an MV relation, the re-
lation of compatibility = does not satisfy Property 1.
Proof. Proof for MV function directly follows from Defi-
nitions 4 and 5. To prove for MV relation it is sufficient
to find a counter-ezample, see Example 3.

Checking the incompatibility of cofactors is what every
Curtis-like decomposer does most of the time, so this op-
eration must be efficiently programmed. From the Theo-
rems 1 and 2 it follows that for MV functions we should
use proper graph coloring algorithms on CIG to deter-
mine the minimum column multiplicity index u. In proper
graph coloring every two nodes linked by an edge are col-
ored with different colors and the total number of colors
should be minimal. Nodes assigned the same color form
a clique in the CCG graph and correspond to a compat-
ible set of columns. Subsequently they can be combined
into one column. The number of colors in the exact mini-
mum coloring, called the chromatic number of this graph,
is equal to the column multiplicity indez p for the given
bound set B U C. Proper Multi-coloringis like proper col-
oring, but a node can be colored with many colors. This
corresponds to overlapping cliques in the compatibility
graph, and thus to both G and H being relations.

Example 2. The Incompatibility Graph for the function
in Fig. 1b with bound set {b,c} is shown in Fig. 1c. The
coloring is: nodes 00=Cj, 01=C" and 11=C’3 with color A;
and node 10=C3 with color B. Now columns 00, 01 and
11, colored with color A (a clique in the corresponding
Compatibility Graph), can be combined, which creates a
map of the successor block H in Fig. 1d. The map of
the predecessor block G is also obtained from this clique
partitioning, Fig. le. After assigning binary codes A = 0,
B = 1, the solution G = be, H = G + ab (f = bc + ab)
is found with blocks H and G from Fig. 1d, and Fig. 1f,

respectively. Similarly, solutions f = (a + b)(b + €) and
f = be ® (a + b) are found for the same bound set, but
with different colorings. One can verify that there is no
binary disjoint solution with bound variables a, b, since
three different rows exist in the map in Fig. la. Thus,
the multiplicity index for bound set {a, b} is 4 = 3. Simi-
larly, for bound sets {a, ¢} and {b,c} p = 3 and there are
no binary disjoint decompositions. However, there ex-
ists a three-valued decomposition f = H(G(a,b),c) with
3-valued function G, and binary-output function H. Fig-
ure lg presents the graph with multi-coloring, nodes 00
and 01 are colored with colors A and B. Corresponding
function H is in Fig.lh. Observe, that it has less don’t
cares than the H from Fig. 1d obtained from coloring. In
contrast, G is now a relation (Fig. 1i). Concluding, by
the switching between coloring and multi-coloring proce-
dures, and by controlling the size of sets of nodes colored
with single colors, we can constrain any of relations G or
H to become functions. We can also investigate trade-offs
between percentages of standard don’t cares, generalized
don’t cares and specified transitions in G and H.

In the case of CIG graph for MV Relations, the Proper
Graph Coloring or Multi-Coloring cannot be used, since
for every group of pairwise compatible nodes one has to
check if all these nodes (the columns that correspond to
them) satisfy Definition 5. This kind of graph coloring is
called Compatible Graph Coloring, or Compatible Graph
Multi-Coloring, respectively. The method to create a
combined column is the same for functions and relations.
The difference is only in the graph coloring. During node-
by-node compatible coloring of a CIG corresponding to a
relation the sets of nodes colored with the same color are
additionally checked for compatibility. This makes com-
patible coloring slower than the proper coloring, and also
more memory is needed to store the combined columns.
Every step of Compatible Graph Coloring creates a set of
compatible columns for the relation. When the coloring is
completed, the minimum set of sets of compatible columns
exists. (We compared exact and heuristic algorithms and
proved that heuristic multicoloring gives nearly minimum
results on binary and MV benchmark functions). In each
set of compatible columns the columns are combined into
a single column, and next new relations G and H are cre-
ated. Observe, that even if we start from function, this
process creates relations during decomposition. These re-
lations are subject to next decompositions. This is one
more argument why the decomposition of relations is an
important and practical problem.

IV. CURrTIS-LIKE DECOMPOSITION OF MV RELATIONS

Our Curtis-like Decomposer can handle both MV Func-
tions and Relations. In the case of a MV relation, the
CCQG graph can be created with nodes for columns, and
edges for pairs of compatible nodes. Two compatible
columns C; and C; of RVM can be combined, and every

combined cell Cj;(R,) := Ci(Rs) N Cj(R,).
above, standard maximum cliques cannot be used for MV
relations, because, contrary to the standard column com-
patibility, column C; could be compatible with column
Cy, column Cy compatible with column C3, and column
C3 compatible with column Cj, but columns C1, Cs, and
C3 are not compatible all together as a set. Therefore,
the cliques in the CCG graph must be checked for set
compatibility COM Pg,;. This is equivalent to building
a CIG graph, and coloring it using a Compatible Graph
(Multi) Coloring algorithm. Such algorithm checks every
group of nodes colored with the same color for the set
compatibility of all columns corresponding to them.

