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Goal: 
        The goal of this project is to design an image matching processor, describe it in 
HDL (Verilog), synthesize, implement and test using Xilinx FPGA. The processor 
reads two images one is a sub set of the other and locates the subset in the superset 
image. 
       
1. Introduction and Approach: 

       Image matching is the fundamental basis for many problems in computer 
vision. In object recognition, images in the object library are compared with the image 
under test. In panorama mosaic, global registration is performed to determine the 
relative projective mapping between different images. Other applications include 
location recognition in robot navigation, content-based image retrieval, 3D 
reconstruction, stereo image matching and motion tracking.  
    
           This project discusses one method of implementation of an image matching 
processor. The hardware model converts the images to frequency domain by 
performing FFT (Fast Fourier Transform) operation which allows reducing the 
convolution process to elementary matrix product. The resultant product matrix goes 
through the IFFT (Inverse Fast Fourier Transform) .The matrix obtained from IFFT is 
scanned for the highest intensity which indicates the high co-relation of the two images. 
 
1.1 Introduction to Signals: 
 
 
  A Signal can be defined as a set of information or data. In general signal can be a 
function of one or more variables. 
 
Example: 
Speech: Speech is an audio signal that varies with time. This is an example of one-
dimensional signals, as the signal is a function of only one variable, time. The time, 
here, varies continuously. So Speech can be represented as a function of time (t) 
 
 I.e.   (Speech signal)F = f (t)  
 
Picture: A Picture is a two-dimensional signal that depends on the spatial coordinates (x 
and y coordinates) of the picture plane. A picture, in general, is continuous in x and y 
directions and the strength/intensity of colors at each point. So picture can be 
represented as a function of coordinates x and y. 
 
 
I.e. (Picture) P = f(x,y) 
 
1.1.1 Classification of signals: 
The are a number of ways in which the signals are classified, but in general they are 
classified into  
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1.1.1.1Continuous-time and discrete-time signals:  
 
Signals that are continuous in time are called continuous time signals as shown in Fig 1. 
Signals that are discontinuous or discrete in time are said to be discrete-time signals as 
shown in Fig 1.2 
 
 

 
                  Fig 1.1                                                       Fig1.2   
1.1.1.2 Analogue and Digital signals: 

• Analog signals are continuous both in time and amplitude; such as Fig. 1.1 
• Digital signals are discrete both in time and amplitude, e.g. Fig. 1.2 
• A signal which is discrete in time, but continuous in amplitude, is called 

sampled or discrete-time signal e.g., Fig. 1.3. 
 

 
 

  
                         Fig 1.3             
   
 
1.1.2 Useful Operations on Signals: 
 
1.1.2.1 Time Shifting:  k(t)=f(t ± T)   
  Figure 1.4 demonstrates the time shifting property. 
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                                Fig 1.4 
 
1.1.2.2 Time Scaling: 
Figure 1.5 demonstrates the time shifting property. 
 

 
                              Fig 1.5 
1.1.2.1 Time Inversion (Reversal): Ø (t) =f (-t) 
Figure 1.6 demonstrates the time shifting property. 
  

 
                             Fig 1.6 
               
1.1.3 Signal Representation using Impulse Function: 
 
 

 
                                                              Fig 1.7 
Any signal can be expressed as a sum of scaled and shifted unit impulses. We begin 
with the pulse or “staircase” approximation ~x(t) to a continuous signal), as illustrated in Fig. 
1.7. Conceptually, this is trivial: for each discrete sample of the original signal, we 
make a pulse signal. Then we add up all these pulse signals to make up the approximate 
signal. Each of these pulse signals can in turn be represented as a standard pulse scaled 
by the appropriate value and shifted to the appropriate place. In mathematical notation: 
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As we let _ approach zero, the approximation ~x(t) becomes better and better, and the in the 
limit equal to the original signal).Therefore, 

         
Also, as , the summation approaches an integral, and the pulse approaches the unit 
impulse: 

                                                   eq 1 
In other words, we can represent any signal as an infinite sum of shifted and scaled unit 
impulses. 
 
 
1.1.4. Linear Systems 
In other words, we can represent any signal as an infinite sum of shifted and scaled unit 
impulses 

    
 
Where  denotes the transform, a function from input signals to output signals. 
Systems come in a wide variety of types. One important class is known as linear 
systems. To see whether a system is linear, we need to test whether it obeys certain 
rules that all linear systems obey. The two basic tests of linearity are homogeneity and 
additivity. 
 
 
1.1.4.1 Homogeneity. As we increase the strength of the input to a linear system, say 
we double it, and then we predict that the output function will also be doubled. For 
example, if the current injected to a passive neural membrane is doubled, the resulting 
membrane potential fluctuations will double as well. This is called the scalar rule or 
sometimes the homogeneity of linear systems. 
 
1.1.4.2 Additivity. Suppose we measure how the membrane potential fluctuates over 
time in response to a complicated time-series of injected current . Next, we present 
a second (different) complicated time-series . The second stimulus also generates 
fluctuations in the membrane potential which we measure and write down. Then, we 
present the sum of the two currents   and see what happens. Since the 
system is linear, the measured membrane potential fluctuations will be just the sum of 
the fluctuations to each of the two currents presented separately. 
1.1.4.3 Superposition. Systems that satisfy both homogeneity and additivity are 
considered to be 
Linear systems. These two rules, taken together, are often referred to as the principle of 
superposition. Mathematically, the principle of superposition is expressed as: 

                                      
Homogeneity is a special case in which one of the signals is absent. Additivity is a 
special case in which   . 
1.1.4.4 Shift-invariance. Suppose that we inject a pulse of current and measure the 
membrane potential fluctuations. Then we stimulate again with a similar pulse at a 
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different point in time, and again we measure the membrane potential fluctuations. If 
we haven’t damaged the membrane with the first impulse then we should expect that 
the response to the second pulse will be the same as the response to the first pulse. The 
only difference between them will be that the second pulse has occurred later in time, 
that is, it is shifted in time. When the responses to the identical stimulus presented 
shifted in time are the same, except for the corresponding shift in time, then we have a 
special kind of linear system called a shift-invariant linear system. Just as not all 
systems are linear, not all linear systems are shift-invariant. 
In mathematical language, a system T is shift-invariant if and only if: 
   
 
1.1.5 Convolution: 
To characterize a shift-invariant linear system, we need to measure only one thing: the 
way the system responds to a unit impulse. This response is called the impulse response 
function of the system. Once we’ve measured this function, we can (in principle) 
predict how the system will respond to any other possible stimulus. 
 

   
 
    Fig1.8 characterizing a linear system using its impulse response. 
 
 
The way we use the impulse response function is illustrated in Fig. xx. We conceive of 
the input stimulus, in this case a sinusoid, as if it were the sum of a set of impulses (Eq. 
1). We know the responses we would get if each impulse was presented separately (i.e., 
scaled and shifted copies of the impulse response). We simply add together all of the 
(scaled and shifted) impulse responses to predict how the system will respond to the 
complete stimulus. 
 
