

More details

approach

Generalization of the Ashenhurst-Curtis decomposition model

An example decision table $y = F(x_1, x_2, x_3)$

x_1	² 2	x_3	y
lo	lo	ø	k.
lo -	lo	hi	lo -
lo -	me	ю	lo -
lo	me	hi	me
lo -	hi	ю	lo -
lo -	hi	hi	hi
lo -	hi	hi	hj
me	lo	ю	me
me	lo	hi	me
me	me	ю	me
me	me	hi	me
me	hi	lo -	me
me	hi	hi	hi
hi	lo	ю	hi
hj	lo	hi	hj
hi	me	ю	hi
hi	me	hi	hi
hi	hi	lo -	hi
hi	hi	hi	hi

This kind of tables known from Rough Sets, Decision Trees, etc Data Mining

Two one-step decompositions

Decomposition is hierarchical

At every step many decompositions exist

A Standard Map of function 'z' **Bound Set** $\mathbf{a} \mathbf{b} \setminus \mathbf{c}$ $\left(\right)$ 2 1 0 0 -**Columns 0 and 1** 0 1 and 0 2 0,1 columns 0 and 2 10 2 Free Set are compatible 11 2 1 2 -20 column 2 1 compatibility = 22 2 2, 3-

Ζ

Decomposition of Multi-Valued Relations

 $F(X) = H(G(B), A), X = A \cup B$

if $A \cap B = \emptyset$, it is disjoint decomposition if $A \cap B \neq \emptyset$, it is non-disjoint decomposition

Forming a CCG from a K-Map

Ζ

Columns 0 and 1 and columns 0 and 2 are compatible column compatibility index = 2

Column Compatibility Graph

Forming a CIG from a K-Map

Columns 1 and 2 are incompatible chromatic number = 2

 \mathbf{C}_2

Column Incompatibility Graph

CCG and CIG are complementary

Maximal clique covering

<section-header>

Column Incompatibility Graph

clique partitioning example.

Maximal clique covering example.

From CIG

After induction

g = a high pass filter whose acceptance threshold begins at c > 1

Cost Function

Decomposed Function Cardinality is the total cost of all blocks.

Cost is defined for a single block in terms of the block's n inputs and m outputs

Cost := *m* * 2^{*n*}

DFC = Decomposed Function Cardinality

$$C_x(f) = \log_2 \min \{ cost \ of \ \Gamma : \Gamma \ simulates \ f \}$$

$$cost(f) = 2^{|X|}|Y|$$

Example of DFC calculation

Total DFC = 16 + 16 + 4 = 36

Other cost functions

New Complexity Measures

$$C_x = \log_2 \left(\prod_{x_i \in X} |x_i| \, \log_2 \prod_{y_j \in Y} |y_j| \right)$$

where:	x_i	is cardinality of variable $x_i \in X$,
	$ y_j $	is cardinality of variable $y_j \in Y$.

$$C_x = \log_2 \left(\prod_{y_j \in Y} |y_j| \right)^{\prod_{x_i \in X} |x_i|} = \prod_{x_i \in X} |x_i| \log_2 \prod_{y_j \in Y} |y_j|$$

Comparison of RC before and after decomposition

 $RC_{before} = (3*3*3)*(log_24) = 54$ $RC_{after} = [(3)*(log_22)] + [(2*3*3)*(log_24)] = 3 + 36 = 39$

if $A \cap B = \emptyset$, it is disjoint decomposition if $A \cap B \neq \emptyset$, it is non-disjoint decomposition

Decomposition Algorithm

- Find a set of partitions (A_i, B_i) of input variables (X) into free variables (A) and bound variables (B)
- For each partitioning, find decomposition $F(X) = H_i(G_i(B_i), A_i)$ such that column multiplicity is minimal, and calculate DFC
- Repeat the process for all partitioning until the decomposition with minimum DFC is found.

Algorithm Requirements

- Since the process is iterative, it is of high importance that minimization of the <u>column multiplicity index</u> is done as **fast** as possible.
- At the same time, for a given partitioning, it is important that the value of the column multiplicity is as close to the absolute minimum value

Column Multiplicity-other example

But how to calculate function H?

