Reversible Logic Synthesis with **Garbage Bits**

Lecture 6

Marek Perkowski

Logic Synthesis for Ouantum Pseudo-Binary Logic (Permutation Logic)

Reviev of Reversible logic

This approach is mostly for quantum logic realization

For optical and CMOS realizations the k*k assumption is not necessarily used

Its schemata

This is a reversible gate, one of many

Notation for Fredkin Gates

Margolus Gate

Reversible

Conservative

3*3 gate

Toffoli Gate

- The 3 * 3 Toffoli gate is described by these equations:
 - P = A,
 - Q = B,
 - $R = AB \quad \mathcal{O} \quad C,$
- Toffoli gate is an example of *two-through* gates, because two of its inputs are given to the output.

Kerntopf Gate

- The Kerntopf gate is described by equations:
 P = 1 ⊕ A ⊕ B ⊕ C ⊕ AB,
 Q = 1 ⊕ AB ⊕ B ⊕ C ⊕ BC,
 R = 1 ⊕ A ⊕ B ⊕ AC.
- When C=1 then P = A + B, Q = A * B, R = ¬B, so AND/OR gate is realized on outputs P and Q with C as the controlling input value.
- When C = 0 then $P = \neg A * \neg B$, $Q = A + \neg B$, $R = A \oplus B$.
- 18 different cofactors!

Kerntopf Gate

- As we see, the 3*3 Kerntopf gate is not a one-through nor a two-through gate.
- Despite theoretical advantages of Kerntopf gate over classical Fredkin and Toffoli gates, so far there are no published results on realization of this gate.

Logic Synthesis for Reversible

Logic

How to build garbage-less circuits

We create inverse circuit and add <u>spies</u> for all outputs

How to build garbage-less circuits

Observations

- We reduced garbage at the cost of delay and number of gates
- We were not able to reduce the width of the scratchpad register

Goals of reversible logic synthesis

- 1. Minimize the garbage
- 2. Minimize the width of scratchpad register
- 3. Minimize the total number of gates
- 4. Minimize the delay

Multi-purpose Portland Decomposition

To distinguish this new general decomposition from the well-known decompositions of Ashenhurst, Curtis or Shannon, we call it the Multi-purpose Portland *Decomposition*, the *MPdecomposition* for short.

Synthesis from (p)KFDDs

Example of converting a decision diagram to reversible circuit

Starting from Pseudo-Kronecker Functional **Decision Diagram**

Starting from function-driven Decision Diagram

 $y1 = x2 \oplus x3 \oplus x1x3$ $y2 = x3 \oplus x1 \oplus x1x4$ $y3 = x1 \oplus x4 \oplus x3x4$ y4 = x4

(b)

Nonlinear preprocessor

Corresponding fDD of Kerntopf

Standard BDD

Converting fDDs to reversible circuits

Reversible circuit corresponding to fDD together with preprocessor

Open Problems:

- Is our set of mapping rules sufficient?
 - (we have currently about 20 rules, but many more can be created).
- What is the practically best starting point for large functions? KFDD? PKFDD? fDD?
- How to transform the diagram or the circuit to improve the cost function?
- What to do in case of rule conflict?
- How to create rules to decrease garbage?

Use of Reversibility

Observation:

Every synthesis method can be executed forward and backwards

Sometimes solution backwards can be simpler

Function F		Func
Fun A B C D 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011	nction F XYZV 0011 1011 0010 1010 0000 0111 0001 0110 1111 1000 1110 1000 1110	Func X Y Z V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
$ \begin{array}{c} 1 \ 1 \ 0 \ 0 \\ 1 \ 1 \ 0 \ 1 \\ 1 \ 1 \ 1 \ 0 \\ 1 \ 1 \ 1 \ 1 \\ \end{array} $	$ \begin{array}{c} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} $	$ \begin{array}{c} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \end{array} $

Function F ⁻¹		
ΥΖV	ABCD	
000	0100	
001	0110	
010	0010	
011	0000	
00	1111	
01	1101	
110	0111	
111	0101	
000	1001	
001	1011	
010	0011	
011	0001	
00	1110	
01	1100	
110	1010	
111	$1\ 0\ 0\ 0$	

Several methods exist to calculate inverse from forward function

Forward Function

Inverse Function

Method of realization of F

- **1.** Find function inverse **F**⁻¹ of function **F**.
- 2. Synthesize **F**⁻¹ using any method for reversible gates
- **3.** Draw the schematics of **F**⁻¹ from gates.
- 4. In the schematics replace every gate by its reverse and change the direction of signals.
- 5. The new schematics is the realization of **F**.

