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Abstract| A generalization of the classical state minimization problem for

Finite State Machine (FSM) is proposed and discussed. In contrast to classical

state minimization algorithms that minimize in one dimension (states), our algo-

rithmminimizes the FSM in two dimensions: the numbers of both input symbols

and internal state symbols are minimized in an iterative sequence of input min-

imization and state minimization procedures. This approach leads to an input

decomposition of the FSM. A modi�ed formulation of the state minimization

problem is also introduced, and an eÆcient branch-and-bound program, FMINI,

is presented. FMINI produces an exact minimum result for each component

minimization process and a globally quasi-minimum solution to the entire two-

dimensional FSM minimization problem. For some benchmarks, especially those

with a high percentage of don't cares, as those that occur in Machine Learning,



this approach produces a more optimum results than those produced by the

state minimization alone.
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1 Introduction.

Recently, several design methodologies have been proposed, where a con-

trol unit is designed as a network of Finite State Machines (presented by

De Micheli [5], Devadas and Newton [6, 7], Perkowski and Nguyen [22], and

Perkowski and J�o�zwiak [25]). Our particular interest is in the methodol-

ogy from [25], where an iterative ring network of machines and combina-

tional blocks is used as a self-controlling data-path. These methods produce

machines with a high percentage of don't cares, because only for very few

combinations of the component machines' states the transitions to their

new states are speci�ed. Such machines occur also in practical industrial

designs in networks of robotic controllers as for instance the "control of

transportation system, robot manipulator, technological camera and locks

for integrated circuits manufacturing line" or logic control of complex sys-

tems such as power stations. These machines have many don't cares,

many inputs and outputs, and many compatible states.

Another area in which machines with very high percentage of don't cares

in both transitions and outputs occur are Machine Learning (ML) and Pat-

tern Recognition [3, 27, 30] in which the percent of don't cares is extremely

high and can be above 99%, which makes them very distinct from circuit ap-

plications. We proposed a methodology based on state machine acquisition,

minimization and decomposition/assignment in [26] for use in Data Mining

and Learning Robotics applications. Two-dimensional state minimization

is one of its important steps.

Tables with many don't cares are also created as initial speci�cations for

asynchronous machines [13], for machines designed from waveforms, ma-
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chines created from partitioning (Devadas [6]), from counter-embedding,

and from "state-selected-input" decompositions. Also, sequential don't

cares are extensively used. Other methods to create machines with many

don't cares have also been reported by Ashar [1, 2] and Devadas and Newton

[7].

Several problems related to synthesis, veri�cation and testability of such

networks of machines require checking the compatibility of states and de-

tecting the unreachable states. One of the processes traditionally used to

verify and optimize hardware-realized machines with compatible states and

don't cares is state minimization of FSM. It was shown, for instance, by

Pager [17] that the problem of determining the minimal closed table for a

compiler which uses Knuth's LR(k) parsing algorithm can be reduced to

that of �nding the minimal closed cover for an incompletely speci�ed 
ow

table. Such tables have usually a high percentage of don't cares.

In this paper, we will be dealing with the new process of state/input

minimization, called also two-dimensional (2D) minimization, which gives

good results especially when applied to machines with a high percentage

of don't cares. The results of this research can �nd applications in all

areas where one has to synthesize, test and verify state machines with don't

cares; for instance in industrial controllers, DSP controllers, systolic arrays,

cellular automata, protocol engines, or Machine Learning applications.
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2 Previous and Current Research on State Minimiza-

tion.

The idea ofminimizing states and columns of an FSM concurrently

was �rst introduced by Luccio [15] and by Grasselli and Luccio [10]. The

paper by Luccio [15] formulates the problem and gives examples but does

not give the solution method. The paper by Grasselli and Luccio [10] gives

a complete exact, nearly exhaustive algorithm which has, however, not been

programmed. It is our feeling that, if programmed, their algorithm would

be very slow for the practical-sized machines that we are concerned with

here. Their approach does not consider also the preprocessor circuit design

problem, presented below, which is a byproduct of our approach to two-di-

mensional minimization. Their apprach was never much used or referenced.

Finite State Machine Minimization Theory was developed in the 1960s and

1970s [18, 9, 10, 15, 16, 17]. Unfortunately, until recently, these research

e�orts had very little, if any, impact on the design practices in the indus-

trial environment and on the CAD systems. State minimization of FSMs

has become an active Logic Synthesis research topic again since 1989, be-

cause new design methodologies such as partitioning [6], collapsing, parallel

graphs [21], and concurrent machines [22] produce FSMs with equivalent

states and/or don't cares. Such machines are then minimized, or restruc-

tured using other methods, such as Mealy $ Moore transformations, and

the "state-selected-input decomposition" (in which the machine is trans-

formed to a form where internal states multiplex subsets of inputs for the

transitions executed in those states). More industrial companies are also
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now interested in new tools for Programmable Logic Devices (PLDs) and

other system/logic design tools that use schematic capture of waveforms,

Petri Nets, and concurrent state machines as initial high-level system de-

scriptions. Machines created from such descriptions are highly non-minimal,

so programs to minimize FSMs are used, or are planned to be used, in those

tools. State minimization is also useful for veri�cation and testability pur-

poses for several types of machines. For the reasons mentioned above, the

state minimization problem is recently of an increased interest [1, 2, 27, 28].

