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This kind of tables knownThis kind of tables known
from Rough Sets, Decisionfrom Rough Sets, Decision
Trees, etc Data MiningTrees, etc Data Mining



Decomposition is
hierarchical At every step many

decompositions exist



A Standard Map of function ‘z’A Standard Map of function ‘z’
Bound Set

Fr
ee

 S
et

a b \ c

z

0 1 2
0 0 - - -
0 1 - - -
0 2 1 0 , 1 -
1 0 - - 2
1 1 - 1 2
1 2 - 1 -
2 0 - - -
2 1 - - 0
2 2 - 2 , 3 -

Columns 0 and 1
and

columns 0 and 2
are compatible

column 
compatibility = 2  



Decomposition of Multi-ValuedDecomposition of Multi-Valued
RelationsRelations

if A ∩∩∩∩ B = ∅∅∅∅ , it is disjoint decomposition
if A ∩∩∩∩ B ≠≠≠≠ ∅∅∅∅ , it is non-disjoint decomposition

F(X) = H( G(B), A ),  X = A ∪∪∪∪  B
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Forming a CCG from a K-MapForming a CCG from a K-Map

z

Bound Set

Fr
ee

 S
et

a b \ c 0 1 2
0 0 - - -
0 1 - - -
0 2 1 0 , 1 -
1 0 - - 2
1 1 - 1 2
1 2 - 1 -
2 0 - - -
2 1 - - 0
2 2 - 2 , 3 -

Columns 0 and 1 and columns 0
and 2 are compatible
column compatibility index = 2

C1

C2

C0

Column
Compatibility

Graph



Forming a CIG from a K-MapForming a CIG from a K-Map
Columns 1 and 2 are
incompatible
chromatic number = 2

z

a b \ c 0 1 2
0 0 - - -
0 1 - - -
0 2 1 0 , 1 -
1 0 - - 2
1 1 - 1 2
1 2 - 1 -
2 0 - - -
2 1 - - 0
2 2 - 2 , 3 -

C1

C2

C0

Column
Incompatibility

Graph



CCG and CIG areCCG and CIG are
complementarycomplementary

C1

C2

C0

C1

C2

C0

Column
Compatibility

Graph

Column
Incompatibility

Graph

MaximalMaximal
cliqueclique
coveringcovering

cliqueclique
partitioningpartitioning

GraphGraph
coloringcoloring

graph multi-graph multi-
coloringcoloring



clique partitioningclique partitioning
example.example.



Maximal clique coveringMaximal clique covering
example.example.



0 1 2
0 , 1 0 1

G

\ c

g = a  high pass filter whose
acceptance threshold begins at

c > 1

Map of relation GMap of relation G

0 1 2
0 0 1

G

\ c

From CIG After induction



Cost FunctionCost Function

Decomposed Function Cardinality
is the total cost of all blocks.

Cost is defined for a single block in
terms of the block’s n inputs and m
outputs

Cost := m * 2n



DFC = Decomposed Function
Cardinality



Example of DFC calculationExample of DFC calculation

B1

B2

B3

Cost(B3) =22*1=4
Cost(B1) =24*1=16

Cost(B2) =23*2=16

Total DFC = 16 + 16 + 4 = 36

Other cost functionsOther cost functions



New Complexity Measures



Comparison of RC before andComparison of RC before and
after decompositionafter decomposition

RCbefore = (3*3*3)*(log24) = 54
RCafter = [(3)*(log22)] +
              [(2*3*3)*(log24)] = 3 + 36 = 39
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Two-Level Curtis DecompositionTwo-Level Curtis Decomposition

if A ∩∩∩∩ B = ∅∅∅∅ , it is disjoint decomposition
if A ∩∩∩∩ B ≠≠≠≠ ∅∅∅∅ , it is non-disjoint decomposition

X
B - bound set

A - free set

F(X) = H( G(B), A ),  X = A ∪∪∪∪  B

Function



Decomposition AlgorithmDecomposition Algorithm
• Find a set of partitions (Ai, Bi) of input

variables (X) into free variables (A) and
bound variables (B)

• For each partitioning, find decomposition
F(X) = Hi(Gi(Bi), Ai) such that column
multiplicity is minimal, and calculate DFC

• Repeat the process for all partitioning until
the decomposition with minimum DFC is
found.



Algorithm RequirementsAlgorithm Requirements
• Since the process is iterative, it is of

high importance that minimization of
the column multiplicity index is done
as fast as possible.