Compositions and

Decompositions

Composition Methods

- Composition methods with matching-based cell selection and complexity measures have been presented by:
 - Dietmeyer
 - Schneider
 - Wojcik
 - Michalski
 - Jozwiak, Chojnacki and Volf
 - DeMicheli library matching
 - Kravets and Sakallah

Uses library of 1*1,2*2 and 3*3 cells

For every 3*3 function, a ready solution cascade is stored - see the results of Kerntopf and Storme-DeVos

For every reversible gate, all cofactors can be stored (constants and garbage) and used in NPN matching.

Gates with more cofactors (like Kerntopf) are better

Uses equivalence mapping transformations based on NPN-equivalence

Synthesis from inputs to outputs and from outputs to inputs, backtracking and look-ahead strategies

Can be applied to both classical reversible and quantum logic All intermediate functions calculated in terms of input variables

How to select the cell, its alignment and constants?

- Select the gate that provides smallest complexity evaluation of the remaining functions and intermediate functions.
- This works for both forward and backward transformations
- I propose PPRM for matching because it is easy to implement. Other representations and measures can be used for matching - De Micheli, Dietmeyer, Jozwiak.

permutations and inverters

Fredkin and Feynman Gates

Composition From inputs to outputs

What to do if the initial function is not reversible?

Compositional synthesis of non-reversible function of half-adder

Adder is composed from half-adders

2 garbage bits and one constant

Another variant assumes Kerntopf gate

because more outputs than inputs

- Search is defined by:
 - selecting function to be realized
 - selecting a gate type
 - selecting its forward or backwards matching
 - selecting other signals to match
 - selecting constant

Garbage functions are becoming less and less undefined in the process of decomposition

They can be used for synthesis

We adopt classical AI search algorithms

(depth-first, breadth-first, A*, best bound, etc)

Search

- Search cannot be avoided
- Trade-off between quality of solution and search time
- The only real improvement is possible through better selection heuristics and better implementation of cell library.

Adaptations of functional decomposition methods

Curtis-like

Ashenhurst-like

New Curtis

serial

- •During graph coloring of an **incompatibility graph** for nodes with minterms of bound set, two conditions are satisfied:
 - •there must be 4 colors

Curtis Decomposition

- •Probability of finding such coloring is increased by having more don't cares
- •More don't cares are created by repeating variables in bound and free sets.
- •This principle is the base of all decompositions of reversible functions and relations.

Two-Dimensional Lattice Diagrams for reversible logic

Three Types of General Expansions

Forward Shannon

Three Types of General Expansions

Reverse Shannon

Three Types of General Expansions

Reversible Shannon

This method is fully algorithmic Variable order selection problem Expansion type selection problem

Applications of levelized expansion method

- This method can be used to create arbitrary circuits, not only lattices
- Any constraint on layout size or shape can be imposed.
- The expansion method can be used as the <u>last-resort</u> <u>approach</u> when other methods cannot find solution, in order to reduce the number of variables
- It introduces garbage and constants, but this is unavoidable when functions are not balanced
- When realizing multi-output functions start from those that are balanced or closest to balanced.

Conclusions

- New concepts:
 - (1) Reversible Shannon Expansion for *k*k* binary
 Fredkin Gates (*k>2*) and generalizations reversible
 decision diagrams,
 - (2) Reversible Fredkin Lattice structures for logic based on binary Fredkin gates,
 - (3) Generalized Composition-Decomposition Methods
 - (4) Adaptations of Ashenhurst/Curtis decompositions.
 - (5) Levelized expansions for Shannon and Davio-like gates.
 - (6) adaptation of BDD-based, decomposition-based and technology mapping methods from standard binary logic

Our Past and Forthcoming Papers

- (1) Multiple-valued reversible gates
- (2) Multiple-valued quantum logic and synthesis methods
- (3) Fuzzy reversible logic and synthesis methods
- (4) Ashenhurst/Curtis-like decompositions of multi-valued reversible logic
- (5) Levelized expansions for multi-valued Shannon and Davio-like gates.
- (6) **Decision Diagrams** for binary and MV reversible logic
- (7) Genetic Algorithm combined with search for quantum logic
- (8) Regular structures for MV unate, symmetric, threshold and other functions
- (9) Visual Software

End of Lecture 6