State minimizers have been included to the U.C. Berkeley systems such as

SIS, and are also important components of veri�ers.

The original contribution of this paper is the formulation and realization

of a topic that has not been extensively studied until now: two-dimensio-

nal minimization. No papers other than those by Grasselli and Luccio

[10, 15] exist, and there is no information whether their idea has been ever

programmed.

Our program, FMINI, has several options, including two-dimensional min-

imization, next-state selection, concurrent minimization and assignment,

equivalent states, Mealy $ Moore conversion, proper graph coloring and

closed graph coloring for very large machines, encoder design, and state

splitting. The presented approach generalizes some ideas of symbolic mini-

mization of logic functions and state machines proposed in papers of Perkowski

et al [21, 22, 19, 26, 14], Ciesielski et al [12, 31], and Devadas et al [2, 1,

6, 7, 8]. In this paper only the two-dimensional minimization and some

aspects of the encoder design issues are presented.
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3 A Two-Dimensional Minimization Program.

3.1 Overview of Program FMINI.

As a continuation and improvement of the listed above e�orts, we developed

a synthesis methodology [21] in which an additional abstract minimization

process precedes the logic synthesis phase. This new process combines the

minimization of the internal states with that of the input states. Each state

minimization or input minimization process is performed independently, but

such processes are executed in an iterative sequence until no better machine

is found. Such an approach leads to a partitioned realization of the initial

FSM with an input encoder and the main FSM (Fig. 1).

Our program for this method, called FMINI, produces a minimum result

for each component minimization process, and a globally quasi-minimum

solution to the two-dimensional FSM minimization problem. By two-di-

mensional we mean iteratively optimizing states and inputs, until no further

optimization is possible. The input minimization, from which the whole it-

erative process starts, is described in section 3.4, and the state minimization

is described in section 3.5. Since the entire process produces a partitioned

realization of logic, the input encoder design is presented in section 4. We

will use a single complete example to illustrate all these steps.

Almost all FSM state minimization algorithms begin with a state table.

An example of such a table is shown in Table 1. Observe, that columns

correspond to disjoint cubes on input bits a; b; c shown below the column

labels Xi. Obviously, two next states from some columns are combinable

when their corresponding next states and outputs are consistent. Such two
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state entries can be merged. If all pairs of states from two columns can

be merged, these entire columns can be combined to a single column. For

instance, columns X2 and X5 are compatible and can be merged to one col-

umn. In input (column) minimization, we attempt to combine the columns

to as few groups as possible, where the groups do not overlap. The merging

occurs more frequently when there are many don't care terms in the internal

state transitions and outputs. The input column minimization should then

be attempted during the entire state minimization process of the FSM. The

process of creating a partition to the minimum number of non-overlapping

cliques of columns will be called the input minimization process. Let us

observe that the input minimization tries to combine the columns of the

FSM table, while the state minimization tries to combine the rows of this

table in a standard way. The possibilities of input minimization should also

be considered in the new state tables created by each of the state minimiza-

tion processes mentioned above. Following each input or state minimization

procedure, the program tests whether further minimization is possible. The

optimal solution results actually include two components: the optimal in-

put column partitioning (OMCCI) and the optimal closed and complete

covering (OMCCP) which are the last input column partitioning (MCCI)

and the minimal closed and complete state covering (MCCP) created when

further minimization is impossible.

In contrast to Grasselli and Luccio [10], we simplify the input minimiza-

tion problem in FMINI by temporarily separating it from the state mini-

mization and reducing it to the clique partitioning problem. Although NP-

hard as well, this problem is known and several very eÆcient algorithms
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have been proposed for it. Therefore, the two-dimensional minimization in

FMINI is reduced to a sequence of two simpler NP-hard problems: clique

partitioning and binate covering (called also covering/closure). The second

problem is solved by the generation of all cliques (all compatibles), and the

covering/closure problem of internal states with compatibles [13].

Concluding on the di�erence of our approach versus Grasselli and Luccio.

Instead of solving a single problem of concurrent combining of any pairs

of columns and pairs of rows, which problem, although leads in theory to

the truly exact minimum size of the table, is extremely complicated, we

iterate solving simpler problems for which eÆcient algorithms are known.

Moreover, it is not sure that the minimum size table as proposed by Grasselli

and Luccio is a good quality metric, and we assume a more complex and

technology-related cost function to be approximately minimized.

The generation of compatibles in FMINI is done by a modi�ed fast al-

gorithm of Sto�ers [29], but in addition we generate at the same time all

compatibles implied by these groups [19]. We concentrated on fast solu-

tions to two problems: (1) clique partitioning, and (2) our modi�cation

of the covering/closure problem, because these two problems are the most

important to the overall success. This approach allows us also to utilize the

speci�cs of the problem (high percent of don't cares) to the greatest extent.

