ECE 6721:
 Emerging Computing Technologies

$$
\begin{gathered}
\text { Lecture 2: } \\
\text { Motivation and } \\
\text { History }
\end{gathered}
$$

What is Unconventional Computer Architecture? What are Emerging Technologies?

- Start by defining "Conventional" computer architecture
- Uses stored-program model of computation
- Implemented using silicon VLSI
- An unconventional computer architecture is one that doesn't have both of these attributes
- ASICs
- Reconfigurable devices
- Dataflow
- Cellular Automata and Systolic Arrays
- Quantum
- Biological (DNA, proteine)
- Molecular Electronics
- reversible
- optical
- membrane computing
- nano-technologies

Stored-Program Model

- One of the key developments in early computing
- Also known as "Von Neumann" model
$\begin{aligned} & \operatorname{For}(\mathrm{I}=1 ; \mathrm{I}<10 ; \mathrm{I}++)\{ \\ & \mathrm{a}=\mathrm{a} * \mathrm{q}(\mathrm{I}) ; \longrightarrow\end{aligned}$
\}

01110110110110
11111011011011 01101000010110
10110101110110
10010110111010

Why is the Stored-Program Model Good?

- Treat programs as data
- Load and store them from disk/punch cards
- Much better than flipping switches
- Programs can modify themselves
- Programs can modify/create other programs
- Assemblers
- Compilers
- Debuggers
- Stored-program Computers as Universal Devices
- Church's thesis

Why Isn't the Stored-Program Model Perfect?

- Big complexity/computational power cost to provide flexibility
- ASICs
- Efficiency of Reconfigurable Logic
- Large number of research projects based around "making programmable computers closer to custom VLSI"

Alternatives to Stored-Program Model

- Dataflow
- Instructions explicitly encode dependencies
- Goal is to expose fine-grained parallelism
- Really an alternate form of stored-program
- Embedding Computation In Hardware
- ASICs
- Reconfigurable Logic

Why Look at Alternatives

- Growth of embedded systems
- Flexibility less key than performance and hardware efficiency
- Current state-of-the-art is hand-designed ASIC
- Changing application domain
- Multi-phased streaming applications

Silicon VLSI

- Take a lump of silicon, throw in some dopants, make transistors
- Geometric scaling in density/speed
- $50 \% /$ year increase in density
- 35\%/ year increase in system performance has actually improved to 50\%/ year in the last decade
- Use of increased transistors/chip for architectural improvements
- Low cost, high reliability, acceptable yield
- Very impressive given the variability of individual devices
- Integration creates new possibilities
- Tremendous jump in system performance with each level of integration
- Kinda at the end of the road for this
- Mixed-mode system-on-a-chip (SOC) products as the next big thing

Limitations?

- Wire delay already becoming a limiting factor on system speed
- Transistors get faster, wires slower
- Approaching 85\% of overall delay
- Transistors (FETs) are bulk devices
- Rely on having many atoms in each region
- Becomes impossible to lightly dope regions as we get to . 01 -micron fabrication
- Predictions:
- HP recently quoted 2012 as end of the road
- Current density curves get to <1 atom/bit by 2020

Alternatives

- Molecular/Quantum Electronics
- Most similar to current technology
- Essentially replace FETs with other devices that have similar behavior
- Carbon Nanotubes
- Mostly what the name says, tubes made out of carbon atoms
- Can get switch-like behavior, make wires
- Quantum Computing
- Expose quantum effects to the programming model
- Offers potential for performance that's impossible in conventional systems

> We will start with reversible and cellular concepts that are base of many technologies

What lessons can we learn from history of computing?

Who Invented the Computer?

-Questions we can ask:

- Who invented the computer?
- Why was the computer invented?
-It is more accurate to say the computer evolved, rather than that it was invented.
- (In fact, no one owns a patent for the invention of computers.)
-Many prototypes were invented, each based on earlier work or ideas.
-Let's look at the evolution of computers...

Let's start at the beginning...

- Ancient times:
-People wanted to count things (sheep), to keep track of how many they had (last night I had 53 sheep). To help keep track of what they were counting, they used counting aids:
- fingers
- pebbles
- notched sticks
- knotted rope
- etc.

Let's start at the beginning...

- Ancient times continued:
- Some transactions (trade) required calculations (I traded 3 sheep for 5
bottles of wine... this morning I have 47 sheep and a headache... someone's stealing my sheep!).
-Calculations are based on algorithms.

KEY CONCEPT

An algorithm is a step-by-step process that manipulates data.

Let's start at the beginning...

- Ancient times continued:
-The abacus was invented $\sim 5,000(?)$ years ago by the Babylonians, later upgraded in Asia.

-The abacus is the original mechanical counting device. Possible operations include:
- addition, subtraction, multiplication, and division
- even fractions, root square and statistics

Continuing on...

-1600s:
-In 1621, William Oughtred invented the slide rule (based on John Napier's logarithms).
-In 1642, Blaise Pascal invented the "Pascaline", the first mechanical digital calculator. Operations:

- addition and subtraction
- multiplication and division functionality added later

Side note

-1800s:
-Joseph Jacquard (a silk weaver) automated the pattern-weaving process in 1804. He encoded patterns on punched cards, which were read by the machine.
-So what?
-First programmable machine.

Continuing on...

-1800s, continued...
-English mathematician Charles Babbage wanted to calculate using steam. Why?

- human computers make too many mistakes.
- steam was latest, greatest technology.
- steam does physical tasks, why not mental?
-Proposed the difference engine. (1822)
- wheels \& shafts calculate using method of difference (easy process to mechanize)
- printed results
- never completed

Now we're getting somewhere...

