Synthesis and Verification of
Finite State Machines

Sungho Kang

Yonsei University



Outline

Minimization

Minimization of Incompletely Specified Machines
Binate Covering Problem

State Encoding

Decomposition and Encoding

Computer Systems Lab. YONSEI UNIVERSITY Y@a¥




Synthesis of Practical FSMs

Minimization

® We have learned basic methods for
minimizing, encoding, checking equivalence,
and synthesizing circuits for realizing
completely specified FSMs

® Now we must learn to deal with the more
practical case of incomplete specification

Our goal is thus to find a least cost circuit
that satisfies a partial specification
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Incomplete specification and Compatibility

MInimization

Use don’t-cares to merge states.
Merged states must have same output sequences.

1.4 2 0 ~
5 | _ ~

3 -1 1-2
4 2 3 1 1 2 3

Flow Table Compatibility Table
Note each constraint represents pair

(incompatibility)
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Strategy

MInimization

® Derive all prime sets of compatible states

® Solve a covering problem to obtain minimum states.
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Compatibility Constraints

MInimization

Compatibility relation: conjunction of constraints
(one for each “X")

= W N -
N
1
LN
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C(X) =(X"1+X"3)(X' 1+ X"4)(X 2+ X'4)

= (X" X"sX 1) (X 2+ X'4)

1 X2+ XX 4+ X1 X 4




Computing the Maximal Compatibles

MInimization

By recursive multiplication method,
like computing the Complete Sum:

C(x) :(x1+ x3)(x1+ X 4)(x2 + X 4)
=0 X065 +X))
= X1X2 +x3x4 +x2x3x4 +x1x4

— X1X2 +X3X4 +X1X4

The (complete) constraint sums are multiplied out,
dropping absorbed terms when they arise.
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Computing the Maximal Compatibles

MInimization

X'1X'2+ X'sX 4+ X'1X 4
X'1X'2 = {83,84}
e Maximal compatibles are “Prime”.

( No superset of these state sets are also pairwise c
ompatible).

e.g., X1 = {S2.5384} but {s2.s:} are not compatible
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Prime Compatibles

MInimization

® Unfortunately, some subsets of the maximal
compatibles pairs are also prime compatibles.

® Because, selection of one compatible pair may

Imply selection of other compatible pairs.

{Ss, S4} m— {81, Sz}
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Defining Prime Compatibles

MInimization

* A compatible C s prime if and only if there Is no
other compatible C, which contains it or whose class s
et [,contains class set F'of Cg Thatis, Cds prime
If and only If
-[C, such that | |
(1) C, OCq (Bigger compatible,
(2) ryar, smaller class set)

Subsets with smaller class sets are acceptable.

B “ d
Computer Systems Lab. YONSEI UNIVERSITY &Y



Class Sets and Prime Compatibles Minimization

* |[n minimization, we desire a minimum number of
compatible sets that cover all original states. Pick fr
om primes.

e Choice of conditionally compatible set implies
choosing all implied pairs.

o Set of iImplied compatibles pairs is called the clas
s set, €.0., {S1, S2} is the class set of {Ss, Sa}

o 1S5
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Update and Strategy

MInimization

® We just derived maximal compatibles that are
prime

® Derive remaining prime compatibles
® Solve a covering problem
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Class Sets

MInimization

X1 X2 X3 x4 xb x6 X7
al a0 - (d0] 1 b0 a- --
"((ab)={(ad)} o b0 d1 lad - a-al -
F((b,e))—{(d,e),(a,b),(a,e)} C b,O d,l a’l _— - _— g’o
d - e- - Db-Db0 - a--
e b,--e-- a-- - b--e-al
b a.d f b0 c¢- -1 h1fl g0 --
c X N g - ¢l - 1 --¢g0 10
d b.e ab de de ag h al e0 dl1 b0 b,- e-- al
e abad deabase X ~
f X X c,d X X
g ~ X c,df,g X X eh
h X X X ~ a,bad X X
a b C d e f g
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Class Sets and Primes

MInimization

[T (e, f,9)={(c,d),(e.h)}]

‘ Fe = d)s ‘ Note {c, f} Is prime: although

{c.f,g}0{c,f},
SR rd{e, fHOr (e, f,g})

b

C

d be abde de ag

abad deabae X ~

X X

g ~ X cdfg X X

h X X X ~ abad X X

a b d e [f

B “ '3‘:_
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Class Sets and Primes