Decomposition of multiple-valued relation

Compatibility of columns for Relations is not transitive !

ab cd	со ∞	C1 01	C2 10	C3 11
∞	0,1	0,3	2,3	1,3
01	1,2		2,3	0,1
10	0,3	0,4	1,4	_
11	o	0,3		_

This is an important difference between decomposing functions and relations

Decomposition of Relations

Now H is a relation

which can be either decomposed or minimized directly in a sum-ofproducts fashion

Discovering new concepts

Discovering concepts useful for purchasing a car

Variable ordering

• Uncertainty (Shannon):

$$u(a) = -\sum_{i} p(a = a_i) \log_2 p(a = a_i)$$

• Conditional Uncertainty (Shannon):

$$u(a|b) = u(ab) - u(b)$$

Select variables that reduce the uncertainty the most - the best way to separate zeros from ones

Vacuous variables removing

Variables b and d reduce uncertainty of y to 0 which means they provide all the information necessary for determination of the output y

• Variables a and c are vacuous

Example of removing inessential variables

Generalization of the Ashenhurst-Curtis decomposition model

Compatibility graph construction for data with noise

Compatibility graph for metric data

when Difference of 1 or less

MV relations can be created from contingency tables

Figure 1: Contingency tables

Our method generalizes the concept of decomposition even in standard binary case

Example of decomposing a Curtis non-decomposable function.

(a)

(b)

(d)

(f)

Concluding on decomposition principles

- The most general decomposition ever.
- Binary, multi-valued, fuzzy, continuous, probabilistic, nominal, metric, reversible, quantum....
- Synthesis can be exact or for noisy data.
- Many applications: Field Programmable Gate Arrays (Xilinx), VLSI design (Intel), robot control, epidemiology, layout.....

Evaluation of numerical

results

Decomposition of binary (MCNC) benchmarks

In underlined cases in this column we are the best

			misII			
		-	wins only			
			once	$\cos t$		
File	i/o	TRADE	MISII	DSGN174	mvgud	[time]
$5 \mathrm{xp1}$	-7/10	496	384	292	236	[11.0]
$9 \mathrm{sym}$	9/1	640	984	400	104	[26.4]
$\operatorname{con1}$	7/2	80	68	<u>60</u>	70	[2.3]
duke2	22/29	6516	2428	2200	2896	[11289.0]
ex5p	8/63	-	3720	$\underline{1560}$	2104	[208.0]
f51m	8/8	372	392	240	177	[10.1]
misex1	8/7	472	$\underline{208}$	224	229	[8.6]
misex2	25/18	548	464	436	392	[1086.0]
${ m misex3}$	14/14	9816	4204	3028	1744	[1316.0]
rd53	5/3	120	96	84	$\underline{60}$	[1.8]
rd73	7/3	320	352	256	$\underline{113}$	[13.1]
rd84	8/4	508	672	320	171	[32.6]
sao2	10/4	1848	516	468	<u>441</u>	[47.2]

Bench	m <mark>ark</mark>		Cost for Various Decomposers												
Name	i(0)	TR	MI	St	SC	LU	Js	Jh	MV	Time, s					
5xpl	7/10	496	384	292	288 (9)	288 (9)	320 (20)	336 (21)	<u>236</u>	11.0					
9sym	9/1	640	984	400	224 (7)	160 (5)			<u>104</u>	26.4					
con1	7/2	80	68	60					<u>70</u>	2.3					
duke2	22/29	6516	2428	<u>2200</u>	3456 (108)				2896	11289.0					
ex5p	8/63		3720	<u>1560</u>					2104	208.0					
f5lm	8/8	372	392	240	256 (8)				<u>177</u>	10.1					
misex1	8/7	472	208	224	256 (8)	354 (11)	304 (19)	288 (18)	<u>229</u>	8.6					
misex2	25/18	548	464	436	768 (24)				<u>392</u>	1086.0					
misex3	14/14	9816	4204	3028					<u>1744</u>	1316.0					

