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Logic Synthesis forLogic Synthesis for
Quantum Pseudo-Quantum Pseudo-
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(Permutation Logic)(Permutation Logic)



RevievReviev of Reversible logic of Reversible logic
This approach is mostly forThis approach is mostly for
quantum logic realizationquantum logic realization
For optical and CMOS realizations the k*kFor optical and CMOS realizations the k*k
assumption is not necessarily usedassumption is not necessarily used



Notation for Notation for FredkinFredkin Gates Gates
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• The 3 * 3 Toffoli gate is
described by these equations:
P = A,
Q = B,
R = AB  ⊕⊕⊕⊕   C,

• Toffoli gate is an example of
two-through gates, because
two of its inputs are given to
the output.
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• The Kerntopf gate is described by equations:
P = 1 ⊕⊕⊕⊕  A ⊕⊕⊕⊕  B ⊕⊕⊕⊕  C ⊕⊕⊕⊕  AB,
Q = 1 ⊕⊕⊕⊕  AB ⊕⊕⊕⊕  B ⊕⊕⊕⊕  C ⊕⊕⊕⊕  BC,
 R = 1 ⊕⊕⊕⊕  A ⊕⊕⊕⊕  B ⊕⊕⊕⊕  AC.

• When C=1 then P = A + B, Q = A * B, R = ¬¬¬¬  B,
so AND/OR  gate is realized on outputs P and Q
with C as the controlling input value.

• When C = 0  then P = ¬¬¬¬  A * ¬¬¬¬  B, Q = A + ¬¬¬¬  B,
R = A ⊕⊕⊕⊕  B.

• 18 different cofactors!

KerntopfKerntopf Gate Gate



• As we see, the 3*3 Kerntopf gate is not a
one-through nor a two-through gate.

• Despite theoretical advantages of Kerntopf
gate over classical Fredkin and Toffoli
gates, so far there are no published results
on realization of this gate.

KerntopfKerntopf Gate Gate
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How to build garbage-less circuits

GARBAGE BIT 1

GARBAGE BIT 2

We can decrease garbage at the cost of delay
and number of gates

We create inverse circuit and add We create inverse circuit and add spies spies for all outputsfor all outputs

2 outputs2 outputs

2 2 garbagesgarbages

width = 4width = 4

delay = 4delay = 4
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How to build garbage-less circuits

A,B,C,D are original inputs

inputs
reconstructed

This process is informationally reversible

It can be in addition thermodynamically reversible

F1 from spyF2 from spy
2 outputs2 outputs

no garbageno garbage

width = 4width = 4

delay = 9delay = 9



ObservationsObservations

• We reduced garbage at the cost
of delay and number of gates

• We were not able to reduce the
width of the scratchpad register



1. Minimize the garbage

2. Minimize the width of scratchpad register

3. Minimize the total number of gates

4. Minimize the delay

Goals of reversible logic synthesisGoals of reversible logic synthesis



Multi-purpose PortlandMulti-purpose Portland
DecompositionDecomposition

To distinguish this new general
decomposition from the well-known
decompositions of Ashenhurst,
Curtis or Shannon, we call it the
Multi-purpose Portland
Decomposition, the MP-
decomposition for short.



PreprocessingPreprocessing
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Starting fromStarting from
Pseudo-Pseudo-KroneckerKronecker

FunctionalFunctional
Decision DiagramDecision Diagram
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Starting fromStarting from
function-drivenfunction-driven

Decision DiagramDecision Diagram
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Converting Converting fDDsfDDs to reversible circuits to reversible circuits
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Nonlinear
preprocessor



y1 =x2 ⊕⊕⊕⊕  x3 ⊕⊕⊕⊕  x1x3     
y2 =x3 ⊕⊕⊕⊕  x1 ⊕⊕⊕⊕  x1x4  
 y3 =x1 ⊕⊕⊕⊕  x4 ⊕⊕⊕⊕  x3x4  
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Open Problems:
• Is our set of mapping rules sufficient?

– (we have currently about 20 rules, but many
more can be created).

• What is the practically best starting point
for large functions? KFDD? PKFDD? fDD?

• How to transform the diagram or the circuit
to improve the cost function?