The covering/closure problem (called also binate covering in [28]) is a gen-

eralization of the well-known covering problem and �nds applications also

in (three-level) TANT circuits, multi-level logic design, and many other re-

lated problems, so very eÆcient algorithms have been created for it. It was

solved by special methods, CC-table methods, integer programming meth-
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ods, and implicit methods [9, 10, 15, 16, 28]. FMINI employs a branch-and-

bound tree searching approach with a cost function CF to cut o� those tree

branches which are unable to lead to a Minimal Closed and Complete State

Covering (MCCP). The algorithm itself uses the theory of heuristic search

in OR-trees [20], based on heuristic functions and perceptron-like automatic

learning of the best quality function to evaluate partial solutions [23]. Its

basic idea is to use heuristic knowledge derived from the state table and

based on the de�nitions of groups of states to guide the search in the space

of all MCCPs, use chains of implied compatible groups (de�ned in section

3.3), and use quite sophisticated methods to cut-o� the branches as early as

possible. The algorithm operates directly on groups and their implications

and not on logic or integer equations, which allows to use special heuristics

to a larger extent. Confusion can arise from the fact that on one hand we

use heuristics, and on the other hand we claim exact minimal solutions.

There is no contradiction here, since heuristics are used only to guide the

search, and make it more eÆcient. Cutting o� branches is still done using

the cost function which is not heuristic [20]. In the worst case, the entire

space is searched, but this happens very rarely, while several exact FSM

minimizers search the entire space or a large subset of it. Although several

papers (including the early ones by Grasselli and Luccio [9, 10]) introduce

rules that may be used for backtracking, it seems that these rules were ac-

tually not implemented in the published programs. The paper by House

and Stevens [11] includes cutting-o� rules, but the method of CC-tables

combined with integer programming is applied, which makes their method

applicable only to small machines (an example with 22 states, 4 inputs

10



and 2 outputs is given). Rho [28] and the mentioned earlier U.C. Berke-

ley researchers solve CC-tables with smart data structures, which allows

them to solve very large machines, including implicit methods. Although

their algorithms use several cut-o� rules, still more powerful searching and

backtracking heuristics could be perhaps implemented with their superior

implicit problem representation, but it would be diÆcult. Some of the ex-

isting exact methods cannot be used for machines with very large sets of

compatibles, while the approach used by us searches implicitly and thus

never generates all compatibles at one time. Because of the limited space,

the search algorithm is not presented in this paper. Here we will concentrate

on the entire minimization/decomposition problem formulation, necessary

de�nitions, examples, results, and interpretation.

FMINI uses a weighted cost function to decide if the search on a certain

branch (set of compatible groups) should be retained or not [19]. The

weighted cost function CF(S) of a solution set S of compatible groups (CG)

in the FSM state minimization is:

CF (S) = a1 � CARD(A) CARD(S) + a2 �
X

Sj 2 S

CARD(Sj) (1)

In formula (1), A represents a set of all the internal states of a certain FSM.

CARD is the number of elements in the set, a1 and a2 are coeÆcients. The

�rst component of (1) corresponds to the minimization of the number of

states and the second component to the minimization of the transition

functions, which is in turn expressed by the minimization of the number of

states that occur in more than one CG. This leads to the maximization of

the don't care terms in Boolean functions when the machine is minimized,
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its internal states are assigned with codes, and the excitation functions are

�nally found. The idea is to preserve all existing don't cares, and even

add don't cares in the process, if possible. If coeÆcients a1, a2 satisfy

a1 >> a2, then the algorithm selects the solution which has the minimum

second component among all machines with the minimum number of states.

When set SMAX can be calculated, coeÆcients a1 and a2 from formula (1)

are described by the following formulas:

a1 =
1

CARD(A)
; (2)

a2 =
1

P
Sj 2 SMAX CARD(Sj)

In the above formula, set SMAX denotes the set of all compatible groups.

This formulation of cost function for \don't care related" minimization is

lacking in other programs and leads to an improved quality of realizations

in FMINI. It has special advantages in the 2D minimization because of

preserving don't cares. It can be easily veri�ed on some examples given by

Grasselli and Luccio (1966) [10, 15] that while a machine state-minimized

according to Grasselli/Luccio'smethod cannot be input-minimized (the case

of row reduction preventing column reduction), the same machine state-

minimized according to our approach can be still input-minimized leading

to the minimum global solution.

3.2 Input/Output Formats and Notation.

FMINI accepts two di�erent input data formats, Kiss (state transitions -

De Micheli [4]) and Stab (state tables with disjoint columns - Kohavi [13],
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Perkowski and Liu [21]). The conversion of the Kiss and Stab formats

is a part of the FMINI program. The Kiss or Stab data �le represents

a completely or incompletely speci�ed FSM. The processes of both input

and state minimizations are based only on the Stab formatted Mealy state

table. A Kiss formatted �le is converted into Stab format before the two-

dimensional minimization. The optimal result can be generated in Kiss or

Stab format for the convenience of the next design stages.