1.1.5.1 convolution integral. Begin by using Eq.1 to replace the input signal x (t) by its 
representation in terms of impulses: 
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Now let h (t) be the response of to the unshifted unit impulse, i.e.,  

Then by using shift-invariance, 
 

                                                          eq (2) 
Notice what this last equation means. For any shift-invariant linear system T, we know 
its impulse response once we know its impulse response  (that is, its response to a 
unit impulse), we can forget about T entirely, and just add up scaled and shifted copies of 

to calculate the response of it to any input whatsoever. Thus any shift-invariant 
linear system is completely characterized by its impulse response  
 
The way of combining two signals specified by Eq.2 is know as convolution. It is such 
a widespread and useful formula that it has its own shorthand notation,* .For any two 
signals x and y there will be another signal z z obtained by convolving x with y, 

                                                      

1.2. Time and Frequency Representation
The most common representation of signals and waveforms is in the time domain. 
However, most signal analysis techniques work only in the frequency domain. The 
concept of the frequency domain representation of a signal is quite difficult to 
understand when one is first introduced to it.  

1.2.1. Time and Frequency Domains 
The frequency domain is simply another way of representing a signal. For example, 
consider a simple sinusoid in Fig1.9 
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                                          Fig1.9 

The time - amplitude axes on which the sinusoid is shown define the time plane. If an 
extra axis is added to represent frequency, then the sinusoid would be as illustrated 
below in figure 2.0.  

 

                                              Fig2.0 

The frequency - amplitude axes define the frequency plane in a manner similar to the 
way the time plane is defined by the time - amplitude axes. This frequency plane is 
what is represented when the spectrum of a signal is shown. The frequency plane is 
orthogonal to the time plane, and intersects with it on a line which is the amplitude axis.  

Note that the time signal can be considered to be the projection if the sinusoid onto the 
time plane (time - amplitude axes). The actual sinusoid can be considered to be as 
existing some distance along the frequency axis away from the time plane. This 
distance along the frequency axis is the frequency of the sinusoid, equal to the inverse 
of the period of the sinusoid.  

The waveform also has a projection onto the frequency plane. If you imagine yourself 
standing on the frequency axis, looking toward the sinusoid, you would see the sinusoid 
as simply a line. This line will have a height equal to the amplitude of the sinusoid. So, 
the projection of the sinusoid onto the frequency plane is simply a line equal to the 
amplitude of the sinusoid. These two projections mean that the sinusoid appears as a 
sinusoid in the time plane (time - amplitude axes), and as a line in the frequency plane 
(frequency - amplitude axes) going up from the frequency of the sinusoid to a height 
equal to the amplitude of the sinusoid. It should be noted very carefully that all the 
information about the sinusoid (frequency, amplitude and phase) is represented in the 
time plane projection, but all phase information is lost in the projection onto the 
frequency plane. If the full signal is to be reconstructed from the frequency 
representation then an additional graph called the phase diagram is needed. The phase 
diagram is simply a graph of the phase versus frequency, similar to the amplitude 
versus frequency graph obtained from the frequency plane. Although it examined only 
for a sinusoidal waveform, it is relevant to all waveforms because any non-sinusoidal 
waveform can be expressed as the sum of various sinusoidal components. This is 
achieved by Fourier series expansion. 
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1.3. FOURIER SERIES: 

The Fourier series is a mathematical tool used for analyzing periodic functions by 
decomposing such a function into a weighted sum of much simpler sinusoidal 
component functions sometimes referred to as normal Fourier modes, or simply 
modes for short. The weights, or coefficients, of the modes, are one-to-one mapping of 
the original function. Fourier series serve many useful purposes, as manipulation and 
conceptualization of the modal coefficients are often easier than with the original 
function. 
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1.4. Fourier Transform 
The Fourier transform is used to transform a continuous time signal into the frequency 
domain. It describes the continuous spectrum of a non periodic time signal. The Fourier 
transform X(f) of a continuous time function x(t) can be expressed as  

 

The inverse transform is  

 

The Fourier Transform provides the means of transforming a signal defined in the time 
domain into one defined in the frequency domain. When a function is evaluated by 
numerical procedures, it is always necessary to sample it in some fashion. This means 
that in order to fully evaluate a Fourier transform with digital operations, it is necessary 
that the time and frequency functions be sampled in some form or another. Thus the 
digital or Discrete Fourier Transform (DFT) is of primary interest.  

1.4.1. Discrete Fourier Transform 
This is used in the case where both the time and the frequency variables are discrete 
(which they are if digital computers are being used to perform the analysis). Let x(nT) 
represent the discrete time signal, and let X(mF) represent the discrete frequency 
transform function. The Discrete Fourier Transform (DFT) is given by  
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where  

 

1.4.2. Fast Fourier Transform 
The fast Fourier transform (FFT) is simply a class of special algorithms which 
implement the discrete Fourier transform with considerable savings in computational 
time. It must be pointed out that the FFT is not a different transform from the DFT, but 
rather just a means of computing the DFT with a considerable reduction in the number 
of calculations required.  
 The  number  of  complex  multiplication  and  addition  operations  required  by  the  
simple  forms  both for  the  Discrete  Fourier  Transform  (DFT)  and  Inverse  Discrete  
Fourier  Transform (IDFT) is of order N2   as there are N data points to calculate, each 
of which requires N complex  arithmetic operations.  
 
For length n input vector x, the DFT is a length n vector X, with n elements:  
 

 
 
In  computer  science  jargon,  we  may  say  they  have  algorithmic  complexity  O(N )  
and  hence is not a very efficient method. If we can't do any better than this then the 
DFT will not be  very  useful  for  the  majority  of  practical  DSP  applications. 
However,  there  are  a  number  of  different  'Fast  Fourier  Transform'  (FFT)  
algorithms  that  enable  the  calculation  the  Fourier transform of a signal much faster 
than a DFT. As  the  name  suggests,  FFTs  are  algorithms  for  quick  calculation  of  
discrete  Fourier transform  of   a   data   vector.   The   FFT   is   a   DFT   algorithm   
which   reduces   the   number   of computations needed for N points from O(N )2 to 
O(N log N) where log is the base-2 logarithm. 
The 'Radix 2' algorithms are useful if N is a regular power of 2 (N=2). If we assume that 
algorithmic  complexity  provides  a  direct  measure  of  execution  time  and  that  the  
relevant  logarithm base is 2 then as shown in Fig. 2.1, ratio of execution times for the 
(DFT) vs. (Radix 2FFT) (denoted as 'Speed Improvement Factor') increases 
tremendously with increase in N.  
 
The term 'FFT' is actually slightly ambiguous, because there are several commonly 
used ‘FFT’ algorithms. There are two different Radix 2 algorithms, the so-called 
'Decimation in Time' (DIT) and ‘Decimation in Frequency’ (DIF) algorithms.  Both of 
these rely on the recursive decomposition of an N point transform into 2 (N/2) point 
transforms.  
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                                                         Fig 2.1 
 
The radix-2 decimation-in-frequency FFT is an important algorithm obtained by the 
divide-and-conquer approach. The Fig. 2.2 below shows the first stage of the 8-point 
DIF algorithm. 

 

 
            Fig 2.2: Decimation in frequency of a length-N DFT into two length- N

The decimation, however, causes shuffling in data. The entire process involves v = log
2 

N stages of decimation, where each stage involves N/2 butterflies of the type shown in the Fig. 
2.3.  
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                                                   Fig 2.3 
 
 

Here W
N 

= e 
–j 2Π/ N, 

is the Twiddle factor.  
Consequently, the computation of N-point DFT via this algorithm requires (N/2) log

2 
N 

complex multiplications. For illustrative purposes, the eight-point decimation-in frequency 
algorithm is shown in the Figure below 2.4. We observe, as previously stated, that the output 
sequence occurs in bit-reversed order with respect to the input. Furthermore, if we abandon the 
requirement that the computations occur in place, it is also possible to have both the input and 
output in normal order.  

