FUNDAMENTAL PROBLEMS AND ALGORITHMS

Graph Theory and Combinational

© Giovanni De Micheli Stanford University

Shortest/Longest path problem

- Single-source shortest path problem.
- Model:
 - Directed graph G(V, E) with N vertices.
 - Weights on each edge.
 - A source vertex.
- Single-source shortest path problem.
 - Find shortest path from the source to any vertex.
 - Inconsistent problem:
 - Negative-weighted cycles.

Shortest path problem

Bellman's equations:

$$-s_j = \min_{k \neq j} (s_k + w_{kj}); \quad j = 1, 2, ..., N$$

- Acyclic graphs:
 - Topological sort $O(N^2)$.

$$s_j = \min_{k < j} (s_k + w_{kj}); \quad j = 1, 2, ..., N$$

- All positive weights:
 - Dijkstra's algorithm.

Dijkstra's algorithm

```
DIJKSTRA(G(V, E, W))
                                                    Apply to
         s_0 = 0;
                                                    Korea's map,
         for (i = 1 \text{ to } N)
                                                    robot tour, etc
                 s_i = w_{0,i},
          repeat {
                select unmarked v_a such that s_a is minimal;
                mark \mathbf{v}_{\mathbf{q}};
                foreach (unmarked vertex v; )
                      s_{i} = \min \{s_{i}, (s_{i} + w_{i})\},\
                  until (all vertices are marked)
```

Bellman-Ford's algorithm

```
BELLMANFORD(G(V; E; W))
             s^{1}_{0} = 0;
             for (i = 1 \text{ to } N)
                  s^{1}_{i} = w_{0,i};
             for (i = 1 \text{ to } N)
                     for (i = 1 \text{ to } N)
                              s^{j+1}_{i} = min \{ s^{j}_{i}, (s^{j}_{k} + w_{q,i}) \},
                                        k≠i
                     if (s^{j+1}) = s^j, \forall i) return (TRUE);
              return (FALSE)
```

Longest path problem

- Use shortest path algorithms:
 - by reversing signs on weights.
- Modify algorithms:
 - by changing min with max.
- Remarks:
 - Dijkstra's algorithm is not relevant.
 - Inconsistent problem:
 - Positive-weighted cycles.

Example – Bellman-Ford

- Iteration 1: $l_0 = 0$, $l_1 = 3$, $l_2 = 1$, $l_3 = \infty$.
- Iteration 2: $1_0 = 0$, $1_1 = 3$, $1_2 = 2$, $1_3 = 5$.
- Iteration 3: $1_0 = 0$, $1_1 = 3$, $1_2 = 2$, $1_3 = 6$.

```
LIAO WONG(G( V; E \cup F; W))
                                                                  Liao-Wong's
         for ( i = 1 \text{ to } N)
                                                                       algorithm
                 1^{1}_{i} = 0;
         for (j = 1 \text{ to } |F| + 1) {
                foreach vertex v<sub>i</sub>
                          1^{j+1}_{i} = longest path in G(V, E, W<sub>E</sub>);
                flag = TRUE;
                foreach edge (v_p, v_q) \in F \{
                          \mathbf{if} (1^{j+1}_{q} < 1^{j+1}_{p} + \mathbf{w}_{p,q}) 
                             flag = FALSE;
                             E = E \cup (v_0, v_q) with weight (1^{j+1}_p + w_{p,q})
                if ( flag ) return (TRUE) ;
                  return (FALSE)
```

Example – Liao-Wong

- Iteration 1: $l_0 = 0$, $l_1 = 3$, $l_2 = 1$, $l_3 = 5$.
- Adjust: add edge (v₀, v₁) with weight 2.
- **Iteration 2:** $1_0 = 0$, $1_1 = 3$, $1_2 = 2$, $1_3 = 6$.

Vertex cover

- Given a graph G(V; E)
 - Find a subset of the vertices
 - covering all the edges.
- Intractable problem.
- Goals:
 - Minimum cover.
 - Irredundant cover:
 - No vertex can be removed.