FMINI handles multi-bit input and output machines so that such states

can be represented by both symbols and binary strings. This is done not

only to improve the performance of testing the output consistency in both

input and state minimizations but also to improve the performance of sym-

bolic FSM assignment. Each cell of the state table will be referred to by:

NS/output. For example, 3/-1 is at the �fth column and fourth row of

Table 1.

The don't-care terms mean that these bits of the binary representation

may have values '1' or '0'. In FMINI, the character '-' represents the

don't-care term for outputs and the not used variable for input cubes. In

the next states, '0' will represent the "don't-care states" and the positive

integers will represent the states that have certain speci�ed values.

3.3 De�nitions.

De�nition 1. A group of present states(PS) (Si; :::; Sj) of machine M is

called a state compatible group, if and only if, under every input column

Xr (1 � r � mx) the next states S0

i;r; :::; S
0

j;r, corresponding to all of

the present state rows in this group (Si; :::; Sj), are either compatible (the
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corresponding next states(NS) of the group belong to their parent present

states or are don't cares) or consistent (the corresponding next states of

the group have the same value or are don't cares) and the corresponding

outputs Z 0

i;r; :::; Z
0

j;r are consistent bit by bit (every corresponding bit of

the corresponding elements of the groups have the same value or is a don't

care bit).

De�nition 2. A group of input states (columns) (Xi; :::; Xj) of machine M is

called an input combinable group (CGI), if and only if, under every present

state row Sr (1 � r � na) the next states S0

r;i; :::; S
0

r;j corresponding to

all the input columns from this group (Xi; :::; Xj), are consistent, and the

corresponding outputs Z 0

r;i and Z
0

r;j are also consistent bit by bit.

De�nition 3. For a group of present states (Si; :::; Sj), if under a certain

input columnXr the next states S
0

i;r; :::; S
0

j;r corresponding to all the present

state rows in this group (Si; :::; Sj) belong to another present states group

(Sp; :::; Sq), then the group (Si; ::::; Sj) is considered to imply the group

(S0

i;r; :::; S
0

j;r). If (Sp; :::; Sq) is compatible, then (S0

i;r; :::; S
0

j;r) is called an

implied compatible group (ICG).

De�nition 4. A set of compatible groups is said to overlap if the same

elements appear in di�erent groups of this set.

The idea of our state minimization method is to take smaller compatibles

in order to minimize the overlap of states. This leaves more don't cares in

the cells of the state table for next state/input minimizations. Moreover,

this retains more don't cares after minimizations, which allows for better

results during the state assignment [22, 14], decomposition [24], and logic

14



minimization processes of the entire FSM design.

De�nition 5. A set of compatible groups of present states of machine M

satis�es the closure condition, if each of its implied compatible groups is also

included in a group from this set as well.

De�nition 6. A set of compatible groups of machine M is said to satisfy the

completeness condition, if each internal state of M is contained in at least

one group of this set.

The quality of a compatible group, CG, is de�ned by Q, the number of its

elements.

De�nition 7. A set covering which satis�es the conditions of closure and

completeness is called a closed and complete covering. It is called a feasible

solution.

The feasible solution that has the lowest cost, CF, is called the exact solu-

tion. The �nal state table with the exact minimum number of states, but

being equivalent to the initial table before this state minimization, can be

easily found from the exact solution [13].

From the FSM table and sets of compatibles one can create a new table by

randomly selecting one state from every compatible group, and next assign-

ing codes to states. However, better results are obtained if the next-state

selection (mapping) process is taken into account, before or together with

the state assignment [14, 28]. For the state minimization, the compatibility

of all the rows in the state table must be tested as follows.
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3.4 The Input Minimization Process of FMINI.

An example of a state table for a Mealy machine M 0 is shown in Table 1.

It will be used to illustrate the entire minimization process. It has six

columns, X1 ; :::; X6, which means that the machine has six distinguishable

input states. There are three primary input signals denoted by a, b and c.

The number of disjoint cubes for n input bits is usually much smaller than

2n. Input state X2 corresponds to input cube 10-, meaning a product ab of

input signals. The table has four rows, internal present states S1 ; :::; S4.

For performing the input combinational logic encoding, inputs are marked

by (disjoint) binary cubes (the second row of the column headers). In the

input minimization they can be also represented by decimal numbers shown

as the subscripts of inputs as well as the addresses I1 ; :::; I6. Each time

that the input or state minimization is completed, a new numbering system

of the state table is created by the algorithm to replace the old one.

At �rst, FMINI tests the column compatibility conditions (De�nition

2). The condition for NSs is that two inputs are compatible, if in the

two columns corresponding to them both of the two corresponding NSs

are either the same or one or both of them are don't-care states. Note,

that this is di�erent from Grasselli and Luccio [10, 15], where conditional

compatibility is considered for columns and rows concurrently.