 

  
                                              Fig 2.4  

 

 

 

1.4.2. Multidimensional FFT: 
An interesting property of the Fourier transform is its separability. When we extend the 
DFT to two dimensions we can rewrite it as 
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with and . 
 
I.e. we can compute a multi-dimensional Fourier transform by performing one-
dimensional transforms in each dimension consecutively. 
  
                            f(x,y)  ↔  F(u.y) ↔ F(u,v) 
This important result implies that the 2D DFT F (u,v) can be obtained by  

• performing single dimension Fourier transform for function f(x,y)  on variable x 
would give an transformed function F(u,y) as shown in fig 2.5  

 

     
                                                   Fig 2.5 
                                     

• performing single dimension Fourier transform for F(u,y) on variable y would  
give an transformed function F(u,v) as shown in fig 2.6 

  
                                            Fig 2.6 

        The same separable form also applies for the inverse 2D DFT.  
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1.5. CONVOLUTION THEOREM: 

                   The convolution in time domain is equivalent to the product in frequency 

domain. 

 

Proof:  

 
 
 
 
 
 
 
 
 
 
 
 
 
2.0 FPGA DESIGN FLOW: 
The complete flow of the design process is shown in fig 3.0. It has many steps involved 
in it. 
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                                            Fig 3.0 
2.1 Functional Specification: 
         In this stage the designer need to understand the requirements of the system and 
specifying the abstract functionality of the system.  
 
2.2 RTL Description/Simulation:  
ASIC design descriptions are written by designers at different levels of abstraction. 
Most common hardware description languages used by designers are Verilog and 
VHDL. Both these languages are equally capable of providing complex constructs to 
describe complex functionality. Behavioral modeling forms highest level of abstraction. 
 
2.2.1. Behavioral description  
At initial stage of the design process the designer provides a Behavioral description of 
the functionality intended. Behavioral model does not care about the structure of the 
design, combinational or sequential elements used in the design, clock signal and the 
timing constraints involved. It captures the intended behavior of the design. The below 
given example describes the behavior of an adder that adds two four digit inputs to 
return and output. It is important to note that this description does not capture timing 
information.  
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2.2.2. RTL description 
RTL stands for Register Transfer Level. In this model the entire design is split into 
registers with flow of information between these registers at each clock cycle. RTL 
description captures the change in design at each clock cycle. All the registers are 
updated at the same time in a clock cycle. Typically an RTL description divides design 
into registers and the logic blocks that join those registers together. RTL captures the 
data flow but fails to give a good description of control flow. 
 

 

                         Register Transfer Level description of a design.

 

2.2.3. Structural Description 
Structural description consists of a network of instances of logic gates and registers 
described by a technology library as shown in fig 3.1 . Technology library is provided 
by fabrication houses. Technology library is a description of simple AND, OR, NOT 
and complicated multiple functionality cells. The description of a cell includes its 
geometry, delay and power characteristics. Structural modeling describes circuit in 
form of instances of cells and interconnects between those cells.  

 

 Fig 3.1: structural modeling. 

2.2.4. Simulation: 
Logic simulation is an essential part of digital circuit design. Logic simulation and 
verification are used to verify the functionality described by a design description 
against output values expected at the output ports of a digital integrated circuit.  
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There are mainly three classes of logic simulators: 
• compiled code logic simulators 
• event-driven logic simulators  and  
• compiled-code event driven simulators.  

 
2.3. Synthesis: 
 Synthesis is the process of converting a design expressed in register-transfer level 
Hardware Description Language (HDL) into a netlist of gates or logic primitives that 
can be mapped to the cells in the technology library. 
Synthesis involves three major steps:  

• Transition from RTL description into gates and flip-flops 
• Optimization of logic, and  
• Placement and routing of optimized netlist.  
•  

Most of the intelligence resides in optimization stage but modern synthesis tools apply 
many smart techniques while converting RTL description into gates in order to reduce 
the number of gates in the design.  
 
The synthesis tool generates various report file  
 
2.3.1. Area report: shows the designer how much of the resources of the chip the 
design has consumed. The designer can tell if the design is too big for a particular chip 
and the designer needs to target a larger chip, if the design should go into a smaller 
chip, or if the current chip will work fine. The designer can also get a relative size of 
the design to use in later stages of the design process 
 
2.3.2. Timing report: shows the timing of critical paths or specified paths of the 
design. The designer examines the timing of the critical paths closely because these 
paths ultimately determine how fast the design can run. If the longest path is a timing 
critical part of the design and is not meeting the speed requirements of the designer, 
then the designer may have to modify the HDL code or try new timing constraints to 
make the path meet timing. 
      The most important type of output data is the netlist for the design in the 
target technology. This output is a gate or macro level output in a format compatible 
with the place and route tools that are used to implement the design in the target chip. 
For instance, most place and route tools for FPGA technologies take in an EDIF netlist 
as an input format. The primitives used in the netlist are those used in the synthesis 
library to describe the technology. The place and route tools understand what to do with 
these primitives in terms of how to place a primitive and how to route wires to them. 
 
2.4. Place & Route: 
Place-and-route (P&R) describes several processes where the netlist elements are 
physically places and mapped to the FPGA physical resources, to create a file that can 
be downloaded in the FPGA chip. 
Place and route tools are used to take the design netlist and implement the design in the 
target technology device. The place and route tools place each primitive from the netlist 
into an appropriate location on the target device and then route signals between the 
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primitives to connect the devices according to the netlist. One input to the place and 
route tools is the netlist in EDIF or another netlist format. Another input to some place 
and route tools is the timing constraints, which give the place and route tools an 
indication about which signals have critical timing associated with them and to route 
these nets in the most timing efficient manner. These nets are typically identified during 
the static timing analysis process during synthesis. These constraints tell the place and 
route tool to place the primitives in close proximity to one another and to use the fastest 
routing. The closer the cells are, the shorter the routed signals will be and the shorter 
the time delay. Some place and route tools allow the designer to specify the placement 
of large parts of the design. This process is also known as floor planning. Floor 
planning allows the user to pick locations on the chip for large blocks of the design so 
that routing wires are as short as possible. The designer lays out blocks on the chip as 
general areas. The floor planner feeds this information to the place and route tools so 
that these blocks are placed properly. After the cells are placed, the router makes the 
appropriate connections. 
After all the cells are place and routed, the output of the place and route tools consists 
of data files that can be used to implement the chip. In the case of FPGAs, these files 
describe all of the connections needed to fuse FPGAs macro cells to implement the 
functionality required. Anti-fuse FPGAs use this information to burn the appropriate 
fuses while reprogrammable devices download this information to the device to turn on 
the appropriate transistor connections. The other output from the place and route 
software is a file used to generate the timing file. This file describes the actual timing of 
the programmed FPGA device or the final ASIC device. This timing file, as much as 
possible, describes the timing extracted from the device when it is plugged into the 
system for testing. The most common format of this file for most simulators is the SDF 
(Standard Delay Format). 
 