Our program

Function	in	MBDD	MBDD	MVDD	MBDD	MVDD	Size
		in	nodes	nodes	size	size	%
audiology	69	80	7039	6668	28156	34021	-82%
breastc	9	36	4093	1119	16372	14547	112%
bridges1	9	1.6	359	195	1140	1137	100%
bridges2	10	18	503	262	1576	1537	102%
chessl	6	1.6	7820	3091	31280	33981	92%
chess2	36	37	8802	8446	34900	42538	82%
connect-4	42	84	82639	40724	273252	244344	111%
flag	28	57	6651	3557	26284	25854	101%
house-votes	16	16	407	407	1628	2035	-80%
letter	16	64	318883	77004	1275532	1463076	87%
lung-cancer	56	112	2953	1472	11812	10304	114%
programm	12	24	33317	16419	115496	104737	110%
sensory	11	19	1853	1074	6992	6541	106%
sleep	9	31	933	238	3328	3143	105%
sponge	44	86	3472	1745	13888	11987	115%
tic-tac-toe	9	18	779	338	2400	2028	118%
trains	32	51	314	193	1256	1247	100%
allet	18	72	21967	5316	79500	69108	115%
d4	14	29	486	219	1872	1543	121%
d7	24	61	1123	416	4284	3647	117%
d8	32	80	1527	588	5800	4869	119%
d9	34	84	1616	629	6156	5162	119%
d1.0	37	89	1720	688	6572	5554	118%
geo	11	32	3163	831	11556	8879	130%
let	18	72	21910	5304	79296	68952	115%
ul	60	153	22552	9839	90208	73631	122%
ul_4	60	91	329	237	1316	1319	99%
u1_5	60	98	437	295	1748	1701	102%
u1_10	60	129	1106	5.71	4424	3773	117%
u2	60	144	21344	10085	85376	71369	119%
u3	60	1.51	22363	9831	89452	71898	124%
u4	60	144	21492	9989	85968	70693	121%
u5	60	143	21779	10064	87116	71157	122%
total			645,731	227,854	2,485,936	2,536,120	-98%
w/o letter			326,848	150,850	1,210,404	1,073,044	113%

Table 3.2: MVDD and MBDD size comparisons.

