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Abstract 

This paper presents a method of automated synthesis of reversible cascades in a special cellular automaton 
called CAM-Brain Machine (CBM). Reversible circuits are investigated because they are expected to dissipate 
much less energy than their irreversible counterparts. It is believed that one day they will be implemented as 
nano-scale 3-dimensional chips. A circuit is reversible if the number of its inputs equals the number of its 
outputs and there is a one-to-one mapping between spaces of input vectors and output vectors. This paper 
provides (1) a brief introduction to reversible logic concentrating on definitions and properties of the Feynman, 
Toffoli, Fredkin and other gates, (2) an introduction to logic synthesis for the CBM and (3) a collection of 
reversible structures evolved using a dedicated GA and located in the CBM using the NeuroMaze 3.0 Pro, a 
software tool for computer-aided design of CBM-style structures.  

 
1. Introduction 
This paper presents a method of automated synthesis of reversible cascades in a cellular automaton. A 
layout of a desired cascade is generated by a GA developed in the Portland Quantum Logic Group 
(Lukac & Perkowski 2002; Lukas et al. 2002) and then converted to certain states of the cells 
constituting the cellular automaton (Buller 2003b). The ATR CAM-Brain Machine (Korkin et al. 
2000) was used as the research platform. This research is being conducted as a part of the Quantrix 
Project, launched as one of four themes explored in the framework of the Artificial Brain Project 
conducted at the ATR Human Information Science Laboratories, Kyoto (Buller & Shimohara 2003). 
It contains first results obtained in search for scientific grounds for a new evolvable hardware for on-
board brains of intelligent robots. Reversible circuits appear to be a promising solution because they 
are expected to dissipate much less energy than their irreversible counterparts exploited nowadays (cf. 
Bennett 1973). It is believed that one day they will be implemented as nano-scale 3-dimensional chips 
that nowadays are impossible because of the still unsolved problem of heat produced in traditional 
logic gates.  

A circuit is reversible if the number of its inputs equals the number of its outputs and there is a 
one-to-one mapping between spaces of input vectors and output vectors (Perkowski et al. 2001). The 
qualification ‘reversible’ comes from the fact that every reversible gate or circuit provides unique 
deduction of the input vector based on the given gate definition and the output vector. During the 
development of Reversible Logic various basic sets of reversible gates were introduced. One of the 
sets, called the CNTS Library (Shende et al. 2002), includes the NOT gate that for 0 returns 1, while 
for 1 it returns 0, as well as the Feynman, Toffoli and SWAP gates that will be introduced in Section 3 
together with more complex Fredkin gate. In the present mainstream of the Reversible Logic-
related research the circuits are being synthesized as cascades that can be drawn as arrays of 
separate horizontal lines representing wires with vertical symbols representing basic gates 
influencing locally the signals passing along the wires. Hence, fan-outs are not allowed. This 
restriction is followed in this paper.  

Cellular Automaton (CA) is defined as a computing device based on three elements: a set of 
connected sites (cells), a set of states that are allowed on the sites (cells), and a set of rules for how the 
states are updated (cf. Gershenfeld 1999: 102). For implementation of the reversible cascades we used 
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CA adjusted based of the following assumptions (Buller 2003b): (1) the state of every cell is defined 
using one binary variable called the pulsing state variable, as well as six binary variables called the 
frozen state variables, and (2) there is only one cell transition rule, that is the Boolean function S1 that 
returns 1 when exactly one of its inputs is equal to one and returns zero otherwise. This research is not 
related to reversible CA (see Morita & Harao 1989; Morita & Ueno 1992) because the employed CA 
itself is not reversible. This approach is being developed not to directly obtain reversible devices, but 
to obtain a platform for modeling large-scale reversible structures.  

The ATR’s CAM-Brain Machine (CBM) is a dedicated FPGA-based hardware for experiments 
with 3-D CA designed to evolve and emulate large-scale para-neural networks (Korkin et al. 2000). 
Since the genetic algorithm located in the CBM proved to be too weak to be used for synthesis of 
useful structures, the ATR’s Brain Building Group developed the NeuroMaze 3.0 ProTM, software for 
computer aided designing and testing of neural modules to be run on the CBM (Liu 2002). This 
software appeared a convenient tool for rapid modeling and testing of reversible cascades. Hence, a 
number of reversible structures evolved using a dedicated Genetic Algorithm developed in the 
Portland Quantum Logic Group (Lukac & Perkowski 2002; Lukas et al. 2002) have been successfully 
converted into cellular-automatic structures and run on the CBM.  