• At the same time, for a given
partitioning, it is important that the
value of the column multiplicity is as
close to the absolute minimumabsolute minimum value



Column MultiplicityColumn Multiplicity
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00 01 11 10
00 0 0 – 1
01 – 1 0 0
11 1 – 1 0
10 1 1 0 0
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Column Multiplicity-otherColumn Multiplicity-other
exampleexample

3

2

1

4

00 01 11 10
00 0 0 – 1
01 – 1 0 0
11 1 – 1 -
10 1 1 0 0

Bound Set

1 2 3 4
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11  1 1

X=G(C,D)
X=C in this case

But how to calculate function H?

Color
green



Decomposition of multiple-valued relation

Karnaugh Map Compatibility Graph for
columns

compatible

Kmap of
block G

Kmap of block H

One level of
decomposition

But in general
compatibility is
not transitive
and the whole
group must be
checked

0,1

0,21,2



Compatibility of columns forCompatibility of columns for
Relations is not transitive Relations is not transitive !!

This is an important difference between decomposing functions and
relations



Decomposition
of Relations

Now H is a relation

which can be either
decomposed or minimized
directly in a sum-of-
products fashion



Discovering new concepts

• Discovering concepts useful for purchasing apurchasing a
carcar



Variable orderingVariable ordering

Select variables
that reduce the
uncertainty the
most - the best
way to separate
zeros from ones



Vacuous variables removingVacuous variables removing
•  Variables b and d

reduce uncertainty
of y to 0 which
means they provide
all the information
necessary for
determination of
the output y

•  Variables a and c
are vacuous



Example of removingExample of removing
inessential variablesinessential variables

(a) original function (b) variable a removed (c) variable b removed,

variable c is no longer inessential
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Compatibility graphCompatibility graph
construction for construction for data with noisedata with noise

Kmap Compatibility
Graph for
Threshold 0.75

Compatibility
Graph for
Threshold 0.25

Means
one out of
four differ



Compatibility graph for Compatibility graph for metricmetric data data

Kmap Compatibility
Graph for
metric data

Compatibility
Graph for
nominal data

Compatible
when
Difference of 1
or less



MV relations can be createdMV relations can be created
from from contingencycontingency tables tables

THRESHOLD 70 THRESHOLD 50

Thus our method
can handle also
probabilistic and
continuous data



Example of decomposing a CurtisExample of decomposing a Curtis
non-decomposable function.non-decomposable function.

Our method generalizes the concept of decomposition even in
standard binary case



Concluding on decomposition
principles

• The most general decomposition ever.
• Binary, multi-valued, fuzzy, continuous,

probabilistic, nominal, metric, reversible,
quantum…..

• Synthesis can be exact or for noisy data.
• Many applications: Field Programmable Gate

Arrays (Xilinx), VLSI design (Intel), robot
control, epidemiology, layout……..





Decomposition of binary
(MCNC) benchmarks

In underlined
cases in this
column we are
the bestmisII

wins only
once



Our program



Here we
compare
various

functional
representatio
ns for data



Top Down
algorithm

comparison with
Jozwiak's
algorithm.

In all these cases
Jozwiak cannot
complete



SBSD comparisonSBSD comparison
to FLASH onto FLASH on
Wright LabWright Lab
benchmarkbenchmark
functions.functions.

Here we show that we are comparable to
program from Wright Labs, which is
however much slower since it uses
exhaustive search while we use heuristics for
variable partitioning.



Recent Publications
• Stanislaw Grygiel and Marek Perkowski, ``Labeled Rough Partitions - A New

General Purpose Representation for Multiple-Valued Functions and Relations,''
Journal of Systems Architecture, Vol. 47, Issue 1, January 2001, pp. 29-59.

• Craig Files and Marek Perkowski, ``New Multivalued Functional
Decomposition Algorithms Based on MDDs,'' IEEE Transactions on CAD, Vol.
19, September 2000, pp. 1081-1086.

• Alan Mishchenko, Bernd Steinbach, and Marek Perkowski, ``An Algorithm
for Bi-Decomposition of Logic Functions,'' Proceedings of Design Automation
Conference, DAC 2001, June 18-22, Las Vegas, pp. 103 - 108.

• Alan Mishchenko, Bernd Steinbach, and Marek Perkowski, ``Bi-
Decomposition of Multi-Valued Relations,'' Proc. 10-th International Workshop
on Logic and Synthesis, IWLS'01 , pp. 35 - 40, Granlibakken, CA, June 12 - 15,
2001, IEEE Computer Society and ACM SIGDA.

