
FUNDAMENTAL PROBLEMS
AND

ALGORITHMS

Graph Theory and Combinational

© Giovanni De Micheli
Stanford University

Shortest/Longest path problem

•• Single-source shortest path problemSingle-source shortest path problem.
• Model:

– Directed graph GG(V, (V, E)E) with NN vertices.
– Weights on each edge.
– A source vertex.

• Single-source shortest path problem.
– Find shortest path from the source to any vertex.
– Inconsistent problem:

• Negative-weighted cycles.

Shortest path problem

• Acyclic graphs:
– Topological sort O(N O(N 2 2).).
–– --

• All positive weights:
– Dijkstra’s algorithm.

Bellman’s equations:

Dijkstra’s algorithm
DIJKSTRA(G(V, E, W))
{
 s 0 =0;
 for (i =1 to N)
 s i =w 0,i ,
 repeat {
 select unmarked vq such that sq is minimal;
 mark vq ;
 foreach (unmarked vertex v i)
 s i = min {s i , (sq +w q, i)},
 }
 until (all vertices are marked)
}

Apply to
Korea’s map,
robot tour, etc

Bellman-Ford’s
algorithmBELLMANFORD(G(V; E; W))BELLMANFORD(G(V; E; W))

{
 s 1 0 = 0;
 for (i = 1 to N)
 s 1 i =w 0, i ;
 for (j =1 to N){
 for (i =1 to N){
 s j+1

 i = min { s j i , (s j k +w q, i)},
 }
 if (s j+1 i == s j i ∀ i) return (TRUE) ;
 }
 return (FALSE)
 }

k≠i

Longest path problem

• Use shortest path algorithms:
– by reversing signs on weights.

• Modify algorithms:
– by changing min with max.

• Remarks:
– Dijkstra’s algorithm is not relevant.
– Inconsistent problem:

• Positive-weighted cycles.

Example – Bellman-Ford

• Iteration 1: l 0 =0, l 1 =3, l 2 = 1, l 3 =∞.
• Iteration 2: l 0 =0, l 1 =3, l 2 =2, l 3 =5.
• Iteration 3: l 0 =0, l 1 =3, l 2 =2, l 3 =6.

Liao-Wong’s
algorithm

LIAO WONG(G(V; E∪ F; W))
{
 for (i = 1 to N)
 l 1 i = 0;
 for (j = 1 to |F|+ 1) {{
 foreach vertex v i

 l j+1
 i = longest path in G(V, E,W E) ;

 flag = TRUE;
 foreach edge (v p, v q) ∈ F {
 if (l j+1

q < l j+ 1
 p + w p,q){

 flag = FALSE;
 E = E ∪ (v 0 , v q) with weight (l j+ 1 p + w p,q)
 }
 }
 if (flag) return (TRUE) ;
 } }
 return (FALSE)

Example – Liao-Wong

•• Iteration 1:Iteration 1: l 0 = 0, l 1 = 3, l 2 = 1, l 3 = 5.
• Adjust: add edge (v 0 , v 1) with weight 2.
•• Iteration 2:Iteration 2: l 0 = 0, l 1 = 3, l 2 = 2, l 3 = 6.

Vertex cover

• Given a graph G(V; E)
– Find a subset of the vertices

• covering all the edges.

• Intractable problem.
• Goals:

– Minimum cover.
– Irredundant cover:

• No vertex can be removed.

Example

Heuristic algorithm vertex based
VERTEX COVERV(G(V; E))
{
 C = ∅ ;
 while (E ≠≠≠≠≠≠≠≠ ∅) do {
 select a vertex v ∈ V;
 delete v from G(V, E) ;
 C=C ∪ {fv} ;
 }
}

Heuristic algorithm edge based
VERTEXCOVERE(G(V, E))
{
 C = ∅ ;
 while (E ≠≠≠≠≠≠≠≠ ∅) do {
 select an edge {u, v} ∈ E;
 C=C ∪ {u, v};
 delete from G(V, E) any edge incident
 to either u or v ;
 }
}

Graph coloring

• Vertex labeling (coloring):
– No edge has end-point with the same label.

• Intractable on general graphs.
• Polynomial-time algorithms for chordal (and

interval) graphs:
– Left-edge algorithm.

Graph coloring heuristic algorithm
VERTEXCOLOR(G(V, E))
{
 for (i =1 to |V|) {
 c =1
 while (∃ a vertex adjacent to vv ii

 with color c) do {
 c = c +1;
 color v i with color c ;
 }
 }
}

Graph
coloring

exact
algorithm

EXACT COLOR(G(V, E) , k)EXACT COLOR(G(V, E) , k)
{
repeat {
 NEXT VALUE(k) ;
 if (c k == 0)
 return ;
 if (k == n)
 c is a proper coloring;
 else
 EXACT COLOR(G(V, E) , k+ 1)
 }
}

Graph
coloring

exact
algorithm

NEXT VALUE(k)NEXT VALUE(k)
{
repeat {
 c k = c k + 1;
 if (there is no adjacent vertex to v k
 with the same color c k)
 return ;
 } until (c k =< maximum number of colors) ;
 c k = 0;
}

Interval graphs

• Edges represent interval intersections.
• Example:

– Restricted channel routing problem with no
vertical constraints.

• Possible to sort the intervals by left edge.

Example

Example

Left-edge
algorithmLEFT EDGE(I)

{
 Sort elements of I in a list L with ascending order of l i ;
 c = 0;
 while (Some interval has not been colored) do {{
 S = ∅ ;
 repeat {
 s = first element in the list Lwhose left edge
 l s is higher than the rightmost edge in S.
 S= S ∪ { s} ;
 } until (an element s is found);
 c = c + 1;
 color elements of S with color c;
 delete elements of S from L;
 } }
}

Clique partitioning and covering

• A clique partition is a cover.
• A clique partition can be derived from a cover by

making the vertex subsets disjoint.
• Intractable problem on general graphs.
• Heuristics:

– Search for maximal cliques.
• Polynomial-time algorithms for chordal graphs.

Heuristic
algorithm

CLIQUEPARTITION(G(V, E))CLIQUEPARTITION(G(V, E))
{
 =∅ ;
 while (G(V, E) not empty) do {
 compute largest clique C V in G(V, E) ;
 =∪ C;
 delete C from G(V, E) ;
 }
}

CLIQUE(G(V, E))CLIQUE(G(V, E))
{
 C = seed vertex;
 repeat {
 select vertex v ∈ V , v∉ C
 and adjacent to all vertices of C;
 if (no such vertex is found) return
 C = C ∪ {v} ;
 }}
}}

Covering and Satisfiability

• Covering problems can be cast as satisfiability.
• Vertex cover.

– Ex1: (x 1 + x 2) (x 2 + x 3) (x 3 + x 4) (x 4 + x 5)
– Ex2: (x3 + x4) (x1 + x3) (x1 + x2) (x2 + x4) (x4 + x5)

• Objective function:
• Result:

– Ex1: x 2 = 1, x 4 = 1
– Ex2: x 1 = 1, x 4 = 1

Covering problem

• Set covering problem:
– A set S.
– A collection C of subsets.
– Select fewest elements of C to cover S.

• Intractable.
• Exact method:

– Branch and bound algorithm.
• Heuristic methods.

Example
vertex-cover of a graph

Example
edge-cover of a hypergraph

Matrix representation
• Boolean matrix: A.A.
• Selection Boolean vector: x.x.
• Determine x x such that:

–– A xA x ≥≥≥≥ 1.
– Select enough columns to cover all rows.

• Minimize cardinality of x.

Example