Summarizing, in order to have a desired reversible circuit run on a dedicated FPGA-based 
hardware (CBM), we (1) evolve the circuit using a special GA, (2) simplify the circuit using peephole 
optimizing transforms based on rules of EXOR algebra and tree search, (3) convert a code produced 
by the GA into cellular-automatic structure, (4) execute the structure in the CBM. Note that in our 
approach the evolution is only on the level of logic synthesis of complex logic gates and not on the 
low level cellular cells which approach would make the GA responsible for logic, timing, placement 
and routing. The approach we propose here combines evolutionary algorithm (EA) software, standard 
Computer Aided Design (CAD) and some human intervention, which seems to be a more realistic 
way to create complex circuits in the CBM than the entirely evolutionary approaches proposed earlier 
(eg. de Garis et al. 1999). Reversible circuits containing up to 20 gates has already been evolved 
(Lukac et al. 2003; Perkowski et al. 2003). 

2. Nomenclature and lemmas 
x′ - Boolean negation (0′ = 1, 1′ = 0) 
xy  –  Boolean product  (00 = 0, 01=0, 10 = 0, 11 = 1) 
x + y  –  Boolean sum (0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1) 
x ⊕ y  -  Exor (exclusive OR) (0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0, x ⊕ 1 = x′,  x ⊕ 0 
= x,  x ⊕ x ′ = 1) 

 
 
   
 
 
3. Reversible Logic 
This section introduces the basic reversible gates and provides examples of using them for synthesis 
of reversible cascades. 
  
3.1. CNOT (Feynman Gate) 

The CNOT (Controlled NOT) gate, called also Feynman gate, is represented using a compound of 
three symbols: ⊕, •, and | that represent an inverter, a control and a connection, respectively (Figure 
3.1a). It concerns two and only two wires. The logical value in the wire to which the control • is 
attached is the same both immediately before and immediately after the control. As for the wire on 
which the inverter ⊕ is attached, the CNOT’s behavior depends on the value detected by the control. 
When the value detected by the control is 1, the gate affects the wire the same way as NOT. When the 

Exor Logic lemmas (Sasao 1999: 44)  

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z),   x (y ⊕ z) = x y ⊕  x z,   x ⊕  y = y ⊕  x,   x ⊕  x = 0 
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value detected by the control is 0, the logical value in the wire to which the inverter is attached is the 
same both immediately before and immediately after the inverter  (Figure 3.1b). Since 0 ⊕ y = y for 
any Boolean value of y, for x = 0 the Feynman gate behaves as a fan-out element (Figure 3.1c). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.2. Toffoli Gate 

The Toffoli gate is represented as a compound of one inverter ⊕, two controls, and the vertical 
connection | (Figure 3.2a). It concerns three and only three wires. The logical values in the wires to 
which the controls • are attached are the same both immediately before and immediately after a given 
control. As for the wire on which the inverter ⊕ is attached, the Toffoli’s performance depends on the 
values detected by the controls. When the product of the values detected by the controls is 1, the gate 
affects the wire the same way as NOT. When the product of values detected by the controls is 0, the 
logical value in the wire to which the inverter is attached is the same both immediately before and 
immediately after the inverter.  (Figure 3.2b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.2. Toffoli gate (a) symbol, (b) illustration of behavior  

(a) 

(b) 

x ⊕  yzx 

yy 

zz 

0 
0 

0 
0 

1 1 

1 
0 

1
0

1 1

0
1

1
1

1 1

1
1

0 
1 

1 1 

0 0 
0 0 
0 0 

1 1
0 0
0 0

0 0
1 1
0 0

1 1 
1 1 
0 0 

Case 1 Case 2 Case 3 Case 4 

Case 5 Case 6 Case 7 Case 8 

Figure 3.1. CNOT (Feynman) gate (a) symbol, (b) illustration of behavior, 
(c) applied as a fan-out element. 
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3.3. SWAP Gate 

The SWAP gate is represented as a compound of two copies of the symbol × and the vertical 
connection | (Figure 3.3). It concerns two and only two wires and works in such a way that for both of 
the wires the logical value in one wire immediately after × is equal to the logical value in the other 
wire immediately before the other ×. 
 
  
 
 
 
3.4. CNTS Library and Reversible Cascades 

The CNTS Library proposed by Shende et al. (2002) takes its name from first letters of the names of 
the gates: CNOT, NOT, Toffoli and SWAP. It is an intellectual challenge to synthesize a desired 
Boolean function using exclusively the gates taken from the Library.  A lot of effort in the field is 
devoted to search of efficient automation of Reversible Logic Synthesis. Genetic Algorithms and 
other heuristics are investigated and some promising results are being reported (Lukas et al. 2002; 
Lukac & Perkowski 2002, Lukac et al 2003, Perkowski et al 2003). 