For the outputs Z 0

i;j the consistency condition is the same for both pro-

cesses, i.e. two input columns (or PS rows) are compatible under the condi-

tion that every two corresponding outputs must be either the same or one

or both of the two bits of outputs are '-'s. This rule must be applied to

every two corresponding bits of these two tested outputs. For instance, as
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shown in Table 1, the inputs X2 and X5 are compatible under the condition

that the output bits Z 0

2;j and Z
0

5;j (1 � j � na) must be either the same

or at least one of them is '-'. In the input columns two and �ve Z 0

2;4 =

'{' and Z 0

5;4 = '- 1'. Obviously, the �rst bits of these two terms are '-' and

'-'. Since the symbol '-' can represent either '1' or '0', these two '-'s can

have the same value. The second bits of these two terms are '-' and '1'.

Following the description for the �rst bit, the '-' here should have the value

'1' instead of '0'. Therefore it has the same value '1' with the second bit of

Z
0

5;4. As a result, Z 0

2;4 and Z
0

5;4 are consistent. This test is done from j =

1 to j = na. As the result of the �rst input minimization, partitioning to

maximum compatibles fX1g, fX4g, fX2;X5g and fX3;X6g of columns was

found, thus leading to a new machine M 1 in Table 4.

FMINI maintains a list CGG to accumulate the numbers of compatible

input columns. Every time the feasible solution to input minimization is

generated, CGG will rearrange these column numbers into the new groups.

An example of this accumulation is illustrated in Table 2. New numbers are

consecutively assigned to the inputs indicated by binary numbers shown in

the headings of Table 1, Table 4, and Table 6. The original Table 2(a) of

CGG lists every binary input in each category corresponding to the input

addresses I0 of machineM 0. Every time, when an input minimization pro-

cess is �nished, the input addresses will be distributed in a new category

group in CGG, according to the solution. For instance, it has been found

that the binary inputs I0
3
and I0

6
are compatible after the �rst input mini-

mization process. The binary inputs I0
3
and I

0

6
are therefore rearranged in

a new address I1
4
, shown in Table 2(b). The number of the inputs in this
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group, CARDfX3; X6g = 2 is placed in array CFC1. For the same reason,

I
0
2
and I

0
5
are arranged in address I1

3
. After the second execution of the

input minimization (Table 6) another new input system is generated and

indicated by the address I2 in Table 2(c). The new binary input addresses

I
1
1
and I1

4
belong to a compatible group. The contents of CGG1

1
and CGG1

4

are accumulated into another new group in address I2
3
of Table 2(c). When

the entire iterative machine minimization process is �nished, these classes

of grouped inputs are part of the �nal solution and will be dealt with in an

input signal encoding procedure for the decomposed logic.

3.5 The State Minimization Process of FMINI.

FMINI uses a merger list COMPAT(i, j) instead of the triangular merger

table of the classicalmethod [13]. It is used to con�rm the result of searching

the compatibility of every pair of inputs in input minimization, or PSs in

state minimization. The merger list COMPAT is the input to the clique

partitioning, both for columns and for rows. For instance, the �rst resultant

optimal partitioning (OMCCI) for columns is: fX1; X4; X2;X5; X3;X6g.

Next list COMPAT is cleared and reused for the row minimization problem.

The particular list COMPAT(i, j) in Table 3 has been derived from the Stab

formatted state table in Table 4.

The decimal numbers in the �rst column of the merger list COMPAT indi-

cate the checked input pairs. The incompatible pairs are, both for columns

and for rows, indicated by '-1', and all compatible pairs are '1', shown in

the second column of this list. All of the numbers in the third (double) col-

umn, and next three double columns, represent compatibility conditions.
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Suppose a pair of inputs are Xi and Xk. The test of compatibility of the

NSs starts from S
0

i;1 and S
0

k;1, and then S
0

i;2 and S
0

k;2 and so on. In input

minimization, if there exists any two positive numbers in a certain row of

COMPAT, this pair of inputs cannot be compatible. As a result, the second

column of these rows will simply be marked by '-1's.

After the input minimization, the new state table M 1 has been created

(Table 4). Now the task is to execute the state minimization. For the state

minimization, the compatibility of all the rows in the state table must be

tested as follows (Table 3). For the compatible group of PS rows, every pair

of the NSs and the outputs at the corresponding intersections of the rows

must satisfy the compatibility condition speci�ed in De�nition 1, or they

must satisfy the implied compatible condition speci�ed in De�nition 3. The

�rst step for state minimization is to test the compatibility conditions. The

array from Table 3 contains all the compatible PS pairs, derived directly

from the result of the input minimization, the state table Table 4. For

instance, the �rst row Table 3 informs that states 1,2 are compatible under

condition that states 1,3 and states 1,4 are compatible. Observe that Table 3

can be obtained directly from Table 4 in a fast process. If a pair of PS

satis�es De�nition 1, that is, if the outputs from each pair (Z 0

i;j; Z
0

k;j) of

PS pair (Si; Sk) are consistent (Z
0

i;j = Z
0

k;j), and each pair of next states

successors (S0

i;j; S
0

k;j) are either equal, S
0

i;j = S
0

k;j (some of S' or Z' could

be don't-care term), or belong to their parent states Si or Sk, these two

rows (Si; Sk), are strongly compatible (non-conditionally compatible). Such

a group of PSs is called a strongly compatible group (SCG). Otherwise,

according to De�nition 3, if some pairs of the NSs belong to some other
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strongly compatible present state pairs, i.e. (S0

