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Abstract 
This paper presents a cellular-automatic model of a reversible regular structure called Davio lattice. Regular 
circuits are investigated because of the requirement of future (nano-) technologies where long wires should be 
avoided. Reversibility is a valuable feature because it means much lower energy dissipation. A circuit is 
reversible if the number of its inputs equals the number of its outputs and there is a one-to-one mapping between 
spaces of input vectors and output vectors. It is believed that one day regular reversible structures will be 
implemented as nano-scale 3-dimensional chips. This paper provides introduces the notion of the Toffoli gate 
and its cellular-automatic implementation, as well as an example of the Davio lattice built exclusively of Toffoli 
gates and run on a special cellular automaton called CAM-Brain Machine (CBM). 

 
1. Introduction 
This paper presents a cellular-automatic model of a reversible regular structure called Davio lattice. 
By a regular circuit we understand one that is composed of one or few types of identical 
logic/geometrical modules, connected only by abutting (short wires) and buses (long wires connected 
identically to all modules). We propose a new approach where a two-dimensional regular layout of a 
desired circuit is generated by software developed at Portland State University (Perkowski and 
Mishchenko 2002) and next converted to certain states of the cells constituting a cellular automaton. 
This requires a non-trivial three-dimensional layout of the lattice’s modules such that signals 
produced in one module are received by another module in appropriate place and in appropriate time. 
The ATR CAM-Brain Machine was used as the research platform. The presented structure is the first 
step toward automated design of arbitrary combinational functions and finite state machines in 
cellular automata. Regular circuits seems to be the simplest way to realize logic in 3-dimentional 
layout. Reversible circuits appear to be a promising solution because they are expected to dissipate 
much less energy than their irreversible counterparts exploited nowadays (cf. Bennett 1973). Hence 
we combine these two ideas. It is believed that one day they will be implemented as nano-scale 3-
dimensional chips that nowadays are impossible because of the still unsolved problem of heat 
produced in traditional logic gates.  

A circuit is reversible if the number of its inputs equals the number of its outputs and 
there is a one-to-one mapping between spaces of input vectors and output vectors (Fredkin & 
Toffoli 1982). The qualification ‘reversible’ comes from the fact that every reversible gate or 
circuit provides unique deduction of the input vector based on the given gate definition and 
the output vector.  Cellular Automaton (CA) is defined as a computing device based on three 
elements: a set of connected sites (cells), a set of states that are allowed on the sites (cells), 
and a set of rules for how the states are updated (cf. Gershenfeld 1999: 102). For 
implementation of the reversible modules we used CA adjusted based of the following 
assumptions (Buller 2003): (1) the state of every cell is defined using one binary variable 
called the pulsing state variable, as well as six binary variables called the frozen state 
variables, and (2) there is only one cell transition rule, that is the Boolean function S1 that 
returns 1 when exactly one of its inputs is equal to one and returns zero otherwise. This 
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approach is being developed not to directly obtain reversible devices, but to obtain a platform 
for modeling large-scale reversible structures.  

The ATR’s CAM-Brain Machine (CBM) is a dedicated FPGA-based hardware for experiments 
with 3-D CA designed to evolve and emulate large-scale para-neural networks (Korkin et al. 2000). 
Since the genetic algorithm located in the CBM proved to be too weak to be used for synthesis of 
useful structures, the ATR’s Brain Building Group developed the NeuroMaze 3.0 ProTM, software for 
computer aided designing and testing of neural modules to be run on the CBM (Liu 2002). This 
software appeared a convenient tool for rapid modeling and testing of reversible cascades.  
 
2. EXOR Logic 
 
Since the examples we provide are based on EXOR logic, the short summary of EXOR-related 
formulas may be helpful in reading this paper. They are 
 
x′ - Boolean negation (0′ = 1, 1′ = 0) 
xy  –  Boolean product  (00 = 0, 01=0, 10 = 0, 11 = 1) 
x + y  –  Boolean sum (0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1) 
x ⊕ y  -  Exor (exclusive OR) (0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0, x ⊕ 1 = x′,  x ⊕ 0 
= x,  x ⊕ x ′ = 1) 

 
 
   
 
 

3. Reversible circuits 

In the realm of Reversible Logic it is seldom possible to use as many inputs and outputs as in classic 
logic synthesis. There are tree reasons. First, we may want to synthesize a function that by definition 
has a different numbers of inputs and outputs, usually real life functions have more inputs than 
outputs. While the basic requirement for reversible circuit is that a number of inputs is equal to the 
number of outputs. Second, even if the desired function has itself as many inputs as outputs, it may be 
not a reversible function and has thus to be converted to a reversible functions by adding input signals 
(set to constant values) and output signals (not used), as shown in (Perkowski et al 2001). The basic 
reversible gates used in such a new reversible circuit may produce some useful and some useless 
values. These useless values are called garbage. It is one of the goals of reversible logic synthesis 
technique to create systematic algorithms with as small garbage as possible. Sometimes the garbage of 
the entire circuit can be reduced via creating the so-called mirror circuit (Perkowski et al. 2001) but at 
the price of adding more intermediate variables. Nevertheless, increasing the width of the circuit is 
sometimes undesirable, for example when the reversible logic is to be implemented as a quantum 
computing device. 