Here we compare various functional representatio ns for data

			Т	op Dova			Jess v	Jose wjade				
filemanae	in .	æsi.	random	fife	CI	random	fife	CI	pure CI			
audiology	623	1.57	>2000	>2000	>2000	>2000	>2000	>2000	> 2000			
balance	-4	- 4	0,1	0,1	0,1	0,8	0,8	0,8	0,6			
broaste	9	5	92.5	58.9	94,6	92,6	89.7	106,0	234.9			
bridges1	9	9	0,4	0,1	0,1	0.7	0.7	0.7	67.1			
bridges2	10	10	0.7	0,1	0,1	1.0	1.0	1.0	193_1			
C 100"	6	65	0,1	0,1	0,1	0,2	0,2	0,2	3,2			
cipereel.	6	6	0,1	0,1	0,1	9,0	9,0	9,1	156,6			
chieree-2	305	29	56.4	49.4	41.7	76.28	76.0	75.5	> 2000			
cloud	6	65	0,1	0,1	0,1	0.4	0.4	0,4	9,8			
connect_4i	42	3417	>2000	>2000	>2000	>2000	>2000	>2000	> 2000			
employ1	9	9	0,2	0,1	0,1	0,2	0,2	0,2	29,6			
employ2	7	7	0.1	0.1	0.1	0.1	0.1	0.1	7.7			
flag;	28	77	>2000	>2000	>2000	>2000	>2000	>2000	> 2000			
filmen 1	10	10	0,7	0,1	0,1	1.4	1.4	1.4	271.4			
fileare 2	10	9	0,1	0,9	0,9	2,4	2.9	2.6	324,2			
house-votes	16	1.6	0,2	0,1	0,1	1.8	1.9	1,8	> 2000			
etter-	16	1.57	>2000	>2000	>2000	>2000	>2000	>2000	>2000			
lung-cancer	56	- 47	>2000	>2000	>2000	>2000	>2000	> 2000	> 2000			
monigater	6	3	0,1	0,8	0,9	0,1	0,1	0,1	2.7			
monite2tr	- 6	6	0.2	0.1	0.1	0.3	0.3	0.3	5.7			
monkeitr	- 6	- 4	0,1	0,4	0,5	0,2	0,2	0,2	3,4			
naue)grosena	22	- 4	1277.7	544.0	62351_0	>2000	>2000	> 2000	> 2000			
post-op	8	8	0.4	0.1	0.1	0.4	0.4	0.4	23.4			
programm	12	1.2	4,3	0.7	0,7	100,3	1.00.5	97.4	> 2000			
secondary .	11	5	30,9	25,0	35.2	391_0	375,6	600,4	1.321.5			
etaut til enna	- 6	6	0,1	0,1	0,1	0,5	0,5	0,5	1.4			
alexp	9	5	17,2	9,3	7.6	9,6	6.1	11.4	168_1			
seb cara figu	44	- 3	>2000	>2000	>2000	17395.2	>2000	>2000	> 2000			
tic-tac-toe	9	8	1.3	0,4	0,4	212_1	213_{3}	250.1	260,2			
t maj me	32	1	14.4	15.5	15.3	23.4	6.2	0,3	0,3			
2010/00	16	5	10.5	10.2	14.9	2965.45	44.4	26.5	1001.7			
alet	18	17	24,0	13.7	9,6	8.9	8.9	9,3	> 2000			
$\sim 2 m$	11	2	1.1	1.4	1.8	3,6	9,2	3,9	3.7			
c2b	11	- 3	4,2	2,9	6,2	65,85	65,55	7.1	7.5			
e Sau	14	2	5,2	4,3	4,9	7,8	14.9	9,9	9,8			
e 3b	14	3	12,1	8,5	1.9.7	123,5	14,4	15.7	15,8			
e din	14	2	5,0	4,2	7.7	12,4	12.7	11.3	11,2			
c-4b	14	3	12,9	9,6	1.9,6	13,8	14,0	16,1	16,2			
cām	13	2	4.7	3,8	5.5	4,9	4.7	2.5	2,4			
cāb	13	2	4,4	2,0	5,8	1,9	3,6	2.5	2,4			
$\subset G_{10}$	13	2	6,3	4,5	7.5	3,8	2,1	2,6	2.7			
$c G_{2}$	13	2	5,4	4,9	7.2	2,4	3,3	2.5	2,4			
d2	11	-4	1.3	1.2	1.4	1.3	1.4	1.5	34.7			
d3	14	-4	17.8	15.7	24.7	95,1	1.25_9	97,9	98.4			
d4	14	3	19,9	13.2	22.4	23.0	28.3	395.5	35.3			
dā	13	2	4.4	4.3	9.1	9.6	18.2	3,9	3.7			
d6	13	2	12,2	9,3	14,9	10.7	24,0	5.2	4,6			
d7	24	2	1.84.8	88.4	1.19.4	129.9	82.2	17.3	17.5			
da	32	2	1276.7	271.4	352.8	1.25_{-2}	130.1	31.4	31.2			
d9	34	2	372.9	343.8	4595.1	2853.6	1.99.6	35.2	35.9			
d10	37	2	617.1	477.1	616.4	329.6	310.6	41.1	41.2			
geo	11	6	87.5	35.3	75.3	156.2	174.4	157.2	1505.2			

Top Down algorithm comparison with Jozwiak's algorithm.