i;j; S
0

k;j) 2 (Sp; Sq), and

others satisfy the requirement of strong compatibility, these two rows are

called implied compatible (De�nition 3). Such a group of PSs is called an

implied compatible group (ICG). Another case is when some pair of

next states (S0

i;j; S
0

k;j) is included in an incompatible state pair (Sp; Sq),

the set of PSs, (Sp; Sq) is weakly incompatible. The last case is when

outputs are inconsistent, the PS pair (Sp; Sq) is strongly incompatible. The

last case is when some corresponding bits of the outputs (Z 0

i;j; Z
0

k;j) of

two PS rows (Si; Sj) are inconsistent (some corresponding bits of the two

outputs are '1' and '0') the PS pair (Sp; Sq) is strongly incompatible. All

such groups are treated in respective special ways by the search algorithm.

In the second column of Table 3, the strongly compatible pairs are marked

by '1'. The implied compatibles are marked by '0'. Both the weak and

strong incompatibles are marked by '-1'. The implied compatible can be

chosen as the CGs of a solution in state minimization if the solution that

includes the ICGs satis�es the closure condition. The '0's in second column

of Table 3 are the marks for the closure test. For contrast, ICGs cannot be

a part of the solution in input minimization; therefore, such pairs of inputs

are marked by '-1', as shown in the second column of Table 3.

The following steps are executed for state minimization:

(1) All compatible groups are generated: f1, 2, 3, 4, 12, 13, 14, 23, 34,

123, 134g.

(2) All the minimal closed coverings MCCP for PS rows are created.

The exact minimal closed covering for PS rows (MCCP) is found. The
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above procedure, applied to Table 4, creates two solutionsMCCP1 = f134,

2g and MCCP2 = f14, 23g, after the second phase.

In this particular example, all of the CGs of both the MCC1 and MCC2

have the same quality, and the solutions MCC1 and MCC2 both have the

same cost (the cost value of a solution depends on the number of compatible

groups it includes. Obviously, the fewer their number, the better is the

solution). During the tree searching phase, MCCP2 is created later than

MCCP1. To shorten the execution time of searching for the solutions, we

use here only the last exact solution found. Therefore, the last created exact

solution MCC2 = f14, 23g is taken, and the new state machine M 2 with

new state numbers is generated (Table 5).

The way of arranging a new state table is as follows. Since the new

table includes two states covering those four states from the old table, the

internal present states of the new table are marked 1' = f1, 4g and 2' = f2,

3g. Therefore, each old state number of NSs must belong to either 1' or 2'.

Simply, NS(1') = NS(1, 4) and NS(2') = NS(2, 3) are illustrated in the new

state table M 2 (Table 5). Consequently, the outputs of the new table are

formed according to the rules: a symbol combined with a don't care gives

a symbol. A don't care combined with a don't care gives a don't care.

This result may not be the �nal one, because the new symbolic systemmay

create some columns which will satisfy the column compatibility condition.

If so, this table is returned to the input minimization procedure again (as

it was when Table 6 was created), and then to the state minimization, and

so on. This iteration will be halted only when there is absolutely no more

minimization possibility and the most simpli�ed form of FSM, M*, is given
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out. In the example discussed here, the Table 6 is such an optimal machine

M*, which has three input columns and two PS rows and cannot be further

state-minimized. This state table is equivalent to the initial state table M 0

shown in Table 1.

4 Input Logic Encoding Process of FMINI.

As already discussed, the product implicants (represented as cubes) of pri-

mary input variables are accumulated in CGG lists corresponding to the

columns of the state table. After two input minimization processes, the

CGG for our example is CGG2 = f4, 25, 136g, as shown in Table 2(c). For

the combinational logic synthesis, the binary input symbolic expressions

are needed. Assuming order of variables a, b, c in cubes and the grouping

of initial column numbers as in CGG
2, the input symbols Xi correspond

to lists of prime implicant cubes. For instance, in Table 6, input column

X4 corresponds to cube 001, input column X2;5 to cubes 10- and 110, and

input column X1;3;6 to cubes 000, -11, and 010. Since the primary inputs

Xi are divided into three distinguishable groups in the solution set, the

outputs of the encoder (which means, the secondary inputs of the FSM)

should have at least 2 bits, those signals are denoted here by n and m. This

encoding could use any kind of code. Some minimizing possibilities result

also from the input-output encoding process to select this code, but code

selection is beyond the topic of this paper. The code generated for our case

is: X4 = (m = 0; n = 0), X2;5 = (m = 0; n = 1), X1;3;6 = (m = 1; n = 0), as

in Table 7.

Assuming this code, the logic speci�cation of the encoder block is created
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from lists of cubes X4; X2;5 and X1;3;6, where Fm(a; b; c) and Fn(a; b; c)

correspond to functions on the outputs m, n of the encoder (see Figure 2).