• What to do in case of rule conflict?
• How to create rules to decrease garbage?



Every synthesis method can be executed
forward and backwards

Sometimes solution backwards can be simpler



A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

X Y Z V
0 0 1 1
1 0 1 1
0 0 1 0
1 0 1 0
0 0 0 0
0 1 1 1
0 0 0 1
0 1 1 0
1 1 1 1
1 0 0 0
1 1 1 0
1 0 0 1
1 1 0 1
0 1 0 1
1 1 0 0
0 1 0 0

Function F Function F -1
X Y Z V
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

A B C D
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0
1 1 1 1
1 1 0 1
0 1 1 1
0 1 0 1
1 0 0 1
1 0 1 1
0 0 1 1
0 0 0 1
1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0

Forward Function Inverse Function

Several
methods
exist to

calculate
inverse from

forward
function
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Method of realization of FMethod of realization of F

•• 1.1. Find function inverse F-1 of function F.
•• 2.2. Synthesize F-1 using any method for reversible

gates
•• 3.3. Draw the schematics of F-1 from gates.
•• 4.4. In the schematics replace every gate by its

reverse and change the direction of signals.
•• 5.5. The new schematics is the realization of F.



FredkinFredkin A
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Composition MethodsComposition Methods
• Composition methods with matching-based cell

selection and complexity measures have been
presented by:
– Dietmeyer
– Schneider
– Wojcik
– Michalski
– Jozwiak, Chojnacki and Volf
– DeMicheli library matching
– Kravets and Sakallah



Uses library of 1*1,2*2 and 3*3 cellsUses library of 1*1,2*2 and 3*3 cells

For every 3*3 function, a ready solutionFor every 3*3 function, a ready solution
cascade is stored - see the results of cascade is stored - see the results of KerntopfKerntopf
and and Storme-DeVosStorme-DeVos

For every reversible gate, all cofactors can beFor every reversible gate, all cofactors can be
stored (constants and garbage) and used instored (constants and garbage) and used in
NPN matching.NPN matching.

Gates with more cofactors (like Gates with more cofactors (like KerntopfKerntopf) are) are
betterbetter



Can be applied to both
classical reversible and

quantum logic

Can be applied to bothCan be applied to both
classical reversible andclassical reversible and

quantum logicquantum logic

All intermediate
functions

calculated in
terms of input

variables

All intermediate
functions

calculated in
terms of input

variables

Uses equivalence mapping transformationsUses equivalence mapping transformations
based on NPN-equivalencebased on NPN-equivalence

Synthesis from inputs to outputs and fromSynthesis from inputs to outputs and from
outputs to inputs, backtracking and look-aheadoutputs to inputs, backtracking and look-ahead
strategiesstrategies



How to select the cell, its
alignment and constants?

• Select the gate that provides smallest
complexity evaluation of the remaining
functions and intermediate functions.

• This works for both forward and backward
transformations

• I propose PPRM for matching because it is
easy to implement. Other representations
and measures can be used for matching - De
Micheli, Dietmeyer, Jozwiak.
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What to do if the initial function is not reversible?What to do if the initial function is not reversible?
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Toffoli

Z=A*B

Restrict to C=0Restrict to C=0

1. Toffoli gate
assumed.

2. New
functions
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4. Functions h
and g of X,Y,Z
are created

CompositionComposition



Toffoli
FeynmanA
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g=Z=AB

h=X⊕ Y=A⊕ B

Created first Calculated in terms of new variables
X,Y,Z and selected Feynman gate

Compositional synthesis of non-reversibleCompositional synthesis of non-reversible
function of half-adderfunction of half-adder



Adder is composed from half-addersAdder is composed from half-adders

2 garbage bits and one constant2 garbage bits and one constant
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Another variant assumes Another variant assumes KerntopfKerntopf gate gate



Heuristics for finding simplest reversible function
during composition
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AB

00       10       01     10

Mapping of a half-adder

00      01        11       10

This is what we would like to have
But this is not reversible, 
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A
B

AB ⊕  0 Mapping of a half-adder

AB

00       10       01     10

00      01        11       10

A

 B

A ⊕  B

A * B

The simplest way to
separate them is to add

variable A

Heuristics for finding simplest reversible function
during composition
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A
B