The recently dominating trend in Reversible Logic Synthesis is to arrange gates into cascades, 
i.e. arrays of horizontal wires interconnected using consecutive gates. The simplest possible cascade 
consists of two NOT-gates and returns the same logical value as this provided to its input.  

3.5. Constant inputs and garbage outputs 

In the realm of Reversible Logic it is seldom possible to use as many inputs and outputs as in classic 
logic synthesis. There are tree reasons. First, we may want to synthesize a function that by definition 
has a different numbers of inputs and outputs, usually real life functions have more inputs than 
outputs. While the basic requirement for reversible circuit is that a number of inputs is equal to the 
number of outputs. Second, even if the desired function has itself as many inputs as outputs, it may be 
not a reversible function and has thus to be converted to a reversible functions by adding input signals 
(set to constant values) and output signals (not used), as shown in (Perkowski et al 2001). The basic 
reversible gates used in such a new reversible circuit may produce some useful and some useless 
values. These useless values are called garbage. It is one of the goals of reversible logic synthesis 
technique to create systematic algorithms with as small garbage as possible. Sometimes the garbage of 
the entire circuit can be reduced via creating the so-called mirror circuit (Perkowski et al. 2001) but at 
the price of adding more intermediate variables. Nevertheless, increasing the width of the circuit is 
sometimes undesirable, for example when the reversible logic is to be implemented as a quantum 
computing device. 

Thus, a smart design is when the designer manages to make use of all outputs produced by the 
components of his circuit, thus introducing no input signals. The smaller the number of employed 
wires the better the design of a defined initial function in a reversible cascade. This task is quite 
difficult and different from standard logic synthesis. So far no good methods exist for 
reversible synthesis of functions of many variables and high quality algorithms have been 
created only for few variables. Evolutionary algorithms are some of the most successful 
methods for reversible design so far, which is in contrast to the classical logic design, where 
evolutionary methods are not yet competitive to general purpose two- and many-level design 
tools that are capable of producing better-than-human designs for functions with hundreds of 
inputs and outputs and where they totally eliminate human logic minimization from modern 
industrial design processes. 
3.7. Fredkin Gate 

The Fredkin gate is a 3-wire reversible device that can return various functions of selected input 
variables, including AND, OR, controlled SWAP and implication. Formally, it converts x, y and z into 

Figure 3.3. SWAP gate 
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x, xz ⊕ x′y, xy ⊕ x′z, respectively (Figure 3.4). Nevertheless, in order to note its useful properties, let 
us consider three cases when a given input is constant. The cases are shown in Figures 3.5 and 3.6.  

 

 

 

 

 

 

 
Let x be set us constant value. For x= 0, the Fredkin gate will return 0, 0z ⊕ 1y and  0y ⊕ 1z, that 
equal to 0, y and z, respectively. The calculations leading to this result are in Figure 3.5. For x= 1, the 
Fredkin gate will return 1, 1z ⊕ 0y and  1y ⊕ 0z, respectively that equal to 1, z and y, respectively. 
This way the Fredkin gate operates as a controlled SWAP gate (Figure 3.5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now let y has constant value. For y= 0, the Fredkin gate will return x, xz ⊕ x′0 and x0 ⊕ x′z, 

respectively that equal to x, xz and x′z, respectively. The calculations leading to this result are in 
Figure 3.6. For y= 1, the Fredkin gate will return x, xz ⊕ x′1 and  x1 ⊕ x′z, respectively. Observe that:  
 
 
 
 
 
 

This way the Fredkin gate appears to be a device that can return Boolean product, Boolean sum, as 
well as implication (Figure 3.6). 

Although the Fredkin gate was invented as a primitive to be used in quantum computing, it can 
be built of primitives taken from the CNTS Library. Figure 3.7 shows one of solutions.   

The solution from Figure 3.7, as well as many other useful reversible gates and circuits have been 
obtained using evolutionary programming system developed in the Portland Quantum Logic  Group 
(Lukac et al., 2003). 

Figure 3.5. Fredkin Gate as a controlled SWAP 
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Figure 3.4. Fredkin Gate 

 
Fredkin 

Gate 

x 

y 

z 

 x 

 xz ⊕ x′y   

 xy ⊕ x′z  

xz ⊕ x′1  =  xz ⊕ x′  =  xz ⊕ (x ⊕ 1)  =  (xz ⊕ x) ⊕ 1  =  (xz ⊕ x)′  = 
=  (xz ⊕ x1)′  =  ( x(z ⊕ 1))′  =  ( xz′ )′  =   x′ + z  =  x⇒z 

x1 ⊕ x′z  =  x ⊕ x′z   =  (x′ ⊕ 1) ⊕ x′z   =  ( x′1 ⊕ 1 ) ⊕ x′z   = 
=  ( x′1 ⊕ x′z ) ⊕ 1   =  ( x′1 ⊕ x′z )′   =  (( x′(1 ⊕ z))′   =  ( x′z′ )′   =   x + z 