Top journal and conference in the field
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APPLICATIONSAPPLICATIONS
•• FPGA SYNTHESISFPGA SYNTHESIS
•• VLSI LAYOUT SYNTHESISVLSI LAYOUT SYNTHESIS
•• DATA MINING AND KNOWLEDGEDATA MINING AND KNOWLEDGE

DISCOVERYDISCOVERY
•• MEDICAL DATABASESMEDICAL DATABASES
•• EPIDEMIOLOGYEPIDEMIOLOGY
•• ROBOTICSROBOTICS
•• FUZZY LOGIC DECOMPOSITIONFUZZY LOGIC DECOMPOSITION
•• CONTINUOUS FUNCTION DECOMPOSITIONCONTINUOUS FUNCTION DECOMPOSITION



KnowledgeKnowledge
discovery in datadiscovery in data

with no errorwith no error



Michalski’s Michalski’s TrainsTrains



Michalski’s Trains
• Multiple-valued functions.
• There are 10 trains, five going East, five going West,

and the problem is to nd the simplest rule which, for a
given train, would determine whether it is East or
Westbound.

• The best rules discovered at that time were:
– 1. If a train has a short closed car, then it Eastbound and

otherwise Westbound.
– 2. If a train has two cars, or has a car with a jagged roof then

it is Westbound and otherwise Eastbound.

• Espresso format. MVGUD format.



Michalski’s Trains



Michalski’s
Trains



• Attribute 33: Class attribute (east or west)
– direction (east = 0, west = 1)

• The number of cars vary between 3 and 5. Therefore, attributes
referring to properties of cars that do not exist (such as the 5
attributes for the “5th" car when the train has fewer than 5 cars)
are assigned a value of “-".

• Applied to the trains problem our program discovered the
following rules:
– 1. If a train has triangle next to triangle or rectangle next to triangle on

adjacent cars then it is Eastbound and otherwise Westbound.
– 2. If the shape of car 1 (s1) is jagged top or open rectangle or

u-shaped then it is Westbound and otherwise Eastbound.

Michalski’s Michalski’s TrainsTrains



MV benchmarks: zooMV benchmarks: zoo



MV benchmarks: shuttleMV benchmarks: shuttle



MV benchmarks: lensesMV benchmarks: lenses



Medical data basesMedical data bases
with errorwith error



Evaluation of results forEvaluation of results for
learninglearning

• 1. Learning Error

• 2. Occam Razor , complexity



A machine learning approachA machine learning approach
versus several logic synthesisversus several logic synthesis

approachesapproaches



Finding the error, DFC, and time ofFinding the error, DFC, and time of
the decomposer on the benchmarkthe decomposer on the benchmark

kddkdd55..

We use learning curves to evaluate quality of our software
variants and compare our software to the competitors



The average error over 54 benchmark functions.



MV benchmarks:MV benchmarks:  breastcbreastc



Conclusion

• Stimulated by practical hard problems:
– Field Programmable Gate Arrays (FPGA),
– Application Specific Integrated Circuits (ASIC)
– high performance custom design (Intel)
– Very Large Scale of Integration (VLSI) layout-

driven synthesis for custom processors,
– robotics (hexapod gaits, face recognition),
– Machine Learning,
– Data Mining.



Conclusion
• Developed 1989-present
• Intel, Washington County epidemiology office,

Northwest Family Planning Services, Lattice
Logic Corporation, Cypress Semiconductor,
AbTech Corp., Air Force Office of Scientific
Research, Wright Laboratories.

• A set of tools for decomposition of binary and
multi-valued functions and relations.

• Extended to fuzzy logic, reconstructability
analysis and real-valued functions.



Conclusion
• Our recent software allows also for bi-decomposition, removal of

vacuous variables and other preprocessing/postprocessing
operations.

• Variants of our software are used in several commercial companies.
• The applications of the method are unlimited and it can be used

whenever decision trees or artificial neural nets are used now.
• The quality of learning was better than in the top decision tree

creating program C4.5 and various neural nets.
• The only problem that remains is speed in some applications.
• Recent version included in MVSIS tools from U.C. Berkeley.
• This is still work in progress and you can contribute to new

applications and software variants tuned to them.



Conclusion
•• On our WWW page,On our WWW page,
     http:// www.ee.pdx.edu/~cfiles/papers.html
  the reader can find many benchmarks from various

disciplines that can be used for comparison of machine
learning and logic synthesis programs.

• We plan to continue work on decomposition and its various
practical applications such as epidemiology or robotics
which generate large real-life benchmarks.

• We work on FPGA-based reconfigurable hardware
accelerator for decomposition to be used on a mobile robot.

• We are interested in potential other applications for which
large database exist and the is large benefit of practical
application.