> In all these cases Jozwiak cannot complete

Function	in	FLASH	SBSD
add0	8	28	28
add2	6	20	20
and_or_chain8	8	28	28
ch22f0	6	20	20
ch30f0	6	32	40
ch47f0	6	60	56
ch52f4	8	180	156
ch70f3	8	40	44
ch74f1	8	72	84
ch83f2	8	116	120
ch8f0	6	32	40
4_ones	8	76	76
greater_than	8	28	28
interva]1	8	128	88
interva]2	8	92	76
kdd 2	5	16	16
kdd 3	5	12	12
kdd 5	8	32	48
kdd6	8	12	12
kdd7	8	28	28
kdd 9	8	20	20
kdd10	6	20	20
majority_gate	8	64	76
monkish1	4	12	12
monkish2	8	60	60
monkish3	5	20	20
mux8	6	24	32
or_and_chain8	8	28	28
pa]	8	28	28
parity	8	28	28
rnd_m1	8	28	28
rnd_m10	8	80	108
rnd_m25	8	172	180
rnd_m5	8	64	72
rnd_m50	8	224	256
substr1	8	72	72
substr2	8	60	60
subtractionl	8	64	68

SBSD comparison to FLASH on Wright Lab benchmark functions.

Here we show that we are comparable to program from Wright Labs, which is however much slower since it uses exhaustive search while we use heuristics for variable partitioning.

Recent Publications

- Stanislaw Grygiel and Marek Perkowski, ``Labeled Rough Partitions A New General Purpose Representation for Multiple-Valued Functions and Relations," *Journal of Systems Architecture*, Vol. 47, Issue 1, January 2001, pp. 29-59.
- Craig Files and Marek Perkowski, ``New Multivalued Functional Decomposition Algorithms Based on MDDs," *IEEE Transactions on CAD*, Vol. 19, September 2000, pp. 1081-1086.
 Top journal and conference in the field
- Alan Mishchenko, Bernd Steinbach, and Marek Perkowski, ``An Algorithm for Bi-Decomposition of Logic Functions," *Proceedings of Design Automation Conference, DAC 2001*, June 18-22, Las Vegas, pp. 103 - 108.
- Alan Mishchenko, Bernd Steinbach, and Marek Perkowski, ``Bi-Decomposition of Multi-Valued Relations," *Proc. 10-th International Workshop on Logic and Synthesis, IWLS'01*, pp. 35 - 40, Granlibakken, CA, June 12 - 15, 2001, IEEE Computer Society and ACM SIGDA.

Some Applications

APPLICATIONS

- FPGA SYNTHESIS
- VLSI LAYOUT SYNTHESIS
- DATA MINING AND KNOWLEDGE
 DISCOVERY
- MEDICAL DATABASES
- EPIDEMIOLOGY
- **ROBOTICS**
- FUZZY LOGIC DECOMPOSITION
- CONTINUOUS FUNCTION DECOMPOSITION

Example of a application

Knowledge discovery in data with no error

1. TRAINS GOING EAST

2. TRAINS GOING WEST

- Multiple-valued functions.
- There are 10 trains, five going East, five going West, and the problem is to nd the simplest rule which, for a given train, would determine whether it is East or Westbound.
- The best rules discovered at that time were:
 - If a train has a short closed car, then it Eastbound and otherwise Westbound.
 - 2. If a train has two cars, or has a car with a jagged roof then it is Westbound and otherwise Eastbound.
- Espresso format. MVGUD format.

.type mv .i 32
.01
<u>ilb size load w0 10 s0 n0 1s0 w1 11 s1 n1 1s1 w2 12 s2 n2 1s2 w3 13 s3 n3 1s3</u>
abcdefghij
.ob direction
. imv 3 4 2 2 10 4 4 2 2 10 3 4 2 2 7 3 4 2 2 8 2 3 2 2 2 2 2 2 2 2 2 2 2 2
omv 2
23016320081311611006100100010010 0
120091300712000200101000000 0
1 1 0 0 6 1 0 0 0 4 1 3 1 1 0 1 3 0 0 0 0 1 0 1 0 0 0 0