AB ⊕  0

AB

000      010      101    110

Mapping of a half-adder

00      01        11       10

This is what we would like to have But this is not reversible, 

 because more outputs than inputs

A * B

A

 B

A ⊕  B
A

Heuristics for finding simplest reversible function
during composition



CCN CNA
B
0
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A and B
(Carry)
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C

001      011      100    111

000      010      101    110

Mapping of a half-adder

Positive Davio Gate

Now function is
reversible of A,B,C
arguments. But we still
need to decompose it to
known gates

A * B ⊕  C

A

 B

 C

A ⊕  B
A

Heuristics for finding simplest reversible function
during composition



• Search is defined by:
– selecting function to be realized
– selecting a gate type
– selecting its forward or backwards matching
– selecting other signals to match
– selecting constant

Garbage functions are becoming less and less undefined in the
process of decomposition

They can be used for synthesis

We adopt classical AI search algorithms

(depth-first, breadth-first, A*,best bound, etc)

SearchSearch



• Search cannot be avoided
• Trade-off between quality of solution and

search time
• The only real improvement is possible

through better selection heuristics and better
implementation of cell library.

SearchSearch
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  Illustration of cooperation ofcooperation of
various methodsvarious methods to design the
Kerntopf gate from Fredkin, Toffoli,
Feynman gates and inverters.
One fan-out gate for input a, inverter
for c and two fan-out gates for ¬c
are not shown.
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•During graph coloring of an incompatibility graph for
nodes with minterms of bound set, two conditions are
satisfied:

•there must be 4 colors

l b d l i

G

H

...

...

We sacrifice
this wire for

garbage
These two
signals should
be encoded
using 4
symbols

Bound set

Curtis DecompositionCurtis Decomposition



•Probability of finding such coloring is
increased by having more don’t cares

•More don’t cares are created by repeating
variables in bound and free sets.

•This principle is the base of all
decompositions of reversible functions and
relations.

Curtis DecompositionCurtis Decomposition





Two-DimensionalTwo-Dimensional
Lattice DiagramsLattice Diagrams

for reversible logicfor reversible logic



Three Types of General Expansions
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Three Types of General Expansions
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Three Types of General Expansions

g1A+h0A’
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g h
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g0A’+h1A

g, h, and A           g0A’+h1A and  g1A+h0A’

Reversible Shannon
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This method is fully algorithmic

Variable order selection problem

Expansion type selection problem



Applications of Applications of levelizedlevelized expansion expansion
methodmethod

• This method can be used to create arbitrary circuits, not
only lattices

• Any constraint on layout size or shape can be imposed.
• The expansion method can be used as the last-resortlast-resort

approachapproach when other methods cannot find solution, in order
to reduce the number of variables

• It introduces garbage and constants, but this is unavoidable
when functions are not balanced

• When realizing multi-output functions start from those that
are balanced or closest to balanced.



Conclusions
• New concepts:

– (1) Reversible Shannon Expansion for k*k binary
Fredkin Gates (k>2) and generalizations - reversible
decision diagrams,

– (2) Reversible Fredkin Lattice structures for  logic based
on binary  Fredkin gates,

– (3) Generalized Composition-Decomposition Methods
– (4) Adaptations of Ashenhurst/Curtis decompositions.
– (5) Levelized expansions for Shannon and Davio-like

gates.
– (6) adaptation of BDD-based, decomposition-based and

technology mapping methods from standard binary logic



Our Past and Forthcoming Papers

(1) Multiple-valued reversible gates
(2) Multiple-valued quantum logic and synthesis methods
(3) Fuzzy reversible logic and synthesis methods
(4) Ashenhurst/Curtis-like decompositions of multi-valued reversible

logic
(5) Levelized expansions for multi-valued Shannon and Davio-like

gates.
(6) Decision Diagrams for binary and MV reversible logic
(7) Genetic Algorithm combined with search for quantum logic
(8) Regular structures for MV unate, symmetric, threshold and

other functions
(9) Visual Software End of Lecture 6End of Lecture 6