MInimization

[ ({d.e,h}) ={(a,b),(c.d)}]
" {e,h}) ={(a,b),(c,d)}]

Note {e,h}is not prime:
{d,e,h} LI {e,h},
X - [ ({e,n}) OI ({d,e,n})

be abde deag
abad dea,ba,e X

X c,d X X
X X e,h
~ a,bad|l X X
d e f g

b
C
d
e
f
~ X c,df,g
|J@_I X X X
a b
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Class Sets Minimization
| T (e tH={c.d)} |

({a,b})={(a,d)}
[({b.e})={(d.e),(a,b),(a.e)}
r({a,b,e})={(a,d),(d,e)} IT({c. f.a})={(c.d).(e,h)} ]

[ ({a,b,d,e})=0

Note {C, T} is prime:

RV {c,f,g0{c f}, but
d be abde de ag F({c, fHOr {c, f,q})
abad deabae X
g - X c.df.g
h X X X
a .

i
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Maximal compatibles are prime

MInimization

maximal class

compatibles set

1 {ab,d.e} {3

2 {bcd}  {{ab}{ag}{de}}

3 {cfg} {{cd} {eh}}

4 {dehy {{ab}, {a,d}}

11 {a,0} {

other PCs _

5 {b,c} { Note sub-compatibles {b,c}

g ECS}% %{%{ag}?ﬁ{d,e}} through{d, h}are added to the
C, C, - ; ]

8 fo0} fed), {fg)} list of prime compatlble_s

9 {fg} {{e,h}} before maximal compatible

10 {d,h} {3

2 {0 2.0}

i
Computer Systems Lab.
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Maximal compatibles are prime

MInimization

maximal class
compatible set
1 {ab,de} {}

g {b,;:,d} {a,bﬁ,{a,g}ﬁ{d,e}}
4 Ege%}} {i%a?g}f?aij%} Note that subsets{b,d} and

11 {a,g} { {d,e} are not prime because

gthg[) E}CS a they are contained in{a,b,d, e},
5 {C,’d} {ag} {deyy  Which has an empty class set
7 {cf}  {{cd}}

8 {cg} {{cd} {f.g}}

9 {fg}y {{eh}}

10 {dh} {3
12 {1} 1}
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Maximal compatibles are prime

MInimization

maximal class
compatible set
1 {abde} {}

2 {bcd} {ab}{ag}ide}}

3 {cf, d}, {e,h _
4 Ege% {i%ai}fiaiji} Note that subset {e,h}, with

11 {a,g} {3 class set{{a,b},{a,d}}, is not

other PCs prime because it is contained
5 {bc} {} fd e h

6 {cdd {fagh {dery in{d,e.n}, whose class set

7 {cf}  {{cd}} IS the same.

8 {cg} {{cd}, {fg}} #0L]g such that
9 {fg} {{eh}} (1) qUs

10 {dhy {3 (2) IO [
12 {1} {}
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Maximal compatibles are prime

MInimization

maximal class After treating subsets of size
compatible set 2, we still have to check all
1 {abde} subsets of size 1, which have

2 {b,c,d} {ab}{ag}{de}} empty class sets.

3 {cfg} {{cd} {eh}}
4 {deht {{ab}{ad}  Note

ot PG5 {a},{o}.{c}. {d}.{e}. {0}
5 {bc} {} are all contained in primes

6 {cd} {{ag} {de}} i
7 fof fHod) with empty class sets, so they

8 {cg} {{cd} {fg}} are not prime.
9 {fg}  {{e.h}}

10 {dh}  {} £ L
v S But{f }is not, so it is pre.
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Goal: To Find Prime Compatibles

MInimization

maximal class _ _
compatible  set I\/Ia_X|maI Compatibles are
1 {abde} {} prime.

2 {bcd} {ab}{ag}{de}}
3 {cfg} {{cd}, {eh}} Other prime compatibles are

4 {deh} {{ab}{ad}}  subsets of primes such that:
11 {a,9} {

other PCs S : P

> ey U d Ny prérgtecléfnlttzir? Iflhses ii:lss
6 {cdt {{ag} {de}} €S e

7 {cfF {{c,d}} set of a larger prime §' LI's .
8 {c.o} {{c.d} {f.0}}

9 {fg} {{e.}} e.g., {eht-{(@ab),(ad}
10 {dh}  {} . .