Thus, all cubes in list X1;3;6, for instance, obtain output value cube 10. The

Boolean minimizer Espresso-mv is called to quickly �nd a quasi-minimal

solution for the input encoder. After logic minimization the logic equations

of the encoder are as follows: m = a c + b c ; n = a c + a b. This

way, in the entire process thus completed, both the numbers of input bits

and state bits of the main FSM have been reduced. and the decomposed

realization as in Figure 1 has been generated.

The same code from Table 7 is next applied to the main FSM, and the

choice of this code in
uences the state assignment of the main FSM. Other

logic minimizing and don't care utilizing possibilities also result from the

quasi-optimal encoding of the encoder outputs and the state/input assign-

ment of the minimized state table [22, 4]. Both the state assignment of

the main FSM and the output encoding of the encoder block are related

to the way in which the initial machine was minimized. For instance, the

concurrent state minimization and state assignment process, [14, 28], that

leads to substantial improvements can be used. Discussion of these issues is

beyond the topic of this paper, let us only remark that all these processes

are strongly interrelated.

5 Evaluation of FMINI.

We performed a series of experiments with FMINI program using more

than 40 FSM benchmarks with 50 or less internal states and 20 or less in-

put bits. The results of these experiments show that FMINI can eÆciently
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handle large scale machines. Some successful results of using FMINI for

minimization of machines with many don't cares are presented in Table 8.

Two-dimensional minimization gives essential size improvements for ma-

chines with many (more than 30%) don't cares in their outputs.

In another set of tests, machines from high-level behavioral HDL com-

piler were minimized. These are machines with a small percentage of don't

cares. In three out of 12 examples the two-dimensional minimization was

useful. It was also shown to reduce the total layout area. We observed that

for machines with a high percentage of don't cares there was more gain

from the two-dimensional minimization. Although 2D minimization gives

improvements only on some machines, it should be always applied because

sometimes it may bring improvements that are not achievable without this

process. For instance, optimal assignment on a non-minimized machine

gives worse results than the same assignment on a minimized one. The

improvement on these machines was signi�cant, but on some other bench-

mark sets, not shown here, it was only marginal or none. In a few cases

with identical or nearly identical columns the 2D minimization was useful

for machines with a low percentage of don't cares as well.

FMINI generates the optimal solutions more quickly if the percentage

of don't care terms in a machine is lower, for instance, below 10%. But

then, the cost improvement is not that signi�cant. When the percentage

of don't care terms increases, the time needed to generate the OMCCPs

will grow, but the best results may be found. In fact, as STAMINA [28],

FMINI gives exact optimum solutions (states only) for machines with the

above-mentioned sizes and with a relatively high percentage of don't care
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terms.

The user of FMINI can select either the pure state minimization or two-

dimensional minimization. Therefore, the concept of 2D minimization, im-

plemented here for the �rst time, is a useful design alternative for machines

with many don't cares and compatible states. 2D minimization should be

included in comprehensive design automation systems as one of several,

script-selected, design methods. Since it is fast, it can be tried on every

designed machine without sacri�cing much design time. In most cases, 2D

minimization of the number of state and input symbols of an FSM is ben-

e�cial even if the numbers of 
ip-
ops and/or input bits of the main FSM

are not reduced, because the reduced main machine has more don't cares,

which in turn leads to better encodings, state assignments, decompositions,

and logic synthesis. The don't cares allow also all the subsequent design

stages (such as the state assignment, test generation or logic synthesis) to

be performed more eÆciently, because the respective procedures work more

eÆciently on machines with smaller numbers of state and input symbols.

For some larger benchmarks Kiss format cannot be converted to Stab,

so 2D minimization cannot be executed. It can be however observed that

some large machines from real life have a small number of input variables

or input bits, which makes the 2D minimization method still applicable

to them. Moreover, the method is applicable to tables where the columns

correspond not to combinations of input signals and where the number

of columns grows exponentially with the number of such signals, but to

"symbolic inputs" or \input symbols". Such inputs are naturally disjoint

and their number is not excessive for tables of real-life machines. Tables of
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this type exist for pulse-mode asynchronous machines, microprogrammed

machines, and the above mentioned LR(k) parsers. In such cases the input

symbols can be still combined in 2D minimization to groups, but the pre-

processing logic encoder is not created by FMINI. For all the above types

of machines, such grouping has a direct interpretation of \OR-ing", which

simpli�es the corresponding circuits, or reduces the parser data structures.

6 Conclusion.

FMINI is an eÆcient state minimizer, especially for machines with a high

percentage of don't cares. The concept of two-dimensional minimization,

introduced here and implemented for the �rst time in a computer program,

is a useful design alternative for machines with many don't cares and many

compatible states. It allows to minimize machines in two dimensions, thus

decomposing and totally restructuring the machine. For some machines this

can lead to further area minimization with respect to the one-dimensional

minimization.

Although each component minimization process in the sequence of input

and state minimization procedures is exact, there exist examples [10] which

prove that our �nal machine is not an exact optimum, since minimization

in one dimension can prevent the minimization in the other one.