 

 
6

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4. Cellular Automaton (CA) for Reversible Modeling 
As a medium for the modeled reversible computing Buller (2003b) employed a cellular automaton 
(CA) run on ATR’s CAM-Brain Machine (CBM). The cellular automaton is 3-dimensional and works 
according to one simple rule. It can be imagined as a set of cubic cells arranged in such a way that 
each of the cubes has up to six neighbors. Every cell has a door in each of its 6 walls. The set of open 
doors and the set of closed doors must be determined in the framework of the automaton’s initial state 
and kept unchanged for entire calculation process. Hence, the doors are called frozen state variables. 

Every cell can be either activated or not activated. Hence, the variable representing activation 
of a given cell is called activation or pulsing state variable. A given cell gets activated in time t, if and 
only if the number of its doors opened toward neighbors activated in time t-1 is equal to just 1.  

In order to describe the idea more precisely, let us employ the elementary symmetric function 
S1 that returns 1 if and only if one of its six inputs is equal to one (Sasao 1999: 99). Let us assume that 
binary a1, a2, …, a6 represent activations of six neighbors of a given cell, while binary variables d1, d2, 
…, d6 are doors toward the neighbors. Let a0 be activation of the cell itself. The cellular automaton has 
been adjusted to work in such a way that for every cell  a0,t+1  = S1( d1a1,t, d2a2,t, …, d6a6,t ).  

4.1. Graphic representation of cell’s state 

A convenient way to show a state of a given cell using a graphic planar representation. We 
propose the “arrow metaphor” where , , , ,  and  represent open doors to Western, 
Eastern, Northern, Southern, Upper and Lower neighbor, respectively, all located in a square 
representing cell activation (pulsing state variable) (Figure 4.1). Let color of the square be white or 
red for activation 0 or 1, respectively.  
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Figure 3.6. Fredkin Gate as AND/OR/implication gate. Similar effect can be 
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Figure 3.7. Fredkin Gate  as a cascade of two Feynmans and one Toffoli. 
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4.2. Channel  and Exor 

Channel is elementary structure of the discussed CA. It employs only cells that have only one gate 
open. Figure 4.2 and 4.3 show two samples of propagation of activation in the channels. If a cell has 
two and only two gates opened, it can serve as Exor gate (Fig. 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Graphic planar representation of such state of CA that all doors 
are open, while pulsing state variable (activation) is 0. , , , ,  and 
represent frozen state variables equal to 1, which can be interpreted as open 
doors to Western, Eastern, Northern, Southern, Upper and Lower neighbor, 
respectively. This figure was proposed by Michal Joachimczak as a notation in 
computer aided design of cellular-automatic structures. Color of the square 
represents pulsing state variable (white for activation 0, red for activation 1). 
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Figure 4.2. An example 
of uni-level channels. 

Figure 4.4. CA-based Exor. et+1 = x ⊕ y. The trivial case x = 0, y = 0 
is not shown since all cells would always be blank.  
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4.4. Eeckhaut gate 

Eeckhaut gate (Eeckhaut & Van Campenhout 2003) serves as an AND gate (Fig. 4.5 and 4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Reversible gates 
Figure 4.7. shows a CA-based model of the Feynman gate (CNOT). Figure 4.8 shows a 
model of Tofoli gate using an Eeckhaut gate. Based on one Tofoli, two Feynmans and two 4-
cell channels one can easily compose a cellular-automatic model of the Fredkin gate (Figure 
4.9). The presented structures have been built under the NeuroMaze 3.0 Pro, a software tool 
for computer aided designing of 3-D β-PPNNs (Pulsed Para-Neural Networks) executable on 
the ATR’s CAM-Brain Machine (CBM) (Buller 2003a). Since the employed cellular 
automaton does not use all functions offered by the CBM, one of successors of the CBM 
could be reversible-logic-specific. 
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5. Concluding remarks 
It was shown, that reversible cascades could be modeled on in a special 3-dimensional 
cellular automaton with cells having a pulsing state variable, as well as a set of frozen state 
variables. This automaton is executable on the ATR’s CAM-Brain Machine (CBM). Since 
some successful genetic algorithms for reversible logic synthesis have been built (Lukas & 
Perkowski 2002; Lukas at al. 2002, Lukac et al 2003, Perkowski et al 2003), the ATR’s 
NeuroMaze 3.0 Pro, a software for computer aided designing of pulsed neural networks could 
be enhanced to facilitate fully automated creation of large-scale models of reversible 
cascades. Indeed, owing to regular input-output layouts of the presented reversible gates, they 
can be attached one to another by a simple program. 
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