12 {f} 0 IS ot prine

Computer Systems Lab. YONSEI UNIVERSITY &Y




Finding Prime Compatibles

Minimization
Procedure(MAXCOMPS,CM) {
P = LARGEST(MAXCOMPS): K. =| P
1 for(k = Kmax; k21 k = =) { N
Q =SELECT_BY_SIZE(MAXCOMPS, k)
for(q JQ) ENQUEUE(P,q) Enqueue known

2 foreach(p OP;|pk k){ -

CS, = CLASS_SET(CM, p) >pr|m.es
3 if (CS, = 0) continue of size k

S, = MAX_SUBSETS(p)

for(s0S,) { <
A If (DONE(S)) continue

CS, = CLASS_SET(CM,s)

prime =1
> fOFF?:%(g)D{P; (& k) { >Test subcompatibles

| : :
CS, = CLASS_SET(CM,q) for primality
O If (CS; U CSyy) {prime = 0; break}
¥

/ iIf (prime =1) ENQUEUE(P,S)

HASH TABLE_INSERT(DONE,s)

Fr1}
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Finding Prime Compatibles

MInimization

Procedure( MAXCOMPS,CM) {
P = LARGEST(MAXCOMPS); Ky =IP|
1 for(k =K k21 k—-) {
Q =SELECT_BY_SIZE(MAXCOMPS, k)
for(g Q) ENQUEUE(P,q)

2 foreach(p UP; [pt k) {
CS,, = CLASS. SET(CM, p) For each val_ue of k, the
3 if (CS,, = O) continue fOI’-IOOp.Of Line 1 puts
S, =MAX_suBseTs(p) the maximal compatibles
of size k onto the queue of

primes, P.

For k =4, only{a,b,d,e} Is enqueued
For k =3,{b,c,d},{c, f,g},{d,e,h} are enqueued
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Finding Prime Compatibles

MInimization

For each enqueued
S, = MAX_SUBSETS(p) prime p(of size k),

for(sJS,) {
1 if (DONE/(S)) continue we check every subset

CS; = CLASS_SET(CM,s) of sizek -1

prime=1
> forf?cg(q)D{P; g k){

S - .
| quq: CLASS_SET(CM,Qq) > ISaprime com

6 If(CSs U CSy) {prime= 0; break} | patible if and only

. if
[ If (prime =1) ENQUEUE(P,

II—IA(\SpIr—IIT'?'ABI)_E_ I(I3ISERT(( DOSI)\IE S) I D(ql)SlaCE t?at

(2) IO I'q
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Building the Reduced Machine Minimization

x1 X2 x3 x4 x5 x6 X7

1 a0 - dO0 1 b0 a-- --
o b0 dl a-- -- a- al - {Cl’C4’C5’C9}
c bO d1 a1 - - - 90
d - - - Db~ b0 - a-
e b-- e-- a- - Db-- e-- al _
f b0 ¢~ -1 hl f1 g0 - C:={a,b,d,e}
g - ¢l - el1 - g0 f0 c.={d,e,h}
h al e0 dl1 b0 b-- e-- al

cs ={b,c}

x1 x2 x3 x4 x5 X6 X7 .

1 1.0 11 1.0 11 1.0 1.1 1.1 Co={f,0}
4 1110 11 10 10 1- 11
5 10 11 11 - 1- 11 9,0
9 10 51 -1 41 91 9,0 9,0
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Reduced Machine Minimization

X1 x2 x3 x4 X5 X6 X7 _
1 a0 - d0 el b0 a- - Cl—_{a,b,d,e}
» b0 dl a- - a- al - Ca —_{d,e,h}
c bOo dl1 al - -- -- ¢,0 ¢cs ={b,c}
d - e- - b- b0 - a- co={f,0}
e b-- e-- a-- - b-- e-- al
f b0 c-- -1 hl f1 g0 -
g - ¢l - el - g0 10 Where there is a
h 3l e0 dl1 b0 b,--e-- 3l choice, choose 1
x1 X2 X3 x4 x5 X6 x7 (as In x2-successor
1 1.0 11 1.0 11 1.0 11 11 of compatible 1):
4 11 10 11 10 1,0 1— 11 {d.e} contained in
5 1,0 1,1 11 - 1- 11 9,0 G or Cy.
9 10 51 -1 41 91 9,0 9,0
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Closed Cover Minimization

® Closed Cover : Choosing Compatibles

® Every state of the original machine must be
covered

® Every implied compatible must be present in the
solution
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Closed Cover

MInimization

maximal class Let’s check if the following
compatibles set set of compatibles forms a