 
 
 
3. VERILOG: 
 Is a hardware description language that can describe hardware not only at the gate level 
and the register-transfer level, but also at the algorithmic level.There are two general 
styles of description: behavioral and structural. Structural Verilog describes how a 
module is composed of simpler modules or of basic primitives such as gates or 
transistors. Behavioral Verilog describes how the outputs are computed as functions of 
the inputs. There are two general types of Statements used in behavioral Verilog. 
Continuous assignment statements always imply combinational logic. Always blocks 
can imply combinational logic or sequential logic, depending how they are used. It is 
critical to partition your design into combinational and sequential components and write 
Verilog in such a way that you get what you want. If you don’t know whether a block 
of logic is combinational or sequential, you are very likely to get the wrong thing. 
 
 
3.1. Modeling with Continuous Assignments: 
A Verilog module is like a “cell” or “macro” in schematics. It begins with a description 
of the inputs and outputs, which in this case are 32 bit busses. In the structural 
description style, the module may contain 
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Assign statements, always blocks, or calls to other modules. 
  
  module adder(a, b, y); 
    input [31:0] a, b; 
    output [31:0] y; 
      assign y = a + b; 
    endmodule 

3.1.2 Operators: 
Verilog has three types of operators, they take either one, two or three operands. Unary 
operators appear on the left of their operand, binary in the middle, and ternary 
separates its three operands by two operators.  

 
 clock = ~clock;// ~ is the unary bitwise negation operator, 
 c = a || b;  // || is the binary logical or, a and b are the operands 
 r = s ? t : u;    // ?: is the ternary conditional operator, which 
                        // reads r = [if s is true then t else u] 

 
3.1.3 Reduction Operators: 
Reduction operators imply multiple-input gate acting on a single bus. For example, the 
following module describes an 8-input AND gate with inputs A[0], A[1], …, A[7]. 
  
                 module and8(a, y); 
                    input [7:0] a; 

         output y; 
assign y = &a; 
endmodule 

As one would expect, |, ^, ~&, and ~| reduction operators are available for OR, XOR, 
NAND, and NOR as well. Recall that a multi-bit XOR performs parity, returning true if 
an odd number of inputs are true. 
 
3.2. Useful Constructs: 
 
3.2.1. Internal Signals: 
 
Often it is convenient to break a complex calculation into intermediate variables. For 
example, in a full adder, we sometimes define the propagate signal as the XOR of the 
two inputs A and B. The sum from the adder is the XOR of the propagate signal and the 
carry in. We can name the propagate signal using a wire statement, in much the same 
way we use local variables in a programming language. 
 
module fulladder(a, b, cin, s, cout); 
input a, b, cin; 
output s, cout; 
wire prop; 
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assign prop = a ^ b; 
assign s = prop ^ cin; 
assign cout = (a & b) | (cin & (a | b)); 
endmodule 
 
Technically, it is not necessary to declare single-bit wires. However, it is necessary to 
declare multi-bit busses. It is good practice to declare all signals. Some Verilog 
simulation and synthesis tools give errors that are difficult to decipher when a wire is 
not declared. 
 
3.2.2. Precedence: 
 
 The order of precedence is important  
Assign cout = a&b | cin&(a|b) 
 
The operator precedence from highest to lowest is much as you would expect in other 
languages. AND has precedence over OR. 
 
 

                                
 
3.2.3. Constants: 
Constants may be specified in binary, octal, decimal, or hexadecimal. 

 
  
3.2.4. Tristates: 
It is possible to leave a bus floating rather than drive it to 0 or 1. This floating value is 
called ’z in Verilog. For example, a tri-state buffer produces a floating output when the 
enable is false. 
module tristate(a, en, y); 
input [3:0] a; 
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input en; 
output [3:0] y; 
assign y = en ? a : 4’bz; 
endmodule 
Floating inputs to gates cause undefined outputs, displayed as ’x in Verilog. At startup, 
state nodes such as the internal node of flip-flops are also usually initialized to ’x, as we 
will see later. 
 
3.2.5. Bit Swizzling: 
The {} notation is used to concatenate busses. For example, the following 8x8 
multiplier produces a 16-bit result, which is, placed on the upper and lower 8-bit result 
busses. 
module mul(a, b, upper, lower); 
input [7:0] a, b; 
output [7:0] upper, lower; 
assign {upper, lower} = a*b; 
endmodule 
 
3.3 Modeling with Always Blocks: 
Assign statements are reevaluated every time any term on the right hand side changes. 
Therefore, they must describe combinational logic. Always blocks are reevaluated only 
when signals in the header change. Depending on the form, always blocks may imply 
sequential or combinational circuits. 
 
3.3.1 Flip-Flops: 
 
Flip-flops are described with an always @(posedge clk) statement: 
module flop(clk, d, q); 
input clk; 
input [3:0] d; 
output [3:0] q; 
reg [3:0] q; 
always @(posedge clk) 
q <= d; 
endmodule 
 
The body of the always statement is only evaluated on the rising (positive) edge of the 
clock. At this time, the output q is copied from the input d. The <= is called a 
nonblocking assignment. 
 
3.3.2 Latches: 
 
Always blocks can also be used to model transparent latches, also known as D latches. 
When the clock is high, the latch is transparent and the data input flows to the output. 
When the clock is low, the latch goes opaque and the output remains constant. 
 
module latch(clk, d, q); 
input clk; 
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input [3:0] d; 
output [3:0] q; 
reg [3:0] q; 
always @(clk or d) 
if (clk) q <= d; 
endmodule 
 
The latch evaluates the always block any time either clk or d change. If the clock is 
high, the output gets the input. Notice that even though q is a latch node, not a register 
node, 
 
3.4. Combinational Logic: 
 
Always blocks imply sequential logic when some of the inputs do not appear in the @ 
stimulus list or might not cause the output to change. For example, in the flop module, 
d is not in the @ list, so the flop does not immediately respond to changes of d. In the 
latch, d is in the @ list, but changes in d are ignored unless clk is high. Always blocks 
can also be used to imply combinational logic if they are written in such a way that the 
output always is reevaluated given changes in any of the inputs. The following code 
shows how to define a bank of inverters with an always block. 
  
  module inv(a, y); 
    input [3:0] a; 
     output [3:0] y; 
     reg [3:0] y; 
      always @(a) 
       y <= ~a; 
         endmodule 
 
 
 
 
3.5. Memories: 
Verilog has an array construct used to describe memories. The following module 
describes a 64 word x 16 bit RAM that is written when wrb is low and otherwise read. 
 
  module ram(addr, wrb, din, dout); 
      input [5:0] addr; 
       input wrb; 
        input [15:0] din; 
         output [15:0] dout; 
          reg [15:0] mem[63:0]; // the memory 
            reg [15:0] dout; 
             always @(addr or wrb or din) 

   if (~wrb) mem[addr] <= din; 
                               else dout <= mem[addr]; 
    endmodule 
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3.6 Blocking and Nonblocking Assignment: 
Verilog supports two types of assignments inside an always block. Blocking 
assignments use the = statement. Nonblocking assignments use the <= statement. Do 
not confuse either type with the assign statement, which cannot appear inside always 
blocks at all. 
   module shiftreg(clk, sin, q); 
   input clk; 
    input sin; 

output [3:0] q; 
    // This is a correct implementation using nonblocking assignment 
      reg [3:0] q; 
       always @(posedge clk) 
        begin 
         q[0] <= sin; // <= indicates nonblocking assignment 
          q[1] <= q[0]; 
           q[2] <= q[1]; 
            q[3] <= q[2]; 

end 
  endmodule  
  the synthesized would be as shown in figure 3.2 
 

       
                                                    Fig 3.2 
 
 
Consider the same module using blocking assignments. When clk rises, the Verilog 
says that q [0] should be copied from sin. Then q [1] should be copied from the new 
value of q [0] and so forth. All four registers immediately get the sin value which is not 
which we intended to design.   
 