Thus, a smart design is when the designer manages to make use of all outputs produced by the 
components of his circuit, thus introducing no input signals. The smaller the number of employed 
wires the better the design of a defined initial function in a reversible cascade. This task is quite 
difficult and different from standard logic synthesis. So far no good methods exist for 
reversible synthesis of functions of many variables and high quality algorithms have been 
created only for few variables. Evolutionary algorithms are some of the most successful 
methods for reversible design so far, which is in contrast to the classical logic design, where 
evolutionary methods are not yet competitive to general purpose two- and many-level design 
tools that are capable of producing better-than-human designs for functions with hundreds of 
inputs and outputs and where they totally eliminate human logic minimization from modern 
industrial design processes. 

Exor Logic lemmas (Sasao 1999: 44)  

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z),   x (y ⊕ z) = x y ⊕  x z,   x ⊕  y = y ⊕  x,   x ⊕  x = 0 
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3. Toffoli Gate 

The Toffoli gate is a basic module of the Davio lattice we present here. It is represented on schemes as 
a compound of one inverter ⊕, two controls, and the vertical connection | (Figure 1a). It concerns 
three and only three wires. The logical values in the wires to which the controls • are attached are the 
same both immediately before and immediately after a given control. As for the wire on which the 
inverter ⊕ is attached, the Toffoli’s performance depends on the values detected by the controls. 
When the product of the values detected by the controls is 1, the gate affects the wire the same way as 
NOT. When the product of values detected by the controls is 0, the logical value in the wire to which 
the inverter is attached is the same both immediately before and immediately after the inverter.  
(Figure 1b). The Toffoli gate is obviously reversible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. Davio Lattice 
 
Let us arrange inputs to and outputs from the Toffoli gate as shown below: 
 
 
 
 
 
 
 
 
 
 

Figure 1. Toffoli gate (a) symbol, (b) illustration of behavior  
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This way we obtained a functional “tile”. Owing to the location of inputs and outputs, such 
tiles can be easily arranged into 2-dimensional regular structures. One of such structures is 
the Davio lattice (Figure 2). 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can been proved that arbitrary Boolean function can be realized in a Reversible Davio Lattice, 
assuming repetition of variables in levels of the lattice.  For instance, every symmetric function 
F(A,B,C) of three variables A, B, C can be realized in the lattice from Figure 2, assuming correct 
setting of all constants Ci to values 0 and 1. If we take C5=1 and all other constants equal to zero, the 
lattice will return F(A, B, C) = AB ⊕ BC ⊕ CA. 
 

 
5. Cellular Automaton (CA) for Reversible Modeling 
As a medium for the modeled reversible computing Buller (2003) employed a cellular automaton 
(CA) run on ATR’s CAM-Brain Machine (CBM). The cellular automaton is 3-dimensional and works 
according to one simple rule. It can be imagined as a set of cubic cells arranged in such a way that 
each of the cubes has up to six neighbors. Every cell has a door in each of its 6 walls. The set of open 
doors and the set of closed doors must be determined in the framework of the automaton’s initial state 
and kept unchanged for entire calculation process. Hence, the doors are called frozen state variables. 
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Figure 2. Davio lattice built exclusively of Toffoli gates 
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Every cell can be either activated or not activated. Hence, the variable representing activation 
of a given cell is called activation or pulsing state variable. A given cell gets activated in time t, if and 
only if the number of its doors opened toward neighbors activated in time t-1 is equal to just 1.  

In order to describe the idea more precisely, let us employ the elementary symmetric function 
S1 that returns 1 if and only if one of its six inputs is equal to one (Sasao 1999: 99). Let us assume that 
binary a1, a2, …, a6 represent activations of six neighbors of a given cell, while binary variables d1, d2, 
…, d6 are doors toward the neighbors. Let a0 be activation of the cell itself. The cellular automaton has 
been adjusted to work in such a way that for every cell  a0,t+1  = S1( d1a1,t, d2a2,t, …, d6a6,t ).  

5.1. Graphic representation of cell’s state 

A convenient way to show a state of a given cell using a graphic planar representation. We 
propose the “arrow metaphor” where , , , ,  and  represent open doors to Western, 
Eastern, Northern, Southern, Upper and Lower neighbor, respectively, all located in a square 
representing cell activation (pulsing state variable) (Figure 4.1). Let color of the square be white or 
red for activation 0 or 1, respectively.  