1 0 2 0 1 0 1 0	07 01 10 01	1 ; 1 ; 3 (1 (0	1 0 6 9	1 1 1 1	30 20 3- 30) 0) 0) 1	2 0 - 5	1 2 1 (0 -	20	0	6 - ·	1 2	1 0 0 0	1 1 0 0	000000	0 1 0 0	1 0 0 0	000000	0 0 1 1	00000	00000	000000	0 0 1 1			,	I
1 0	10	1 0	20	1	9 5	1	20		6	1 3	2 0	0	7	1 0	1	0	0	1	à	à	à	0	0	0 0	1				
000	0.9	1 2	20	1	6	2	2 - 2 -	<u> </u>	ž			Ě	<u> </u>		1	ŏ	ŏ	ò	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1				
end	• •			-	•	-	-								-	•	•	•	-	•	-	-	•	•	-				
					1			t-			-l	(+;	1	·)														
	.1		nı Di	um	per ber	: 01 : of	i mj f ou	put	va. ut v	ria: ari:	otes a bla	(a. ≂(att.	.out riba	es) ite	-) -)													
		15	in	unn unn	t va	. o. ari	a ble	e na	атта атта	en r	anore	a (a cc.	1104	tre-	a)													
here:	· •	±.v h		ւթս սtո	ant.	vai	riah	alen alen	анг пат	ce nes																			
	 iu	nv.	ca	ardi	ina	liti	es (ofi	ны. про	it v	aria	able	35																
		nv	Ca	ardi	ina	liti	es (ofo	uti	out.	var	iab	les																
/ariab	les 1-	2:	gen	era	l a	ttr	ibu	tes			1 514																		
siz	e :	nun	ībe	r oi	f ca	urs	(in	teg	er i	n [3-5])																	
108	d i	nun	ıbe	r oi	f di	ffe	ren	t lo	ada	: (ii	nteg	er.	in	[1-4	[]														
/ariab	les 3-	22:	5 ;	attı	ribu	ute	s fo	x e	ach	ı of	car	s 2	$^{\mathrm{th}}$	rou	gh	5;	(2	0 a	ιtt	rib	ut	es	to	tal)				
W	nu	mb	er o	f w	he	els	(in	iteg	er i	in [2-3])																	
1	len	.gth	. (sl	hor	tα	r k	ong) –																					
S	sha	ape	(cb	ose	dre	ct,	dbl	opi	цтех	:t,e	llipe	se,e	ngi	ine,	her	xag	;on	, j	ag	zec	ito	P.	op	en	rect	, ope	inti	rap,	
	slo	pet	op,	us.	hap	ped	ų –			_																			
n	nu	mb	er o	af le	ad	в (inte	egei	: in	. [0-	3])																		
ls · · ·	loa	id s	hap	e (cir	de.	lod	, he	xaş	gon.	lod.	re	eta	ngl	od.	tr	iar	1gb	od)	e	1	1						,
ariab	les 2	5-32	i I	U E	\$00 t t:	lea	un a mete	ittr.	lbu lo (tes 'n 3	des fel	cri	$\lim_{n \to \infty}$	g w f te	ne ne	ιne	IT 2	L,	vP ^e	N	OI	103	ads	i ai	e oi	ıaq	ace	ant cars of the tra	ап
а. Ъ	rect	ang ang	le i le i	iex iex	t tx	o p a tr	ecta riar	ung. vele	. (n	,0-ш 3£3	na. Faler	ае, - 1	1 4 3f	r u: teu	uej a)														
6	rect	ang ang	le i	1eA	t ta	o u a h	eva	igie	. 0	136	fale	i i	. 11 1. if	'tru	5) 10)														
ď	rect	ang ang	le i	iex	t to	а d	irch	e ((ь () Lif	fal	rais se 1	s: Lif	t ni T ni	uel 1el	~~/														
e	tria	ոցի։	e ne	ext	to	tri	ang	ele (αī	f fa	lse.	 1 i	ft	rue)															
f	tria	ngle	e ne	:xt	to	he:	xag	on	(0)	if fa	alse.	. 1	if t	rue	à														
g	tria	ngle	e ne	:xt	to	cir	cle	(0	if fa	alse	. 1	if t	rue	:)	ſ														
h	hexa	ago	n n	ext	to	he	zas	gon	(0	if f	alse	. 1	if	tru	e)														
i	hexa	ago	n n	ext	to	ci	rcle	(0	if f	fals	e, 1	if	tru	e)	'														
i	circl	le n	ext	to	cir	cle	: (0	if f	als	e. 1	ift	tru	e)	r															