 
4.0. IMPLEMENTATION: 
The basic block diagram for the implementation is shown in the figure 4.0 
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                                                          Fig 4.0 
 
2D FFT:  
 This block converts the image which is a 2 dimensional NxN matrix from time domain 
to the frequency domain. Then the frequency domain image is forwarded to the further 
stages.  
 
Flip Matrix: This flips the obtained matrix left to right and top to bottom. One of the 
matrices must be flipped in order to counteract the inherent flip present in convolution. 
 
Multiplier: The block computes the product of the matrices element by element and 
forwards to the further stages. 
 
2D IFFT: This computed the inverse Fast Fourier Transform of the convolved 
(frequency domain) matrix and converts into time domain which is nothing but the 
convolution of the two images. 
 
Peak Intensity Identifier: This block scans the whole image and identifies the co-
ordinates of the highest intensity which identifies the location of the image. 
 
4.1. MATLAB IMPLIMENTATION: 
             As Mat Lab tool has readily available built in functions for 2DFFT, IFFT and 
multiplication the above model has been prototyped for verifying the functionality. 
 The model has been simulated in Mat Lab and the results are plotted.  
 
4.1.1.Matlab code: 
clear 
close all 
%picv   =imread('complx.bmp'); 
picin  = double(imread('sao1.bmp'))  ;
headin = double(imread('sao.bmp')); 
figure; 
image(uint8(headin)); 
axis('square'); 
% This is the threshold value. It is used to locate the point of 
% highest correlation between the head and the picture. Typical 
% values are 98 or 99 percent (.98, .99). 
th = .98; 
% Take the sizes of the two matrices. 
size_pic = size(picin) 
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size_head = size(headin) 
size_pic = size_pic(1:2); 
size_head = size_head(1:2); 
% To achieve a linear convolution, must zero-pad the matrices 
% to a size 1 less than the sum of the two sizes. 
pad = size_pic + size_head - [1 1]; 
 % Initialize final output matrix. 
fin = zeros(pad); 
  
% A convolution involves flipping the matrix up-down an  d
% left-right. We do not want this, so pre-flip the head 
% matrix. 
headin=flipud(fliplr(headin)); 
  
% Compute the linear convolution of the head with the picture by 
% multiplying the fourier coefficients together and then taking 
% the inverse fourier transfrom of it. 
fft_pic = fft2(picin, pad(1), pad(2)) 
fft_head = fft2(headin, pad(1), pad(2)) 
convo = ifft2(fft_pic.*fft_head); 
size(convo) 
  
figure; 
image(convo); 
axis('square'); 
 
% A high amount of correlation will be detected wherever there is 
% a large amount of brightness. To normalize this: compute the 
% convolution of the picture squared(to make differences more 
% extreme) with a matrix of ones the same size of the head matrix, 
% then divide the previous convolution matrix with this one. 
temp = fft2(picin,pad(1),pad(2)); 
temp2 =fft2(ones(size_head),pad(1),pad(2)); 
norml = ifft2(temp.*temp2).^.5; 
fin = fin + convo./norml; 
%end 
 % Find the largest value in the final matrix. 
high = max(max(fin)); 
 % Construct a new matrix, setting all values greater than a certain 
% threshold equal to white and everything else equal to black (on a 
% gray(2) colormap. 
%loc = (fin >= high - .05) + 1; 
size_fin = size(fin); 
loc =(fin(ceil(size_head(1)/2):size_fin(1)-
ceil(size_head(2)/2),ceil(size_head(2)/2):size_fin(2)-
ceil(size_head(2)/2)) >= high*th) +1; 
figure; 
image(uint8(picin)); 
axis('square'); 
figure; 
colormap(gray(2)); 
image(loc); 
axis('square'); 
 
 
4.1.2. RESULTS FROM MATLAB SIMULATION: 
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SIMULATION1: 
 
 

 
 
                                                    Window 1 
 
 
 
 
 
From the Window1 above: 
Figure 1: Is the image in which we need to search for match. 
Figure 2: Is the Kernel image which is to be traced in Fig 1. 
Figure 3: Is the convoluted image of images in figure1 and figure 2 .The dark red   
indicated the highest intensity. 
Figure 4: shows the position where the kernel image is located in Figure1.  
 
 
SIMULATION2: 
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                                                       Window 2 
 
 
From the window2 
Figure 1: Is the image in which we need to search for match. 
Figure 2: Is the Kernel image which is to be traced in Fig 1. 
Figure 3: Is the convoluted image of images in figure1 and figure 2 .The dark red   
indicated the highest intensity. 
Figure 4: shows the position where the kernel image is located in Figure1.  
 
 
 
4.2. HW IMPLIMENTATION: 
 
4.2.1 BLOCK DIAGRAM: 
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4.2.2. FFT:  
            To perform the FFT operation I am using the readily available Xilinx core (IP), 
with the configurations described in section 4.2.3  
 
 
4.2.3. CORE GENERATION:  
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              The FFT core is generated by using a Xilinx utility core generator. The core 
generator has a good graphical interface through which user can enter his configuration 
settings. The graphical view is shown in the Fig 4.1 below  
 
 

 
                                              Fig 4.1 
 
The Project options that the user should provide are the  
Device/Family name: The name of the device for which the core is to be generated. 
Output file type: 

 Verilog/VHDL (Behavioral/Structural) file  
 EDIF/NCG netlist file  

The Parameters for generating the FFT core are 
• Transform length 
• Input data width 
• Out put data width 
• Pipeline implementation 
• Scaling factor 
• Use of block ram or distributed ram available in the device 

The snap shot of the tool and configurable options is shown in fig 4.2 
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                                             Fig 4.2 
 
 
 
4.2.3.1. Core symbol and port definition: 
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4.2.3.2. Pipelined, Streaming I/O: 
 
The core has been configured for Radix2 streaming I/O. The Pipelined, Streaming I/O 
solution pipelines several Radix-2 butterfly processing engines to offer continuous data 
processing. Each processing engine has its own memory banks to store the input and 
intermediate data. The core has the ability to simultaneously perform transform 
calculations on the current frame of data, load input data for the next frame of data, and 
unload the results of the previous frame of data. The user can continuously stream in 
input data and, after the calculation latency, can continuously unload the results. If 
preferred, this design can also calculate one frame by itself or frames with gaps in 
between. This architecture supports unscaled full-precision and scaled fixed point 
arithmetic methods. In the scaled fixed point mode, the data is scaled after every pair of 
Radix-2 stages. The unloaded output data can either be in bit reversed order or in 
natural order. By choosing the output data in natural order, additional memory resource 
will be utilized. The timing diagram for this implementation is shown in figure 4.3   
 
 
 

 
                                                           Fig 4.3 
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4.2.3.3. Timing diagram from simulations: 
 
 

 
 
 
4.2.4. 2D FFT:  
            The two dimensional FFT is implemented by performing single dimensional 
FFT on the rows first and then performing single dimensional FFT on the columns of 
the resultant matrix. In order to optimize the area I am reusing the same FFT core to 
perform 2D FFT. The block diagram for this implementation is shown in fig 4.4. 
 