 
 
 
 
 
 
 
 
 
5.2. Channel  and Exor 

Channel is elementary structure of the discussed CA. It employs only cells that have only one gate 
open. Figure 4 and 5 show two samples of propagation of activation in the channels. If a cell has two 
and only two gates opened, it can serve as Exor gate (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Graphic planar representation of such state of CA that all doors are 
open, while pulsing state variable (activation) is 0. , , , ,  and 
represent frozen state variables equal to 1, which can be interpreted as open 
doors to Western, Eastern, Northern, Southern, Upper and Lower neighbor, 
respectively. This figure was proposed by Michal Joachimczak as a notation in 
computer aided design of cellular-automatic structures. Color of the square 
represents pulsing state variable (white for activation 0, red for activation 1). 
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Figure 5. An example of multi-level channels. 

Figure 4. An example 
of uni-level channels. 
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5.4. Eeckhaut gate 

Eeckhaut gate (Eeckhaut & Van Campenhout 2003) serves as an AND gate (Fig. 7 and 8). 
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Figure 7. Eeckhaut gate which works  
as delayed AND, i.e. Et+3 = xt yt. 

Case 1  (x = 1, y = 0) 

Case 2  (x = 0, y = 1) 

Case 3  (x = 1, y = 1) 

Figure 8. Behavior of the Eeckhaut gate 

Figure 6. CA-based Exor. et+1 = x ⊕ y. The trivial case x = 0, y = 0 is 
not shown since all cells would always be blank.  
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6. Cellular Toffoli gate 
Figure 9 shows a cellular model of Tofoli gate using an Eeckhaut gate. Figure 10 shows the 
model of Tofoli gate modified to serve as a tile in the Davio lattice. Note that the layout of 
cells is such that for each “wire” the propagation time is the same and is equal to 18 clocks. 
The structure have been built under the NeuroMaze 3.0 Pro, a software tool for computer 
aided designing of 3-D β-PPNNs (Pulsed Para-Neural Networks) executable on the ATR’s 
CAM-Brain Machine (CBM) (Buller 2003a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Toffoli gate 
modeled in CA. One of 
components is Eeckhaut 
gate (grey color) 
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Figure 10. Cellular Toffoli gate modified to serve as a tile in the Davio lattice. 
The propagation time of 18 clocks is equal for each “wire”. 
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7. Caellular Davio lattice 

 

 
 

 

 

 

 

 

 

 

Figure 11. Davio lattice’s upper layer in the NeuroMaze’s worksheet. 
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8. Conclusions and future work 
It was shown, that the Davio lattice could be modeled on in a 3-dimensional cellular 
automaton where some cells’s state variables were set as “frozen”. This automaton is 
executable on the ATR’s CAM-Brain Machine (CBM). The ATR’s NeuroMaze 3.0 Pro, a 
software for computer aided designing of pulsed neural networks could be enhanced to 
facilitate fully automated creation of large-scale models of reversible cascades. Indeed, owing 
to regular input-output layouts of the presented structures, they can be attached one to another 
by a simple program. Several other regular logic structures presented by our group in the past 
can be mapped to 3-dimensional cellular automata in a quite similar way. The future research 
will include extending the algorithm for synthesis of lattices to multiple-output circuits and 
automating the 2D-3D transformation to avoid buses. 
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Notes 
An example of regular circuits are lattices, proposed for the first time in {Perkowski & Pierzchala 
1993, Pierzchala et al 1994} Lattices can be generated for binary, multiple-valued and continuous 
(including fuzzy and Lukasiewicz) logics (Pierzchala and Perkowski 1999) as well as for various 
technologies, such as single electron transistor (Hasegawa 2001, Hasegawa et al 2001, Postma 2001) 
or quantum (Al-Rabadi 2002) For each of these logics and realization technologies a cellular 
automaton as presented below can be created, but here for simplicity we illustrate only the binary 
case. Much research on 2-dimensional regular combinational circuits has been published previously 
(Perkowski et al 1997, Chrzanowska-Jeske et al 1999) and efficient software to generate various types 
of lattices has been written (Perkowski and Mishchenko 2002). Three-dimensional lattices have been 
proposed also, both for irreversible binary and ternary logic (Perkowski et al 1997), and for reversible 
logic (Perkowski et al 2001, Al-Rabadi 2002). However, all these designs assumed the presence of 
buses – i.e. long wires in which the signal is propagated with very small delay. These buses are used 
for all input variables. Therefore these designs cannot be directly adapted for cellular automata model 
where buses do not exist and all communication is therefore from cell-to-cell only. 
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