It can be observed, that for many machines taken from industry, there

are no possibilities of column or row reductions. However, although our

method not always gives an improvement, it can be tried on every designed

machine without sacri�cing much design time, because it is quite fast, so

that there is no risk of incorporating it as one of the several design methods
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in a comprehensive design automation system (in the worst case, the same

machine will be returned as received). We believe however that new design

methodologies that start from high-level speci�cations and VHDL, as well

as other new methodologies mentioned in the introduction, will create large

initial machines with don't cares, so that the ideas presented in this paper

will become even more useful for the design practice.

The conclusion of this paper is: "For many initial descriptions of sequen-

tial circuits that have a high percentage of don't cares, the two-dimensional

FSM minimization/decomposition introduced here gives results superior to

the FSM state minimization in the terms of total area of the main FSM

and encoder realizations".
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Present Inputs

PS X1 X2 X3 X4 X5 X6

000 10- -11 001 110 010

1 1/- - 3/- - 1/0 - 3/- 0 3/- - 0/- -

2 1/- - 3/- 0 0/- - 1/- - 0/- - 4/- -

3 0/- - 0/- - 1/- 0 1/0 - 3/0 - 1/- -

4 4/- 0 3/- - 1/- - 3/- - 3/- 1 0/- -

NS/Present Outputs

Table 1

An Initial State Table of Mealy Machine M 0. Symbol 0 denotes unspeci�ed

state transitions, \-" means an unspeci�ed bit of data. The machine has

three input bits and two output bits.
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a b c

I
0
CFC

0
CGG

0
I
1
CCF

1
CGG

1
I
2
CFC

2
CGG

2

1 1 1 1 1 1 1 1 4

2 1 2 2 1 4 2 2 2,5

3 1 3 3 2 2,5 3 3 1,3,6

4 1 5 4 2 3,6 - - -

5 1 5 - - - - - -

6 1 6 - - - - - -

Table 2

The Process of the Input Groups Collection in List CGG. (a) at the

beginning, (b) after the �rst column minimization (Table 4), (c) after the

second column minimization (Table 6).
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1,2 0 0 0 1 3 0 0 1 4

1,3 1 0 0 0 0 0 0 0 0

1,4 1 0 0 0 0 0 0 0 0

2,3 0 0 0 0 0 0 0 1 4

2,4 -1 1 4 1 3 0 0 1 4

3,4 0 0 0 1 3 0 0 0 0

Table 3

The Merger List COMPAT Created for Row Minimization from machine

M
1 from Table 4.
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Present Inputs

PS X1 X4 X2;5 X3;6

000 001 10-,110 -11,010

1 1/- - 3/- 0 3/- - 1/0 -

2 1/- - 1/- - 3/- 0 4/- -

3 0/- - 1/0 - 3/0 - 1/- 0

4 4/- 0 3/- - 3/- 1 1/- -

Table 4

The new state machine M 1 created from Table 1 after Column

Minimization.
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Present Inputs

PS I1 I4 I2;5 I3;6

000 001 10-,110 -11,010

1' 1'/- 0 2'/- 0 2'/- 1 1'/0 -

2' 1'/- - 1'/0 - 2'/0 0 1'/- 0

Table 5

The new state machine M 2 created from machine M 1 in Table 4 after Row

Minimization.
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Present Inputs

PS X4 X2;5 X1;3;6

001 10-,110 000,-11,010

1' 2'/- 0 2'/- 1 1'/0 0

2' 1'/0 - 2'/0 0 1'/- 0

Table 6

The optimal state machine M* after the second column minimization

applied to machine M 2 from Table 4. This table cannot be further row

minimized, which terminates the iteration of minimizations.
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inputs m n

X4 0 0

X2;5 0 1

X1;3;6 1 0

Table 7

The Code Table Created from the Grouped Inputs. m and n are encoder

outputs.
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sol s03 mc mab za-mh4 mal-12 mal-14 shm-04

initial data format .kis .st .kis .kis .st .st .kis .kis

number of input bits 3 - 5 3 - - 5 12

number of output bits 2 2 3 2 4 2 4 14

number of columns of M
0

6 4 24 6 20 8 32 49

number of rows of M0 4 50 5 5 20 4 12 28

% of don't

care NSs 25 21.2 40 43.33 74.7 62.5 43 80.4

% of don't

care outputs 66.67 34.24 40 60 85 84.8 48 73.0

number of iterations 3 2 2 4 3 3 4 5

number of columns of M� 3 4 19 3 11 3 17 21

number of rows of M
�

2 46 5 4 10 3 7 11

time of

execution(sec) 1.3 7.4 8.0 1.5 10.3 1.2 9.2 24.2

Table 8

Minimization of benchmark machines with high percent of don't cares.
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Memory

Elements

logic logic

Inputs      ENCODER         Excitation/Output     Outputs

Next StatesPresent States

clock

Fig. 1. A partitioned realization of an FSM with an input encoder.
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bc
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1

00 1001 11 a
bc

0

1

00 1001 11

m n

1 1 1

0 1 0

0 0 0

1 1 0 10

0 0

Fig. 2. Explanation of the realization of the encoder for the decomposed

realization of the FSM.
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