1 {ab,de} {1 closed cover: {Cl,C4,CS,C9}

2 {pbcd}  {{ab}{ag}{de}} 2 0  c.
3 {cfog}r  {{cd} {eh}}

4 {deh}  {{ab} {ad}} b,c cCs
11 {a,g} {3 Coverage:|q e 0O ¢ .
other PCs fg0cs
5 {bc} { ’

6 {cd} {{a.0}, {d.e}} Closure: h Oc.
7 {cf {{cdp (e
8 {c.9} {{c.d}, {f.9}} |
9 {fg} {{e,n}} [(cs):{a,b}0c: {a,d}] c;

10 {dh} M (cs):
U r (cs): {e,h} Oc

I el
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Covering Constraints--POS FORM

MInimization

maximal class S
compatibles set Every state of the origina

1 {ab,de} 0 machine must be covered.

2 {bcd}  {{ab}{ag}ider}
3 {cfgr  {{cd} {eh}}

4 {d,e,h} {{a,b}, {a,d}} (Cl + Cll)(Cl + C2 +C5)

11 {ag} { (C2+C3+Cs+Cs +C7 +Cs)
other PCs

5 {b,c} 3 (C1+C2 +Cs +Cs +Cuo)

6 {cd} {{a,0}, {d.e}}

7 Lo (fc.dh (Ci+Cs)(Cs+C7 +Co +Cu2)
8 {C,g} {{C,d}, {f1g}} (CS +Cs +Co + Cll)

9 {1.0} e.h}}

10 {dh} {3 (Ce+cu) =1

12 {f} 1}

EEEEESS————— el
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Covering Constraints--POS FORM

MInimization

maximal class S
compatibles set Every state of the origina

1 {ab,de} 0 machine must be covered.

2 [ib,cd}|  {{ab}{ag}ider}

3 {c.fa} d}, {e,h
4 {deht %Zb%%d% (¢, ¥ey)(c, +¢+cy)

11 fag) O (c, +c, Hel +c, +c)
other PCs %
: Hegh (del) (€, 7C, +6, %G o)
C, a,g}, {d.e f
7 {{C,C?}} (Cle+ C4)(C3 +C; TG +C12)

3 te.d), ¢ rc9+c +
o frat  ffenh) (Csh Cg'+Cy +Cyy)
+Cyp)

10 {dh} {3 (c,
R el
Computer Systems Lab. YONSEI UNIVERSITY Y@¥

12 {1} 1}




Finding a Minimum Closed Cover Minimization

e Assoclate a variable Ci to the Ith prime compatible
» For each s Os, form the coverage constraint_ (200

(S SLICi
1 {abde} {3 b
2 {bcd}  {{ab}{ag}{de}}
3 {cfg}y [{cdH{eh}} (C1+C2)
4 {deh}  {{ab} {ad}}
. Y e fgh

C1(C1 + C2)(C2 +C3)(C1 +C2 +Cs)(Cr +Cx)CoCsC
_CiCsCs  This cover is not closed, since C,is excluded

i ;“ *
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Closure Constraints Minimization

Cr is the set of prime compatibles
with non-empty class sets

Note (ci=c¢j) = (C'i+C)

Cr class sets

1 {abde} 0 ,

2 Eb,;:,d; E{f{a,z}i,{?,ggjgd,e}} (C2+Cy) {a,b}

3 {cfg C,dy, 16, C'2+Cu

4 {deh}y  {{ab} {a,d}} ( , ) 12,0}
C ’3 4)eus d1e

6 o) {tagh ey (CetCd WS

7 {cf} {{c.d}}
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Covering and Closure Constraints--POS FORM

Minimization

(C1+ Cu)(C1+C2 +Cs)(C2 +Cs +Cs +Cs +C7 +Cs)
(Ci+C2+Cs +Cs +Cw0)(C: +Cs)(Cs +C7 +Co +C12)

(Cs +Cs+Co T C11)(C4 +C11)
(C'2+cC1)(C'2+ Cu)

(C'2+Ci+Cs)(C's+C2+Cs)(C's+Ca)(C's+C1)(C's + Cra)
(C's+Ci+Cs)(C'7+C2+Cs)(C's+C2+Cs)(C's+ Cz+Co)
(C'o+cCs) =1
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Covering Constraints--Matrix FORM