 
                                                         Fig 4.4 
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The control unit generates the control signals to perform 2D FFT using ID FFT. 
Initially the Images are loaded into Image 1 Ram and Image 2 Ram, now Xilinx core 
FFT reads the matrix in Image ram1 row by row performs FFT and stores in 
Transformed image ram1 column by column after completing all rows the Xilinx core 
FFT reads the matrix in Transformed Image ram1 row by row performs FFT and stores 
in image ram1 column by column. Once it is done with Image 1 its starts with the 
Image 2. 
 
4.2.5. CONTROLUNIT:  
The control unit is the heart of the design it co ordinates all the events by generating the 
corresponding control signals. The main tasks that are to be co ordinate by the control 
unit are   

• Compute 2D FFT for IMAGE 1 
• Compute 2D FFT for IMAGE 2 
• Compute element by element matrix product of the two transformed Images              
• Compute 2D IFFT of the resultant product matrix. 
• Compute the coordinates of max value 
  

Since the design shares a common address/data buss the control unit should also act as 
the bus arbitration. The control unit has 4 state machines and all the above tasks are 
performed sequentially. The logic is designed such that the control is passed form one 
state machines to other state machines which generate the respective control signal for 
getting the task to be done. The schematic is shown in fig 4.5 is obtained from the 
synthesized RTL viewer from the tool. 

 
                                Fig 4.5 
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4.2.5.1 Pin details: 
Output Ports: 
Enb_A,  
Enb_B, 
Enb_C     : The enable signal for Ram. (Active low signal) 
Start         : when asserted the FFT/IFFT block would start reading the vector on                            
which the transformed is to be performed. 
Sclr :          reset to FFT. 
Unload:   on asserting it, FFT would start writing the transformed to ram locations.  
Row_Add_to_mem 
Col_Add_to_mem:   Address bus 
Rst : external reset (Active high) 
 
Inputs Ports: 
CLK: global clock signal 
Rfd  : output from FFT when asserted indicates the FFT is ready to read the data. 
Sg[1:0] : out put from the multiplication unit used as an acknowledgment for changing 

state of state machine . 
Busy:   output from FFT indicates that FFT is busy in performing the transform. 
             FFTIINDEX/FFTKINDEX: Out put from FFT indicates the index of element         

that’s is being written or read from.    
 
 
Inout: 
Re_data[7:0]    :real data bus. 
Im_data[7:0]    :imaginary data bus. 
 
4.2.5.2. State Diagram for Computing 2d FFT/IFFT:   
The main difference between FFT/IFFT is asserting/disserting a signal FWD_INV. 
If FED_INV = 1 the core computes FFT 
If FED_INV = 0 the core computes IFFT 
 
The state diagram is shown in fig 4.6. 
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                                            Fig 4.6 
 
 
Description: 
The brief explanation of the importance of each state, transactions of states and the out 
puts that are generated are described below 
All the transaction are Synchronized   
Idle: In this state the machine resets all the conditions like enables, FFT forward 
inverter, and Scaling factor for FFT. On the positive edge of the clock the machine 
moves to the next state Startgen. 
Startgen: As the name indicates this state would initiate the computation of FFT by 
asserting a start signal. On the positive edge of the clock the machine moves to the next 
state Fromram. 
Fromram: This state generates the address and read signal to ram and the data is fed to 
FFT for performing transformation. Machine waits in this state until it receives a signal   
(e_done)   from FFT indicating that computation of the transform is done and is ready 
to issue results.   
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To_ram: In this state the machine generates the address and write signal, enable to ram 
and the data is stored in the ram, based on the counter value is (transform length) the 
machine moves to nxt_rc state. 
nxt_rc: This state decides whether the transformation of an image is completed or not 
if not it restarts the cycle again .If completed it goes to a completed state (Cpd2d).  
Cpd2d: in this state it asserts signals to activate other state machines for further 
processing.   
    
4.2.5.3. State Diagram for convolution (MULTIPLICATION): 
 
The convolution is performed by element by element product of the transformed 
images in the ram. The state diagram is shown in fig 4.7.  The steps involved in the 
state machine are  

• Read a data from an address in ramA(image1) feed the data to multiplier 
• Read a data from an bit inverted address in ramC(image2) feed the data to 

multiplier 
• Generate control signal to initiate multiplication  
• Wait for the acknowledgment from the multiplier (Result computed)  
• Write the data back to ramA 

 
 

 
                                                   Fig 4.7 
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Description: 
 
S0: is the start state  
Generates address/control signal to read data from ram A and stores it in a register in 
multiplier. 
S1: is the delay state for data to be latched properly. 
S2: Generates address/control signal to read data from ram C and stores it in other      
register in   multiplier. 
S4: waits for acknowledgement (sg) from multiplier that result is computed. (It would 
take 4 cycles). 
S5: Initiates the process of writing back the result to the ramA. 
S6: waits until the data is written properly. 
S7: checks whether multiplication for whole array elements are done if not start again 
by proceeding to state S0.   
 
 
4.2.5.4. State Diagram for computing maximum value of the resultant matrix: 
This state machine is invoked after IFFT is done. This block scans whole array and 
remembers the co ordinates (Row,columm) which has the max value. This is done by a 
simple start machine as shown in fig   
 
 

 
                                       Fig  4.8 
 
 
Mo: In this state the control unit generates address; enable signal to the ram read the 
data. 
M1: The read signal is generated. 
M2:  The data received is compared with the Max value if data > Max value the max 
value is updated and co ordinates are remembered, and test is performed to check if 
whole array is compared, if  so it proceeds to m3 or it goes to m0 to check other 
elements. 
M3: It is the end and indicates the max value coordinates are computed. 
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Simulation Timing diagram:  
 

 
 
 
4.2.6. MULTIPLIER: 
   Since the outputs from the FFT are complex numbers a complex multiplier must be   
designed which performs matrix product element by element (convolution).The 
complex multiplier is generated by using Xilinx coregen. As the design shares single 
data bus the multiplier should get the operands sequentially. The schematic of 
multiplier is shown in fig    
 
 
The Multiplication has three stages  

• Read operand 1 from an address from Ram1  
• Read operand 2 from an inverted  !(address) from Ram2 
• Perform product and write back to address of operand1 in Ram1. 

 
The corresponding rd/wr and address/! (Address) are generated by control unit, but the 
multiplies unit should acknowledge the events. The multiplier unit uses signal Sg[1:0] 
as an acknowledgement to the control unit based on which the state changes are done in 
control unit.. 
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                    Fig 4.9 
 
Pin Details: 
 
Input: 
Clk: global clock signal 
Rd:   signal for reading the computed result.     
Wr:  signal for writing the operand values  
Set: active high reset.  
 