• Attribute 33: Class attribute (east or west)

- direction (east = 0, west = 1)

- The number of cars vary between 3 and 5. Therefore, attributes referring to properties of cars that do not exist (such as the 5 attributes for the "5th" car when the train has fewer than 5 cars) are assigned a value of "-".
- Applied to the trains problem our program discovered the following rules:
 - If a train has triangle next to triangle or rectangle next to triangle on adjacent cars then it is Eastbound and otherwise Westbound.
 - 2. If the shape of car 1 (s1) is jagged top or open rectangle or u-shaped then it is Westbound and otherwise Eastbound.

MV benchmarks: zoo

MV benchmarks: shuttle

MV benchmarks: lenses

Example of a application

Medical data bases with error

Evaluation of results for learning

• 1. Learning Error

 $error = \frac{\# \ of \ incorrectly \ classified \ samples}{total \ \# \ of \ samples}$

• 2. Occam Razor, complexity

A machine learning approach versus several logic synthesis approaches

Original	Known		Average Ei	тог	Nu	Number of Samples					
Function	DFC	C4.5	Decomp.	Espresso	C4.5	Decomp.	Espresso				
kdd1	2	0	0	0	8	7	9				
kdd2	8	0.32	0	0.96	31	25	40				
kdd3	8	6.35	0	5.64	83	25	51				
kdd4	12	2.48	3.72	2.64	74	67	76				
kdd5	12	1.28	2.72	3.52	61	76	54				
kdd6	16	2.76	2.4	12.86	97	126	113				
kdd7	20	17.52	8.18	17.16	200	60	181				
kdd8	20	13.79	6.55	16.54	224	104	205				
kdd9	28	20.69	10.53	5.69	256	126	51				
kdd10	36	10.52	11.11	8.44	249	251	229				
Aver	age	7.57	4.52	7.35	128.3	86.7	100.9				

Finding the error, DFC, and time of the decomposer on the benchmark kdd5.

We use learning curves to evaluate quality of our software variants and compare our software to the competitors

The average error over 54 benchmark functions.

MV benchmarks: breastc

- Stimulated by practical hard problems:
 - Field Programmable Gate Arrays (FPGA),
 - Application Specific Integrated Circuits (ASIC)
 - high performance custom design (Intel)
 - Very Large Scale of Integration (VLSI) layoutdriven synthesis for custom processors,
 - robotics (hexapod gaits, face recognition),
 - Machine Learning,
 - Data Mining.

- Developed 1989-present
- Intel, Washington County epidemiology office, Northwest Family Planning Services, Lattice Logic Corporation, Cypress Semiconductor, AbTech Corp., Air Force Office of Scientific Research, Wright Laboratories.
- <u>A set of tools</u> for decomposition of binary and multi-valued functions and relations.
- Extended to fuzzy logic, reconstructability analysis and real-valued functions.

- Our recent software allows also for bi-decomposition, removal of vacuous variables and other preprocessing/postprocessing operations.
- Variants of our software are used in several commercial companies.
- The applications of the method are unlimited and it can be used whenever decision trees or artificial neural nets are used now.
- The quality of learning was better than in the top decision tree creating program C4.5 and various neural nets.
- The only problem that remains is speed in some applications.
- Recent version included in MVSIS tools from U.C. Berkeley.
- This is still work in progress and you can contribute to new applications and software variants tuned to them.

• On our WWW page,

http:// www.ee.pdx.edu/~cfiles/papers.html

- the reader can find many benchmarks from various disciplines that can be used for comparison of machine learning and logic synthesis programs.
- We plan to continue work on decomposition and its various practical applications such as epidemiology or robotics which generate large real-life benchmarks.
- We work on FPGA-based reconfigurable hardware accelerator for decomposition to be used on a mobile robot.
- We are interested in potential other applications for which large database exist and the is large benefit of practical application.