MInimization

(C1+ Cu)(C1+C2 +Cs)(C2 +Cs +Cs +Cs +C7 +Cs)
(C1+ C2+Cs +Cs +C0)(Ca +C4){(C3 +C7 +Co +C12)
(Cs+Cs +Co +Cu)(Cs +Cu2)

c ¢, ¢ ¢ ¢c ¢ € ¢ ¢C€c C C_ C
2 3 4 5 "6 7 8 9 10 11 12

1
a 1 1
b 1 1 1
C 1 1 1 1 1 1
d 1 1 1| Row Dominance
e 1 1
f 1 1 1 =
g 1 1 1 1
h 1 1 Col Dominance?
(see below)
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Closure Constraints--Matrix FORM Minimization

class sets
1 {abldel { For each pair Pj in the class
2 {bc d a bt fagt{dett set of each compatible C;,
3 {cf ucdh &Nt £0rm the clause

4 de} 1a,b}, {a.d}}

11{ag} Ci+2e,
5 {b.c} {3 where k ranges over the
g g?; gi’%i’}{d’e}} Indices of compatibles that
contain Pj.
(C’2+C1) c, C, C; C, C, C, C, Cg Cy Cyy Cyy Cyp
(C’z + C11) Fi 1 8 1
(C'2+C1+C4) o 10 1
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Closure Constraints--Matrix FORM Minimization

Cover rows by including a 1-col OR excluding a 0-col
Ci' —> Cj

f €, 6, Gy G Gy G € G Gy By Gy S
C2+C1 @_’32 1 O
C2+C11 @92 0 1
ChH +Cp +Cy 10 1
C$+C4 @3 1 O 1
C3+C2 +C6 @3 0 1
C4 +Cl @4 1 0
Cy +¢4 ¢ 1 0
C +C13 d 0 1
C6 +C1 +C4 @6 1 1 0
C'7+C2 +C6 @7 1 1 O
C$+C2 +C6 @8 1 1 0
C$+C3 +C9 @38 1 0 1
Cg +C4 @9 1
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Closed Covering Problem

Minimization

Z 1 1 1
Covering |: .., . . = |,
Constraints ? . 1 Find a mlnlmum set
. , 1 1 of columns which
S0 : cover all rows:
ji Lo 1 : 11,4,5.9;
@3 10 1
d 0 1
Closure  fp.* ¢ A row is covered by
Constraints 3;‘ ., 0 1 either including a
P01 10 1-col or excluding a
¥ 1 o 0-col.
1 0
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Binate Covering Problem

Binate Covering

® Similar to unate covering
® Matrix
" Variables on columns
" Sum expressions on the rows
® Solution may not exist when product is 0
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The Binate Covering Problem

Binate Covering

* Note: M replaced by F to emphasize POS semantics
* Also there Is one addition (for empty solution space)

Procedure BCP(F,U,currentSol){
1 (F,currentSoly= REDUCE(M,currentSol)
if (terminalCGase(F)){ \'\ [|F||=0
iIf(F # 0 and cosT(currentSol) <U){
U =cCosT(currentSol)
return (currentSol)

else return("no (better) solution (in this subspace)")

}

L = LOWER_BOUND (F,currentSol)
iIf(L>=U) return("no (better) solution (in this subspace)")
X; = CHOOSE_VAR(F) \ \longest column

S* = BCP(F, ,U,currentSol 0{x;})
if(COST(S') = L) return(S")

$° =BcP(F,,U,currentSol)

8 return BEST_SOLUTION (S*,S?)

}

Computer Systems Lab. YONSEI UNIVERSITY t
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Unacceptable (anti-essential)Variables Binate Covering

When X, Is essential we say that X, Is unacceptable

When X; Is essential, we may delete all rows of the
matrix which has a zero in the i™ column
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Row Dominance

Binate Covering

(X's+ X2)(X's+ X2+ X'1)

=(X's+ X2)
Xl X2 X3 X4
—————+
F=(- 1 0 -|f |
1 - - 1|f, Row 1 ( f) dominates row
1 0 1 0]f, 2 (f,) since row 2 matches

row 1 at all care entries.
Row 1 may be deleted.