Output:  
Sg[1:0]: an out put signal to control unit acts as an acknowledgment ,by which the 
control unit changes state  
 
Inout: 
Im_data(7:0) :imaginary data bus  
Re_data(7:0) : real data bus.  
 
4.2.6.1. Xilinx Core implementation: 

    
                                                   Fig 4.10                          
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The Xilinx core using 4 real multipliers is shown in the figure Fig 4.10 
Since the core accepts both the operands at a time to perform computation, but since we 
have a single data bus we could access single operand at a time so a wrapper multiplier 
is used to read the operand one by one and provide both the operands at a time to the 
core unit. So the block diagram would look like that as shown in figure  4.11 
 

   
                                                Fig 4.11  
 
 
4.2.6.2 State Diagram: 
The state machine shown in the wrapper function helps in acknowledging the control 
unit by writing the operands data into the registers, generating a control signal to 
initiate the multiplication and invoke the control unit when the operation is completed 
indicating the result is ready to read. The state diagram is shown in fig 4.12. The state 
machine is having 7 states and each state is explained in brief. 
 

 
                                                 Fig 4.12  
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S0: Is a start state stays in it unless set value driven by the control unit is zero. 
S1: in this state the data from the bus is copied to the register A. 
S2: Is an ideal state inserted to get the date properly latched into register A. 
S3: in this state the data from the bus is copied to the register B. 
S4: Is an ideal state inserted to get the date properly latched into register B 
S5: wait unit the result is computed it would take 4 cycles. 
S6: data is placed in the bus for control unit to read it. 
S7: is the ideal end state. 
 
 The multiplied result is truncated to 8 bits preserving the signed bit. 
 
 
Timing Diagram: 

 
 
 
 
4.2.7. RAM:  
 

 
                     Fig  4.13 
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The schematic of the ram module implemented in the design is shown in fig 4.13 .The 
ram has 2 sub modules   Real and Imaginary Block as shown in fig 4.14, both the 
blocks share common address bus; control signal but both of them have a different data 
bus. The memory in the design is declared as a register of 16X16 elements and each 
element can be 8 bits, upon reset the image is loaded into the ram. 
 
 

 
                                               Fig 4.14 
                    
Input: 
Clk: global clock signal 
Rd:   signal for reading from ram (active high).     
Wr:  signal for writing from ram (active high).  
rst: active high reset.  
en_ble: Is the signals which enable the ram (active low). 
Rw_ad(3:0) : Row address. 
Cl_ad(3:0)   :  column address. 
 
Inout 
Im_data(7:0) :imaginary data bus  
Re_data(7:0) : real data bus.  
 
 
 
Timing Diagram: 
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5. Simulation: 
5.1. Simulation Setup:  The simulation set up is a shown in the figure 4.15. The major 
two components are 

• The design under test (Image matching Processor –DUT ) 
• Signal Generator: generates continuous clock signal and reset signal. 

 
All the internal signals can be monitored on dynamic simulation. The out put from the 
DUT indicates the coordinate having max correlation. 

IMAGE MATCHING 
PROCESSOR

MODULE 

TEST BENCH MODULE 

SIGNAL GENERATOR 

CLK

RESET

MAX value coor dinates

 
                                                       Fig 4.15 
 
5.2 Results 
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The memory elements are printed dynamically by performing simulations. 
 
 
 
IMAGE 1:(RAM !) 
    Real Array                                                                  Imaginary Array        

IMAGE 2: (RAM C) 
 

 
 
 
FFT2(Image 1)(RAM A) 
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FFT2(Image 2)  (RAM C) 
 

 
 
Convolved Image:(RAM A) 

 
IFFT2(Convolved Image)  (RAM A 
 

 
 
 
Result 
Max value – 24  
Coordinates (4,2)  
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The wave form for total simulation is shown in fig 4.16 

 
                                                          Fig  4.16 
 
6.Synthesis Report: 
 
Synthesizing Unit <top2dfft>. 
    Related source file is "../../srcfim/topmodule.v". 
. 
Unit <top2dfft> synthesized. 
 
 
======================================================================
=== 
HDL Synthesis Report 
 
Macro Statistics 
# Adders/Subtractors                                   : 1 
 5-bit adder                                           : 1 
# Counters                                             : 6 
 3-bit up counter                                      : 1 
 5-bit up counter                                      : 4 
 6-bit up counter                                      : 1 
# Registers                                            : 1583 
 1-bit register                                        : 16 
 2-bit register                                        : 1 
 4-bit register                                        : 5 
 6-bit register                                        : 3 
 8-bit register                                        : 1558 
# Latches                                              : 14 
 1-bit latch                                           : 7 
 4-bit latch                                           : 3 
 6-bit latch                                           : 3 
 8-bit latch                                           : 1 
# Tristates                                            : 19 
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 1-bit tristate buffer                                 : 8 
 2-bit tristate buffer                                 : 1 
 8-bit tristate buffer                                 : 10 
# Xors                                                 : 1 
 1-bit xor2                                            : 1 
 
====================================================================== 
 
===================================================================== 
*                       Advanced HDL Synthesis                          
* 
====================================================================== 
 
Loading device for application Rf_Device from file '4vlx15.nph' in 
environment C:\Xilinx91i. 
Reading core <fft_dat_8.ngc>. 
Reading core <multipliernew.ngc>. 
Loading core <fft_dat_8> for timing and area information for instance 
<FFTk>. 
Loading core <multipliernew> for timing and area information for 
instance <comp>. 
 
======================================================================
=== 
Advanced HDL Synthesis Report 
 
Macro Statistics 
# Adders/Subtractors                                   : 1 
 5-bit adder                                           : 1 
# Counters                                             : 6 
 3-bit up counter                                      : 1 
 5-bit up counter                                      : 4 
 6-bit up counter                                      : 1 
# Registers                                            : 12513 
 Flip-Flops                                            : 12513 
# Latches                                              : 14 
 1-bit latch                                           : 7 
 4-bit latch                                           : 3 
 6-bit latch                                           : 3 
 8-bit latch                                           : 1 
# Xors                                                 : 1 
 1-bit xor2                                            : 1 
 
======================================================================
=== 
 
======================================================================
=== 
*                         Low Level Synthesis                           
* 
======================================================================
=== 
Optimizing unit <top2dfft> ... 
 
Mapping all equations... 
Building and optimizing final netlist ... 
Found area constraint ratio of 100 (+ 5) on block top2dfft, actual 
ratio is 178. 
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Optimizing block <top2dfft> to meet ratio 100 (+ 5) of 6144 slices: 
WARNING:Xst:2254 - Area constraint could not be met for block 
<top2dfft>, final ratio is 177. 
FlipFlop cu/enb_cnt_m_2 has been replicated 1 time(s) 
 
Final Macro Processing... 
 
Processing Unit <top2dfft>: 
 Found 3-bit shift register for signal <FFT/xn_im_2_0>. 
Unit <top2dfft> processed. 
 
====================================================================== 
Final Register Report 
 
Macro Statistics 
# Registers                                            : 12489 
 Flip-Flops                                            : 12489 
# Shift Registers                                      : 16 
 3-bit shift register                                  : 16 
 
 
====================================================================== 
*                          Partition Report                             
* 
====================================================================== 
 
Partition Implementation Status 
------------------------------- 
 
  No Partitions were found in this design. 
 