As shown

Example 3. Given a relation with 4 binary variables and
a b-valued output variable from Table 1 the map from
Fig. 2 is created. The bound set is {¢,d}. A don’t care
symbol, ”-”, stands for a set of values {0,1,2,3,4}. Every
cell that includes a set of values with more than one value
is a generalized don’t care. If at least one cell like this
exists in a map, the map describes a relation. Recall,
that the interpretation of such a map is that in every cell
with many values, any value that simplifies the overall
description can be selected. The Column Compatibility
Graph is presented in Fig. 2b. The nodes represent the
columns from the map in Fig. 2a. A column in brackets
shown near the edge between nodes C; and C; represents
the combined column Cj;. As we see, nodes Cp = 00 and
Cy = 10 are not compatible, since for instance {0,1} N
{2,3} = 0 in cofactor @b, thus Co; = 0. The nodes Cy,
(' are compatible, so Co; # @. Although the nodes Co,
C; and C3 are pairwise compatible, the maximum clique
from nodes Cp, C; and C3 cannot be used, since Co; N
Cos N C13 = 0, which means that the set of columns {Cb,
C1, Cs} do not form a compatible set.

The solution obtained from the relation Column
Compatibility Graph includes the cliques {Cy,C3} and
{C1,C2}. Similarly, the CIG graph can be obtained as a
complement of the CCG graph (Fig. 2f) (Multi)-coloring
this graph leads to the same solution: columns Cp and
Cj3 are colored with color A, and columns C; and Cy are
colored with color B. Columns Cy and C3 are thus com-
bined to the single column (encoded with v=1 in Fig. 2d).
Columns C; and C5 are combined to the column encoded
with v=0 in Fig. 2d. We build the map of relation H
from Fig. 2d, and from it and the map from Fig. 2a
we build the map of relation G (function G in this case)
from Figure 2c. This corresponds to the decomposed cir-
cuit from Fig. 2e. The relations G and H can be further
decomposed or simplified using other methods [3].

Example 4. Figure 3 presents a decomposition of func-
tion f (Fig. 3a) to relations G and H, Figs. 3c and 3d,
respectively. Clique covering is shown in Fig. 3b. Com-
position of relations H and G is shown in Fig.3e. The
map for this composition is in Fig. 3f. Correctness of de-
composition can be verified by finding the intersection of
maps from Fig. 3a and Fig. 3f (shown in Fig. 3g). All its

o Blo0 Blor Blyy Blyg TR

b 00 01 11 10 d 0 1 ab 0 1
4 7 9q c
000303713 |23 o 3| 3
ol o] o1
1 4 1
01127 - |01]13 o 1] 1
1l 1|01
2 g
1] 0703 - g 1| o o3
11
1003704 | - |14 (© 10 0| 4
f h
@ (d)
od cd
d g SN\ 00 01 11 10 S\ 00 01 11 10
[G h 7 4 7
H 00| 3 3 3 3 00| 3 3 3 3
b — |
1 1 1 1
a o1 1 1 1 1 01 1 1 1 1
7 @ .7
1] 0] 03] 03|03 11| 0 | 03] 03|03
(e) f 11 3 11
() 10| 0 04 | 04] 4 H(G) 10{0 |04 | 04| 4
H(G) A f

Figure 3: Compatibility for Decomposition of MV Rela-
tions to Example 4. Both G and H are relations.

entries are non-empty, so H(G) and f are a relation tau-
tology. All solutions of MV-GUD have been verified using
the compositional relation tautology verifier we wrote.

Multi-level decomposition consists in decomposing the
initial relation into consecutive pairs of relations G and
H until the minimum decomposable blocks are obtained.
One decomposition step consists in determination of a set
of good partitions (X1, X2) based on certain heuristic cri-
teria [7, 2], selecting the best one, and performing decom-
position.
in smaller complexity of a relation, and we use Relation
Cardinality (RC) as a complexity measure.

Decomposition is performed only if it results

Definition 7 Relation Cardinality (RC) for MV re-
lation with a set of inputs X = {xzo,z1,...,2n} and set
of outputs Y = {yo, Y1, .-, Ym} is defined by the following
formula: RC' = ([],,c x Ma)2 oy, cv 1082 my, where: mg,
is multiplicity of variable z; € X, and my; is multiplicity
of variable y; €Y.

