Reversible Logic
 Synthesis with
 Garbage Bits

Lecture 6

Marek Perkowski

Logic Synthesis for

 Quantum Pseudo=Binary Logic
(Permutation Logic)

Background

Reviev of Reversible logic

This approach is mostly for

 quantum logic realizationFor optical and CMOS realizations the $k * k$ assumption is not necessarily used

Its schemata

This is a reversible gate, one of many
Notation for Fredkin Gates

Margolus Gate

Reversible

Conservative

$3 * 3$ gate

Toffoli Gate

- The $3 * 3$ Toffoli gate is described by these equations:

$$
\begin{aligned}
& P=A \\
& Q=B \\
& R=A B \oplus C
\end{aligned}
$$

- Toffoli gate is an example of two-through gates, because
 two of its inputs are given to the output.

Feynman, Toffoli and Fredkin gates are their own inverses
Toffoli

Kerntopf Gate

- The Kerntopf gate is described by equations:

$$
\begin{aligned}
& P=1 \oplus A \oplus B \oplus C \oplus A B, \\
& Q=1 \oplus A B \oplus B \oplus C \oplus B C, \\
& R=1 \oplus A \oplus B \oplus A C .
\end{aligned}
$$

- When $\boldsymbol{C}=\boldsymbol{1}$ then $P=A+B, Q=A * B, R=\neg B$, so $\boldsymbol{A N D / O R}$ gate is realized on outputs \boldsymbol{P} and \boldsymbol{Q} with \boldsymbol{C} as the controlling input value.
- When $\boldsymbol{C}=\mathbf{0}$ then $\boldsymbol{P}=\neg \boldsymbol{A} * \neg \boldsymbol{B}, \boldsymbol{Q}=\boldsymbol{A}+\neg \boldsymbol{B}$, $\boldsymbol{R}=\boldsymbol{A} \oplus \boldsymbol{B}$.
- 18 different cofactors!

Kerntopf Gate

- As we see, the $3^{*} 3$ Kerntopf gate is not a one-through nor a two-through gate.
- Despite theoretical advantages of Kerntopf gate over classical Fredkin and Toffoli gates, so far there are no published results on realization of this gate.
for Reversible
Logic

How to build garbage-less circuits

We create inverse circuit and add spies for all outputs

How to build garbage-less circuits

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are original inputs

This process is informationally reversible

2 outputs

no garbage
width $=4$
delay $=9$
It can be in addition thermodynamically reversible

Observations

- We reduced garbage at the cost of delay and number of gates
- We were not able to reduce the width of the scratchpad register

Goals of reversible logic synthesis

1. Minimize the garbage
2. Minimize the width of scratchpad register
3. Minimize the total number of gates
4. Minimize the delay

Multi-purpose Portland

Decomposition

To distinguish this new general decomposition from the well-known decompositions of Ashenhurst, Curtis or Shannon, we call it the Multi-purpose Portland Decomposition, the MPdecomposition for short.

Preprocessing

$$
\begin{aligned}
& \text { Synthesis } \\
& \text { from } \\
& \text { (p)KFDDs }
\end{aligned}
$$

$$
\begin{gathered}
\text { Example of } \\
\text { converting a } \\
\text { decision diagram } \\
\text { to reversible } \\
\text { circuit }
\end{gathered}
$$

Starting from

Pseudo-Kronecker Functional

Decision Diagram

Starting from

 function-drivenDecision Diagram

Corresponding fDD of Kerntopf

Standard BDD

Converting fDDs to reversible circuits

Open Problems:

- Is our set of mapping rules sufficient?
- (we have currently about 20 rules, but many more can be created).
- What is the practically best starting point for large functions? KFDD? PKFDD? fDD?
- How to transform the diagram or the circuit to improve the cost function?
- What to do in case of rule conflict?
- How to create rules to decrease garbage?