------------------------------- 
 
====================================================================== 
*                            Final Report                               
* 

Final Results 
RTL Top Level Output File Name     : top2dfft.ngr 
Top Level Output File Name         : top2dfft 
Output Format                      : NGC 
Optimization Goal                  : Speed 
Keep Hierarchy                     : NO  

Design Statistics 
# IOs                              : 2 

Cell Usage : 
# BELS                             : 15080 
#      BUF                         : 1 
#      GND                         : 6 
#      INV                         : 36 
#      LUT2                        : 607  
#      LUT2_D                      : 2 
#      LUT3                        : 626 
#      LUT3_D                      : 2 
#      LUT3_L                      : 1 
#      LUT4                        : 7146 
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#      LUT4_D                      : 95  
#      LUT4_L                      : 8 
#      MULT_AND                    : 5 
#      MUXCY                       : 6278 
#      MUXF5                       : 111 
#      MUXF6                       : 4 
#      MUXF7                       : 2  
#      VCC                            : 5 
#      XORCY                       : 145 
# FlipFlops/Latches                : 13248 
#      FD                          : 46 
#      FD_1                        : 2 
#      FDC                         : 33 
#      FDCE                        : 12370 
#      FDE                         : 631 
#      FDP                         : 5 
#      FDPE                        : 69 
#      FDR                         : 3  
#      FDRE                        : 45 
#      FDRS                        : 5 
#      FDS                         : 1 
#      FDSE                        : 5 
#      LD                          : 27 
#      LDE_1                       : 6  
# RAMS                             : 3 
#      RAMB16                      : 3 
# Shift Registers                  : 123 
#      SRL16                       : 16 
#      SRL16E                      : 106 
#      SRLC16E                     : 1  
# Clock Buffers                    : 2 
#      BUFGP                       : 2 
# DSPs                             : 6 
#      DSP48                       : 6 
=========================================================================  

Device utilization summary: 
--------------------------- 

Selected Device : 4vlx15sf363-12  

 Number of Slices:                        10929  out of   6144   177% (*)  
 Number of Slice Flip Flops:         13248  out of  12288   107% (*)  
 Number of 4 input LUTs:              8646  out of  12288    70%   
 Number used as logic:                 8523  
 Number used as Shift registers:  123 
 Number of IOs:                            2 
 Number of bonded IOBs:             2  out of    240     0%   
 Number of FIFO16/RAMB16s:    3  out of    10     30%   
  Number of GCLKs:                     2  out of     32     6%   
 Number of DSP48s:                    6  out of     32    18%   

 
WARNING:Xst:1336 -  (*) More than 100% of Device resources are used 
 
Timing Report: 
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Clock Information: 
------------------ 
------------------------------------------------------------+---------
----------------------+-------+ 
Clock Signal                                                | Clock 
buffer(FF name)         | Load  | 
------------------------------------------------------------+---------
----------------------+-------+ 
clk                                                         | BUFGP                    
| 13319 | 
cu/inc                                                      | 
NONE(cu/mulrow_2)             | 9     | 
cu/col_ch_inv(cu/col_ch_inv1:O)                             | 
NONE(*)(cu/count_1)           | 10    | 
cu/inc1                                                     | 
NONE(cu/co_rmax_3)            | 9     | 
rst                                                         | BUFGP                    
| 6     | 
cu/row_add_to_mem_f_not0001(cu/row_add_to_mem_f_not000158:O)| 
NONE(*)(cu/row_add_to_mem_f_0)| 8     | 
cu/enb_cnt_f_not0001(cu/enb_cnt_f_not0001:O)                | 
NONE(*)(cu/enb_cnt_f_3)       | 2     | 
cu/enable_f_not0001(cu/enable_f_not0001175_f5:O)            | 
NONE(*)(cu/enable_f_5)        | 3     | 
cu/NS_I_not0001(cu/NS_I_not0001115:O)                       | 
NONE(*)(cu/NS_I_1)            | 6     | 
cu/fwd_inv_we_not0001(cu/fwd_inv_we_not0001:O)              | 
NONE(*)(cu/fwd_inv_we)        | 3     | 
cu/enb_Ce_or0000(cu/enb_Ce_or00001:O)                       | 
NONE(*)(cu/enb_Ce)            | 1     | 
cu/start_not0001(cu/start_not0001_f5:O)                     | 
NONE(*)(cu/start)             | 1     | 
cu/unload_not0001(cu/unload_not000158:O)                    | 
NONE(*)(cu/unload)            | 1     | 
cu/scale_sch_we_not0001(cu/scale_sch_we_not000130:O)        | 
NONE(*)(cu/scale_sch_we)      | 1     | 
cu/flag1_not0001(cu/flag1_not00011:O)                       | 
NONE(*)(cu/flag1)             | 1     | 
------------------------------------------------------------+---------
----------------------+-------+ 
(*) These 11 clock signal(s) are generated by combinatorial logic, 
and XST is not able to identify which are the primary clock signals. 
Please use the CLOCK_SIGNAL constraint to specify the clock signal(s) 
generated by combinatorial logic. 
INFO:Xst:2169 - HDL ADVISOR - Some clock signals were not 
automatically buffered by XST with BUFG/BUFR resources. Please use the 
buffer_type constraint in order to insert these buffers to the clock 
signals to help prevent skew problems. 
 
Asynchronous Control Signals Information: 
---------------------------------------- 
--------------------------------------------+-------------------------
--+-------+ 
Control Signal                              | Buffer(FF name)           
| Load  | 
--------------------------------------------+-------------------------
--+-------+ 
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rst                                         | BUFGP                     
| 12334 | 
FFT/FFTk/sig00000001(FFT/FFTk/blk00000002:G)| 
NONE(FFT/FFTk/blk000004fb)| 136   | 
cu/set(cu/set:Q)                            | NONE(mul/CS_0)            
| 7     | 
cu/count_or0000(cu/count_or00001:O)         | NONE(cu/count_1)          
| 6     | 
--------------------------------------------+-------------------------
--+-------+ 
 
Timing Summary: 
--------------- 
Speed Grade: -12 
 
   Minimum period: 13.917ns (Maximum Frequency: 71.857MHz) 
   Minimum input arrival time before clock: 6.555ns 
   Maximum output required time after clock: No path found 
   Maximum combinational path delay: No path found 
 
======================================================================
=== 
 
Process "Synthesize" completed successfully 
 
 
 
 
 
 
7. Observations: 
Initially the device is targeted for Spartan 3 A, but from the synthesis report the logical 
(Resource) utilization for the device is 533% which implies the design could not fit into 
the FPGA. So the target is changed to Vertex Series and with optimizations the design 
is re synthesized, but could minimize to 177% of logic utilization. 
 
 When the (EDIF)netlist file generated from the synthesis tool is fed to Place and Route 
Tool since the design is bigger than it is supposed to fit in the chip it couldn’t  identify 
the partitions for placement and routing. So the design could no be routed and 
downloaded into FPGA. 
 
8. Scope for Improvements. 
 

• The Logic can be further optimized (state machine minimization) for better 
performance. 

• The Ram modules can be implemented out side of FPGA so that design fits in 
FPGA. 

• Due approximations and Scaling down the value the identification of the exact 
location where match is present is deviating this can be rectified either by 
increasing the data width or by modifying the logic. 

• More parallelism can be introduced to improve the through put. 
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