Example

Heuristic algorithm vertex based

```
VERTEX COVERV(G(V; E))
             C = \emptyset;
             while (E \neq \emptyset) do {
                 select a vertex v \in V;
                 delete v from G(V, E);
                 C=C \cup \{f_v\};
```

Heuristic algorithm edge based

```
VERTEXCOVERE(G(V, E))
    C = \emptyset:
     while (E \neq \emptyset) do {
            select an edge \{u, v\} \in E;
            C=C \cup \{u, v\};
            delete from G(V, E) any edge incident
                    to either u or v;
```

Graph coloring

- Vertex labeling (coloring):
 - No edge has end-point with the same label.
- Intractable on general graphs.
- Polynomial-time algorithms for chordal (and interval) graphs:
 - Left-edge algorithm.

Graph coloring heuristic algorithm

```
VERTEXCOLOR(G(V, E))
     for (i =1 to |V|) {
         c = 1
         while (\exists a vertex adjacent to \mathbf{v}_i
                    with color c) do {
                           c = c + 1;
                           color v; with color c;
```

```
EXACT\ COLOR(\ G(\ V,\ E)\ ,\ k)
                                       Graph
                                      coloring
repeat {
                                        exact
        NEXT VALUE(k);
        if ( c_k == 0)
                                     algorithm
            return;
       if (k == n)
             c is a proper coloring;
       else
            EXACT COLOR( G(V, E), k+1)
```

```
Graph
NEXT VALUE( k)
                                       coloring
                                         exact
repeat {
                                      algorithm
          c_{k} = c_{k} + 1;
          if (there is no adjacent vertex to v<sub>k</sub>
               with the same color c_k)
            return;
        } until ( c_k = < maximum number of colors );
        c_{k} = 0;
```

Interval graphs

- Edges represent interval intersections.
- Example:
 - Restricted channel routing problem with no vertical constraints.
- Possible to sort the intervals by left edge.

Example

Example

Left-edge algorithm

```
Sort elements of I in a list L with ascending order of l i;
c = 0;
while (Some interval has not been colored ) do {
     S = \emptyset:
    repeat {
           s = first element in the list Lwhose left edge
               1 s is higher than the rightmost edge in S.
          S=S \cup \{s\};
            } until ( an element s is found );
            c = c + 1;
            color elements of S with color c;
            delete elements of S from L;
```

LEFT EDGE(I)

Clique partitioning and covering

- A clique partition is a cover.
- A clique partition can be derived from a cover by making the vertex subsets disjoint.
- Intractable problem on general graphs.
- Heuristics:
 - Search for maximal cliques.
- Polynomial-time algorithms for chordal graphs.

```
Heuristic
CLIQUEPARTITION(G(V, E))
                                                                algorithm
          =\emptyset;
          while (G(V, E) not empty) do {
                                        compute largest clique C V in G(V, E);
                                         =\cup C;
                                        delete C from G(V, E);
CLIQUE(G(V, E))
       C = seed vertex;
       repeat {
               select vertex v \in V, v \notin C
                  and adjacent to all vertices of C;
               if (no such vertex is found) return
                  C = C \cup \{v\};
```

Covering and Satisfiability

- Covering problems can be cast as satisfiability.
- Vertex cover.
 - Ex1: $(x_1 + x_2)(x_2 + x_3)(x_3 + x_4)(x_4 + x_5)$
 - Ex2: $(x_3 + x_4) (x_1 + x_3) (x_1 + x_2) (x_2 + x_4) (x_4 + x_5)$
- Objective function:
- Result:
 - **Ex1:** $x_2 = 1$, $x_4 = 1$
 - **Ex2:** x 1 = 1, x $_4$ = 1

Covering problem

- Set covering problem:
 - -A set S.
 - A collection C of subsets.
 - Select fewest elements of C to cover S.
- Intractable.
- Exact method:
 - Branch and bound algorithm.
- Heuristic methods.

Example vertex-cover of a graph

Example edge-cover of a hypergraph

Matrix representation

- Boolean matrix: A.
- Selection Boolean vector: x.
- Determine x such that:
 - $-\mathbf{A} \mathbf{x} \geq 1$.
 - Select enough columns to cover all rows.
- Minimize cardinality of x.

Example