The above definition is based on information theory
and RC is directly related to the amount of information
the relation could possibly handle. The amount of infor-
mation is defined, in the simplest case, to be measured
by the logarithm of available choices. We use logarithm
to the base 2 and express the amount of information in
bits. So the value of I(X) = }_, . x log, ms, is equal to
the amount of information a relation could possibly han-
dle if the relation output is binary. The total number
of available choices (relation cardinality) is then equal to
21(X) = [z, x ™e;- If relation’s output is multivalued
it is equivalent to log, m, binary outputs, and the rela-
tion itself, equivalent to log, my binary output relations
(blocks). Definition 7 extends this formula to the general
case of multioutput, multivalued relation. RC driven de-
composition splits a relation into smaller blocks in such a
way that the total RC value, equal to the sum of RCs of
decomposed blocks, be minimal. Such procedure follows

predator
catsize

landing.mv: 0.9s

€ggs
legs

balancemv: 1258 s
5

w 5 11

type Id 3

5 d 5

w balance
2

b 2 | 4|02 direction

3 e

2
el 4
w—rs e
s 10 2 direction

Figure 4: Solutions for multi-valued ML Benchmarks.

input file cutput file
of # of # of # of time[s]
inputs | cubes inputs | blocks

z00 16 101 6 5 16.3
shuttle 6 15 6 5 0.9
breastc 9 699 5 5 2020.0
balance 4 625 4 2 125.8
lenses 4 24 4 3 0.3
trains 32 10 2(1) 1 5.3

Figure 5: GUD-MV decomposition results on multi-valued
ML benchmarks.

Occam’s Razor principle that we should always accept
the simplest solution that correctly fits the data. In our
case the cost function defining simplicity of a solution is
RC which reduces the number of possible combinations
(choices) of variable values without reducing functional-
ity. In case of a tie for RC value, additional criteria are
used to select the best block and more unspecified rela-
tions are given preference because they lead to simpler
circuits.

V. EXPERIMENTAL RESULTS

Table 2 and Figure 4 show the results of decomposi-
tion of selected benchmarks from University of Califor-
nia, Irvine ML data base. Decomposed functions are in
most cases much smaller then the initial ones and depend
on fewer input variables. For testing, we used in par-
ticular: zoo: Zoo Database. Created and donated by
Richard S. Forsyth. shuttle: Space Shuttle Autoland-
ing Database. breastc: Breast Cancer Database. Do-
nated by the University of Wisconsin Hospitals, Madison
from Dr. William H. Wolberg. balance: Balance Scale
Weight & Distance Database. lenses: Fitting Contact
Lenses Database. trains: INDUCE Trains Data set. Let
us observe that both input, intermediate and output vari-
ables can be multivalued, and the numbers of the values
differ. Smaller representation is usually equivalent to bet-
ter generalization properties in ML and KDD. Since most
of the ML data sets are only tiny representations of the
full data domain for a particular problem, good general-

ization properties are very important when we want to
determine function values for input data not contained in
the sample. Also, fewer input variables means that some
of the original input variables are vacuous, i.e. they don’t
provide any essential information for the function value
determination and can be removed without affecting the
result. Let’s take as an example the well known bench-
mark trains from book ”Machine Learning” by Michal-
ski. It is considered to be difficult test case for ML
programs. Running GUD-MV decomposer on it we ob-
tained two solutions: (1) direction = —(bV €), and (2)
if(sl1 =5V sl =6Vsl =9) then direction = 1; else
direction = 0;. The first solution depends on two bi-
nary variables, the second, on one MV variable only. The
number of input variables of the initial data set was 32!
Similar phenomena, but to a lesser extent, are observed
also in controller design (assuming that the don’t cares
were not artificially treated as binary constants, which is
sometimes an industrial practice).

VI. CONCLUSIONS

In this paper we formulated a research problem not yet
tackled by previous researchers - decomposition of multi-
valued relations, and we proposed an efficient method to
solve it (some of our test cases are known to be difficult
in KDD community, and our solutions have small values
of RC - see Fig. 4). The decomposition forms multi-level
structures, and is applied to blocks with multiple-valued
inputs and multiple-valued outputs. Program GUD-MV
is, to our best knowledge, the first decomposer for MV
relations ever implemented. Decomposition of relations
will find applications in binary circuit and state machine
design, Machine Learning and KDD.

REFERENCES

[1] C. Files, R. Drechsler, and M.A. Perkowski, “Functional De-
composition of MV Functions using Multi-Valued Decision

Diagrams,” Proc. ISMVL’97.
[2] M.A. Perkowski et al. “Full version of this paper”.

[3] R. Brayton and F. Somenzi, “An Exact Minimizer for
Boolean Relations,” Proc. of ICCAD, pp. 316-320, 1989.

[4] H.A. Curtis, “A New Approach to the Design of Switching
Circuits,” Princeton, N.J., Van Nostrand, 1962.

[5] S. Grygiel, M. Perkowski, M. Marek-Sadowska, T. Luba, and
L. Jozwiak, “Cube Diagram Bundles, A New Representation
of Strongly Unspecified Multiple-Valued Functions and Re-
lations,” Proc. ISMVL’97.

[6] J.C. Muzio, and T.C. Wesselkamper, “Multiple-Valued
Switching Theory,” Adam Hzilger, Boston, MA, 1986.

[7] W. Wan, and M. Perkowski, “A New Approach to the De-
composition of Incompletely Specified Multi-Output Func-
tion Based on Graph Coloring and Local Transformations
and Its Application to FPGA Mapping,” Proc. Euro-DAC,
pp. 230 - 235, 1992.

