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Shortest/Longest path problem

•• Single-source shortest path problemSingle-source shortest path problem.
•  Model:

– Directed graph GG(V, (V, E)E) with NN vertices.
– Weights on each edge.
– A source vertex.

•  Single-source shortest path problem.
– Find shortest path from the source to any vertex.
– Inconsistent problem:

•  Negative-weighted cycles.



Shortest path problem

• Acyclic graphs:
– Topological sort O(N O(N 2 2 ).).
–– --

•  All positive weights:
–  Dijkstra’s algorithm.

Bellman’s equations:



Dijkstra’s algorithm
DIJKSTRA(G(V, E, W))
{
             s 0 =0;
             for (i =1 to N)
                       s i =w 0,i ,
             repeat {
                      select unmarked vq such that sq is minimal;
                      mark vq ;
                      foreach (unmarked vertex v i )
                             s i = min {s i , (sq +w q, i )},
                        }
                        until (all vertices are marked)
}

Apply to
Korea’s map,
robot tour, etc



Bellman-Ford’s
algorithmBELLMANFORD(G(V; E; W))BELLMANFORD(G(V; E; W))

{
                s 1 0 = 0;
                for (i = 1 to N)
                      s 1 i =w 0, i ;
                for (j =1 to N){
                          for (i =1 to N){
                                     s j+1

 i  = min { s j i , (s  j k +w q, i )},
                                }
                          if (s j+1 i == s j i   ∀ i ) return (TRUE) ;
                     }
                 return (FALSE)
   }

k≠i



Longest path problem

•  Use shortest path algorithms:
–  by reversing signs on weights.

•  Modify algorithms:
–  by changing min with max.

•  Remarks:
–  Dijkstra’s algorithm is not relevant.
–  Inconsistent problem:

•  Positive-weighted cycles.



Example – Bellman-Ford

• Iteration 1: l 0 =0, l 1 =3, l 2 = 1, l 3 =∞.
•  Iteration 2: l 0 =0, l 1 =3, l 2 =2, l 3 =5.
•  Iteration 3: l 0 =0, l 1 =3, l 2 =2, l 3 =6.



Liao-Wong’s
algorithm

LIAO WONG(G( V; E∪  F; W))
{
             for ( i = 1 to N)
                        l 1 i = 0;
             for ( j = 1 to |F|+ 1) {{
                      foreach vertex v i

                                    l j+1
 i = longest path in G( V, E,W E ) ;

                      flag = TRUE;
                      foreach edge ( v p, v q) ∈ F {
                                    if ( l j+1 

q  <  l j+ 1
 p + w p,q ){

                                        flag = FALSE;
                                        E = E ∪  ( v 0 , v q) with weight ( l j+ 1 p + w p,q)
                                                                     }
                                                               }
                       if ( flag ) return (TRUE) ;
                       } }
                         return (FALSE)



Example – Liao-Wong

•• Iteration 1:Iteration 1: l 0 = 0, l 1 = 3, l 2 = 1, l 3 = 5.
• Adjust: add edge (v 0 , v 1 ) with weight 2.
•• Iteration 2:Iteration 2: l 0 = 0, l 1 = 3, l 2 = 2, l 3 = 6.



Vertex cover

•  Given a graph G(V; E)
– Find a subset of the vertices

• covering all the edges.

•  Intractable problem.
•  Goals:

– Minimum cover.
– Irredundant cover:

•  No vertex can be removed.



Example



Heuristic algorithm vertex based
VERTEX COVERV(G(V; E))
{
                   C = ∅ ;
                   while (E ≠≠≠≠≠≠≠≠ ∅ ) do {
                        select a vertex v ∈  V;
                        delete v from G(V, E) ;
                        C=C ∪  {fv} ;
                                                }
}



Heuristic algorithm edge based
VERTEXCOVERE(G(V, E))
{
       C = ∅ ;
        while (E ≠≠≠≠≠≠≠≠ ∅ ) do {
                  select an edge {u, v} ∈  E;
                  C=C ∪  {u, v};
                  delete from G(V, E) any edge incident
                              to either u or v ;
                                     }
}



Graph coloring

• Vertex labeling (coloring):
– No edge has end-point with the same label.