-1800s, continued...
-Charles Babbage moved on to the analytical engine. (1834)

- general purpose calculating device
- embodies many modern computing concepts:
- memory
- programmable processor
- output device
- user-definable input of programs \& data
- proposed using punched cards

- never built
-Lady Ada Lovelace was the first programmer
- suggested using binary
- loops

Birth of Big Blue

$-1800 s$ s, continued...
-1880s: problems completing US census on time, competition for 1890 census.
-Herman Hollerith won with his tabulating machine

- used punched cards
- census took 6 months (plus 2 yrs)

-Hollerith started The Tabulating
- Machine Company, later became -International Business Machines $\bullet(\mathrm{IBM})$.

Hollerith \& Tabulating Machine

Laziness as a virtue

-1930s-40s:
-Konrad Zuse was lazy: he didn't want to perform calculations by hand, so he invented a computer.

- used electric relays, 2 states (on/off)
- used binary instead of decimal (easier to represent)
-War broke out, funding appeared.
- Konrad Zuse's Z3:
- 1st programmable, general-purpose, electromechanical computer.

Delunay story. Laziness will continue..

Wartime Codebreaking

-So far, computers crunch numbers.
-British mathematician Alan Turing believed machines could do any theoretical process a human could do.
-Letters are just symbols: use machine to break codes. COLOSSUS, a top secret machine to break the ENIGMA's codes.
-Turing test:

- Given 5 minutes, a keyboard \& a monitor, if we are not more than 70% sure it is a machine, we have to admit it has shown some intelligence.

War

-America Enters the War, needed firing tables calculated \Rightarrow funding appears in USA
-Howard Aiken, and IBM:

- Mark I: Electromechanical digital computer
- Need something faster.

War

-J. Presper Eckert \& John Mauchly

- ENIAC: Electronic Numerical Integrator \& Computer
- vacuum tubes (speed increased thousandfold)
- Patented as 1st electronic, general-purpose computer in 1946. Patent later voided. (ABC first, see text pg. 389)
- ready after the war.... (oops)
- limitations:
- no internal storage
- rewire plugboards \& set switches
- took days to re-program
- knew problems, but no time to fix

Post-War

-Post-war: 1940s and early 50s

-John von Neumann

- memory easier to change than rewiring hardware.
- separate hardware \& software
- store program \& data
- theoretical blueprint for all future computers
-Freddy Williams designed the EDSAC: the first stored-program computer.
-Eckert \& Mauchly Computer Company 1946
- UNIVAC: first commercial general-purpose computer, delivered to US Census Bureau by Remington-Rand, 1951.

Post-War

-Post-war: 1940s and early 50s, continued...
-Would you like a pastry with that computer?

- J. Lyons Co., purveyors of tea \& pastry, want a computer to streamline operations. Problem: none to buy in London.
- Make their own (with Cambridge): LEO: Lyons Electronic Office
- Others interested, add to product line
-IBM notices threat to empire, enters -computer market with the IBM 650.
- disadvantage: slow
- advantage: IBM sales force
- 1000 sold within a year
- used punched cards

Problems!

-Late 1950s, into 1960s
-Growing problem: SOFTWARE!
-Programming in machine language:

- 0's \& 1's
- hardware specific
- difficult \& tedious to write \& debug programs!
- everyone has custom software
- Not enough programmers!
-Software costs 2-4 times the amount of the machine!
-Compilers: Fortran \& COBOL

Replacing the Vacuum Tube

-Late 1950s, into 1960s

- Transistors invented in 1956
- 50th the size of vacuum tubes
- no heat
- 100th weight
- less power needed
-New problem: wiring the transistors together
- "tyranny of numbers"
- tangled mess of wires, hard to trace
-Solution: integrated circuit
- silicon, altered to create transistors \& other components, with layer of metal on top (which is evaporated except for connections)
- wiring now part of manufacturing process

Smaller than ever

-1959: first integrated circuit (IC) announced

- Not used right away: too expensive
- First IC cost $\$ 1000$
-1960s:
- Drive to put man on the moon.
- Need to fit computer in spaceship.
-1970s and Silicon Valley
- ICs: smaller, denser, faster, cheaper
-1971: first "microprocessor": Intel 4004

Altair

-Hobbyists dreamed of owning computers.
-1975: Altair 8800, first commercial microcomputer.

- $\$ 395$ for kit, $\$ 650$ built.
- Entered program via switches on the front, LED readout in binary format.

"Modern" computing

-1975: Microsoft licenses BASIC
-1976: Apple Computer Company is launched...
-1979: Apple II and Visicalc $\$ 1298$
-1979: IBM wants in...needs an OS!

- Why not use Apple OS?
- What transpired...
- Bill gets rich
-1981: IBM PC \$1265
- Soon after: PC clones.
- Bill gets richer. Why?
-By 1982: IBM owns more than half of PC market. Why?

"Modern" computing

-1984: The Macintosh. How was it different?

- commercial: http://www.apple-history.com/1984.html
-1990: Windows 3.0 (=heartburn for Apple Co.)
-1995+: Win 95/98/M.E...
-90s and TODAY:
- Faster, cheaper, smaller... whoah!
- Obsolescence
- The Internet and Web
- Networking your home ...inter-connectivity

Advances in Technology

Speed: doubles every 1-2 years

Memory: doubles every 3-4 years

Weight, Size: relatively constant except, for notebooks \& PDAs

Moore's Law:

Gordon Moore predicted that the number of transistors per integrated circuit would double every 18 months.

Conclusions from history

- Progress is exponential in time. How long?
- Realization technology for computers changes permanently. Forever?
- Basic ideas are not technology related by mathematics and algorithm related. But new mathematics is invented and new physics (quantum)
- More use of biology and psychology
- Operations, algorithms, programmability, memory, flexibility, reconfigurability.
- Everything interesting is still ahead of us!