Use of

Reversibility

> Observation:

Every synthesis method can be executed forward and backwards

Function F	
ABCD	X Y Z V
0000	0011
0001	1011
0010	0010
0011	1010
0100	0000
0101	0111
0110	0001
0111	0110
1000	1111
1001	1000
1010	1110
1011	1001
1100	1101
1101	0101
1110	1100
1111	0100

Function $\mathbf{F}^{\mathbf{- 1}}$		
XYZV	ABCD	
O 00000 0001	0100 01110	Several
0010	0010	methods
0011	0000	
0100	1111	exist to
0 0 $1 \begin{array}{lll}10 & 1 \\ 0 & 1 & 1\end{array}$	111 0 0 1111	calculate
0111	0101	inverse from
1000	1001	inverse from
1001 1010	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}$	forward
1011	0001	function
1100	1110	
11101	1100	
11111	1000	

Forward Function

Inverse Function

Method of realization of \mathbf{F}

- 1. Find function inverse \mathbb{F}^{-1} of function F.
- 2. Synthesize F^{-1} using any method for reversible gates
- 3. Draw the schematics of F^{-1} from gates.
- 4. In the schematics replace every gate by its reverse and change the direction of signals.
- 5. The new schematics is the realization of \mathbf{F}.

Compositions and

Decompositions

Composition Methods

- Composition methods with matching-based cell selection and complexity measures have been presented by:
- Dietmeyer
- Schneider
- Wojcik
- Michalski
- Jozwiak, Chojnacki and Volf
- DeMicheli library matching
- Kravets and Sakallah

Uses library of $1 * 1,2 * 2$ and $3 * 3$ cells

For every 3*3 function, a ready solution

 cascade is stored - see the results of Kerntopf and Storme-DeVosFor every reversible gate, all cofactors can be stored (constants and garbage) and used in NPN matching.

Gates with more cofactors (like Kerntopf) are better

Uses equivalence mapping transformations

 based on NPN-equivalenceSynthesis from inputs to outputs and from outputs to inputs, backtracking and look-ahead strategies

Can be applied to both
classical reversible and quantum logic

All intermediate functions

calculated in

 terms of input variables
How to select the cell, its alignment and constants?

- Select the gate that provides smallest complexity evaluation of the remaining functions and intermediate functions.
- This works for both forward and backward transformations
- I propose PPRM for matching because it is easy to implement. Other representations and measures can be used for matching - De Micheli, Dietmeyer, Jozwiak.

Third stage of

 decomposition: Feynman gateSecond stage of decomposition:
Fredkin gate

Using PPRM representation allows for NPN matching and good evaluation of remaining function complexity

Decompositional

 synthesis of Toffoli Gate from Fredkin and Feynman Gates
composition: Feynman gate

Second stage of composition:
Reversible Expansion for Fredkin gate

NPN matching takes care of permutations and inverters

Composition From inputs to outputs

What to do if the initial function is not reversible?

Composition

$\xrightarrow{\text { Toffoli }}$				Restrict to $\mathrm{C}=0$	
A B C	XYZ		=A*B	G	1. Toffoli gate
000	000	0	0	-	2. New
001	001	0	0	-	functions $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ created
010	010	1	0	-	3. $\mathrm{C}=0$
011	011	1	0	-	taken
100	100	1	0	-	4. Functions h and g of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
101	101	1	0	-	are created
110	111	0		-	
111	10		1	-	

Created first
Calculated in terms of new variables X,Y,Z and selected Feynman gate

Compositional synthesis of non-reversible function of half-adder

Adder is composed from half-adders

2 garbage bits and one constant

Another variant assumes Kerntopf gate

Heuristics for finding simplest reversible function during composition

$\mathrm{AB} \oplus 0$

Mapping of a half-adder

But this is not reversible,

Heuristics for finding simplest reversible function during composition

$\mathrm{AB} \oplus 0 \quad$ Mapping of a half-adder

The simplest way to separate them is to add variable A

Heuristics for finding simplest reversible function during composition

Toffoli

Mapping of a half-adder

This is what we would like to have

But this is not reversible,
because more outputs than inputs

Heuristics for finding simplest reversible function during composition

Mapping of a half-adder

Positive Davio Gate
Now function is reversible of A,B,C arguments. But we still need to decompose it to known gates