•  Intractable on general graphs.
•  Polynomial-time algorithms for chordal (and

interval) graphs:
– Left-edge algorithm.



Graph coloring heuristic algorithm
VERTEXCOLOR(G(V, E))
{
        for (i =1 to |V| ) {
              c =1
              while (∃  a vertex adjacent to vv  ii

                             with color c) do {
                                        c = c +1;
                                       color v i with color c ;
                                           }
                            }
}



Graph
coloring

exact
algorithm

EXACT COLOR( G( V, E) , k)EXACT COLOR( G( V, E) , k)
{
repeat {
               NEXT VALUE( k) ;
               if ( c k == 0)
                        return ;
              if ( k == n)
                        c is a proper coloring;
             else
                        EXACT COLOR( G( V, E) , k+ 1)
            }
}



Graph
coloring

exact
algorithm

NEXT VALUE( k)NEXT VALUE( k)
{
repeat {
                c k = c k + 1;
                if ( there is no adjacent vertex to v k
                         with the same color c k )
                   return ;
              } until ( c k =< maximum number of colors ) ;
              c k = 0;
}



Interval graphs

•  Edges represent interval intersections.
•  Example:

– Restricted channel routing problem with no
vertical constraints.

•  Possible to sort the intervals by left edge.



Example



Example



Left-edge
algorithmLEFT EDGE( I)

{
          Sort elements of I in a list L with ascending order of l i ;
          c = 0;
          while (Some interval has not been colored ) do {{
                  S = ∅ ;
                 repeat {
                           s = first element in the list Lwhose left edge
                                 l s is higher than the rightmost edge in S.
                          S= S ∪  { s} ;
                            } until ( an element s is found );
                            c = c + 1;
                            color elements of S with color c;
                            delete elements of S from L;
                                                                                      } }
}



Clique partitioning and covering

• A clique partition is a cover.
•  A clique partition can be derived from a cover by

making the vertex subsets disjoint.
•  Intractable problem on general graphs.
•  Heuristics:

– Search for maximal cliques.
•  Polynomial-time algorithms for chordal graphs.



Heuristic
algorithm

CLIQUEPARTITION( G( V, E) )CLIQUEPARTITION( G( V, E) )
{
                  =∅ ;
                 while ( G( V, E) not empty ) do {
                                                                    compute largest clique C V in G( V, E) ;
                                                                       =∪  C;
                                                                     delete C from G( V, E) ;
                                                                     }
}

CLIQUE( G( V, E) )CLIQUE( G( V, E) )
{
             C = seed vertex;
             repeat {
                          select vertex v ∈ V , v∉  C
                                and adjacent to all vertices of C;
                          if (no such vertex is found) return
                                C = C ∪  {v} ;
                       }}
}}



Covering and Satisfiability

•  Covering problems can be cast as satisfiability.
•  Vertex cover.

– Ex1: ( x 1 + x 2 ) (x 2 + x 3 ) (x 3 + x 4 ) (x 4 + x 5)
– Ex2: (x3 + x4 ) (x1 + x3) (x1 + x2) (x2 + x4) (x4 + x5)

• Objective function:
• Result:

– Ex1: x 2 = 1, x 4 = 1
– Ex2: x 1 = 1, x 4 = 1



Covering problem

• Set covering problem:
– A set S.
– A collection C of subsets.
– Select fewest elements of C to cover S.

•  Intractable.
•  Exact method:

–  Branch and bound algorithm.
•  Heuristic methods.



Example
vertex-cover of a graph



Example
edge-cover of a hypergraph



Matrix representation
• Boolean matrix: A.A.
•  Selection Boolean vector: x.x.
•  Determine x x such that:

–– A xA x ≥≥≥≥ 1.
– Select enough columns to cover all rows.

•  Minimize cardinality of x.



Example