Formally: Row fjdominates row f, if f, is satisfied,
in a Boolean sense, whenever f, is satisfied, that is,
f, <1,
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Column Dominance

Binate Covering

Let F; and F, be two columns of F. We say that
Fj dominates R if, for each row f; of F, one of
the following conditions hold:

(H 1 =1 Example: reduced
(2) f,=-and f, #1 column F dominates K4
(3) f;=0and f, =0

X,

—
[
| Q=X
| O Q¥

O | ,-bx

5
0
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Maximal Independent Set Binate Covering

* Two rows are independent if it Is not possible to sat

Isfy both clauses by assigning one variableto 1
 Thus In finding the MIS, we ignore rows (clauses) th
at contain Os, since these are satisfied by assigning

variables to O

X, X, X5 X, )Z(ll >82 3 X4 :
1 - - |f _ _|f

! O 1 - f2

-1 1 -|f -0 1 -|f,
- 0 - 1|f - -0 1f,
MIS = {f} cyclic, MIS ={}

i ;ll 3
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Infeasible Subproblems Binate Covering

F = 0 cannot occur In original problem (first call to
the recursive procedure). But it can happen after
one or more recursions:

Xl X2
1 1
F=10 1 |[=(X +X;)(X +X;)(X +X%;)(X; +%;) =0
1 0
O O IThis is detected by REDUCTION, which

discovers that both x, and X5 are essential

S el
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Reduction Binate Covering

f, dominatesf, K dominates F, X4 =0

X3 — O
Solution:
X =(1,0,0,0)
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State Enco d | n g State Encoding

®* The number of possible assignments is very high

® If one uses k bits to encode p states, there are

(2)1/(2" - p)! possible assignments

® If one considers two assignments obtained by

permutation or complementation of some of the bits as
essentially the same assignment, then there are
(2X-1)I'/ (2% - p)! k! distinct assignments

Computer Systems Lab. YONSEI UNIVERSITY ¥a¥




Practical Encoding Algorithms State Encoding

® Mustang tries to identify pairs of states by receiving

adjacent pairs
" Two codes are adjacent if they only differ in one bit

® The first objective is to build a graph representing the
attraction between each pair of states

" Two states that have a strong attraction should be given adjacent
codes

How to build attraction graph

" In the fanout-oriented algorithm, whenever two states, si and sj
have a common fanout state, the weight of the edge (si, sj) of the
attraction graph is increased

In the fanin-oriented algorithm, if si and sj have a common fanin
state, the weight of the edge (si, sj) of the attraction graph is
Increased

Once the graph of the attractions is found, we try to assign codes
to pairs of states that have strong attractions
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Fanout Oriented Algorithm

State Encoding

® Build two matrices

" The first with one row for each present state and one column for
each next state

" The second with one row for each present state and one column
for each output
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Embedding Algorithm

State Encoding

® Assign codes to states

" Select first the node for which the sum of the weights of the Nb
heaviest incident edges is maximum
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Fanin Oriented Algorithm

State Encoding

® Build two matrices

" The first with one row for each next state and one column for each
present state

" The second with one row for each next state and two columns for
each output

& One column is for the true input and the other is for the
complement
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Decomposition and Encoding

Decomposition

® Rather than aiming directly at minimizing the number of

literals in the next-state functions, one may actually try to
minimize the support of the functions

Reduction of the number of literals and simplification of
the interconnections
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Partitions

Decomposition

® A partition Tris on a set S is a collection of disjoint
subsets of Swhose set union is S, i.e. t={ Ba} such that
BanBp=® forazb
and O{Ba}=S
Each subset is called a block of the partition

If u and e are partitions on S, then Ty Te IS the partition
on Ssuchthats=t(rume)ifandonly if s=t(tw ) and s = (1e
), whereas, T + TR IS the partition on S such that
s =t(tm + T ) If and only if there exists a sequence in S
S=Sp S1S2... Sh =1
for which either s; = si+1 (Tn) Or Si = Si+1 (TR),
O0<i<n-1
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Partitions with Substitution Property

Decomposition

® A partition Tton the set of states of the machine is said to
have the substitution property if and only if s =t(m) implies
that &(s,a)=6(t,a) () ODa Ol

A sequential machine M has a non-trivial parallel
decomposition of its state behavior if and only if there
exist two nontrivial S.P. partitions u and e on M such
that mm=0

Independent component
Dependent component
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Computation of SP Partitions Decomposition

® First generate the minimal SP partitions and then sum
them until considering all possible sums

®* The minimal partitions are those obtained by requiring
that two states only are included in a block
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General Decomposition and Encoding Decomposition

® Need to resort to something more general than SP

partitions, namely, partition pairs

® A partition pair (1, 1) on the machine is an ordered pair of
partitions on S such that

s =t(m) implies that (s,a) =&(t,a) (;tr) Oa O |

®* The knowledge of the block of mcontaining the present
state and of the current input allows one to compute the
block 1t of that will contain the next state.

It Is evident that if (1, 1) IS a partition pair, then mthas
substitution property

" Partition pairs generalize SP partitions
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