- Search is defined by:
- selecting function to be realized
- selecting a gate type
- selecting its forward or backwards matching
- selecting other signals to match
- selecting constant

Garbage functions are becoming less and less undefined in the process of decomposition

They can be used for synthesis

We adopt classical AI search algorithms
(depth-first, breadth-first, A*, best bound, etc)

Search

- Search cannot be avoided
- Trade-off between quality of solution and search time
- The only real improvement is possible through better selection heuristics and better implementation of cell library.

Adaptations of
 functional

 decomposition methods

Curtis-like

Ashenhurst-like

New Curtis

parallel

We sacrifice this wire for

Curtis Decomposition

 garbage

These two
signals should be encoded using 4 symbols
-During graph coloring of an incompatibility graph for nodes with minterms of bound set, two conditions are satisfied:
-there must be 4 colors

Curtis Decomposition

- Probability of finding such coloring is increased by having more don't cares
- More don't cares are created by repeating variables in bound and free sets.
-This principle is the base of all decompositions of reversible functions and relations.

Levelized

Structures

Two-Dimensional

 Lattice Diagramsfor reversible logic

Three Types of General Expansions

Forward Shannon

Three Types of General Expansions

g, h and $\mathrm{A} \longrightarrow \mathrm{g}_{1} \mathrm{~A}+\mathrm{h}_{0} \mathrm{~A}^{\prime}$
Reverse Shannon

Three Types of General Expansions

Reversible Shannon

g, h, and $\mathrm{A} \longrightarrow \mathrm{g}_{0} \mathrm{~A}^{\prime}+\mathrm{h}_{1} \mathrm{~A}$ and $\mathrm{g}_{1} \mathrm{~A}+\mathrm{h}_{0} \mathrm{~A}^{\prime}$

$$
\mathrm{g}_{0} \mathrm{~A}^{\prime}+\mathrm{h}_{1} \mathrm{~A} \quad \mathrm{~g}_{1} \mathrm{~A}+\mathrm{h}_{0} \mathrm{~A}^{\prime}
$$

$=1$
$=0$
$=1$
$=0$

This method is fully algorithmic
Variable order selection problem
Expansion type selection problem

Applications of levelized expansion method

- This method can be used to create arbitrary circuits, not only lattices
- Any constraint on layout size or shape can be imposed.
- The expansion method can be used as the last-resort approach when other methods cannot find solution, in order to reduce the number of variables
- It introduces garbage and constants, but this is unavoidable when functions are not balanced
- When realizing multi-output functions start from those that are balanced or closest to balanced.

Conclusions

- New concepts:
- (1) Reversible Shannon Expansion for $\boldsymbol{k}^{*} \boldsymbol{k}$ binary Fredkin Gates ($\boldsymbol{k}>\mathbf{2}$) and generalizations - reversible decision diagrams,
- (2) Reversible Fredkin Lattice structures for logic based on binary Fredkin gates,
- (3) Generalized Composition-Decomposition Methods
- (4) Adaptations of Ashenhurst/Curtis decompositions.
- (5) Levelized expansions for Shannon and Davio-like gates.
- (6) adaptation of BDD-based, decomposition-based and technology mapping methods from standard binary logic

Our Past and Forthcoming Papers

(1) Multiple-valued reversible gates
(2) Multiple-valued quantum logic and synthesis methods
(3) Fuzzy reversible logic and synthesis methods
(4) Ashenhurst/Curtis-like decompositions of multi-valued reversible logic
(5) Levelized expansions for multi-valued Shannon and Davio-like gates.
(6) Decision Diagrams for binary and MV reversible logic
(7) Genetic Algorithm combined with search for quantum logic
(8) Regular structures for MV unate, symmetric, threshold and other functions
(9) Visual Software

End of Lecture

