Synthesis and Verification of Finite State Machines

Sungho Kang
Yonsei University
Outline

- Minimization of Incompletely Specified Machines
- Binate Covering Problem
- State Encoding
- Decomposition and Encoding
Synthesis of Practical FSMs

• We have learned basic methods for minimizing, encoding, checking equivalence, and synthesizing circuits for realizing completely specified FSMs
• Now we must learn to deal with the more practical case of incomplete specification
• Our goal is thus to find a least cost circuit that satisfies a partial specification
Use don’t-cares to merge states. Merged states must have same output sequences.

Flow Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Compatibility Table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1-2</td>
<td></td>
</tr>
</tbody>
</table>

Note each constraint represents pair (incompatibility)
Strategy

- Derive all prime sets of compatible states
- Solve a covering problem to obtain minimum states.
Compatibility Constraints

Compatibility relation: conjunction of constraints (one for each “X”)

\[
C(x) = (x'_1 + x'_3)(x'_1 + x'_4)(x'_2 + x'_4)
\]
\[
= (x'_1 + x'_3x'_4)(x'_2 + x'_4)
\]
\[
= x'_1x'_2 + x'_3x'_4 + x'_1x'_4
\]

Note each constraint represents pair (incompatibility)

\[(x'_1 + x'_3) \iff (x'_1 \implies x'_3) \iff (x'_3 \implies x'_1)\]
Computing the Maximal Compatibles

By recursive multiplication method, like computing the Complete Sum:

\[C(x) = (x'_1 + x'_3)(x'_1 + x'_4)(x'_2 + x'_4) \]
\[= (x'_1 + x'_3 x'_4)(x'_2 + x'_4) \]
\[= x'_1 x'_2 + x'_1 x'_3 + x'_2 x'_3 x'_4 + x'_3 x'_4 \]
\[= x'_1 x'_2 + x'_1 x'_3 + x'_1 x'_4 \]

The (complete) constraint sums are multiplied out, dropping absorbed terms when they arise.
Computing the Maximal Compatibles

\[x'_1 x'_2 + x'_3 x'_4 + x'_1 x'_4 \]

\[x'_1 x'_2 \Rightarrow \{s_3, s_4\} \]

- Maximal compatibles are “Prime”.

(No superset of these state sets are also pairwise compatible).

\[e.g., \ x'_1 \Rightarrow \{s_2, s_3, s_4\} \text{ but } \{s_2, s_4\} \text{ are not compatible} \]
Prime Compatibles

• Unfortunately, some subsets of the maximal compatibles pairs are also prime compatibles.

• Because, selection of one compatible pair may imply selection of other compatible pairs.

\[\{S_3, S_4\} \implies \{S_1, S_2\} \]
Defining Prime Compatibles

- A compatible C_s is prime if and only if there is no other compatible C_q which contains it or whose class set Γ_q contains class set Γ_s of C_s. That is, C_s is prime if and only if

 $$\neg \exists C_q \text{ such that }$$
 (1) $C_q \supset C_s$ \quad \text{(Bigger compatible, smaller class set)}
 (2) $\Gamma_s \supset \Gamma_q$

Subsets with smaller class sets are acceptable.
Class Sets and Prime Compatibles

- In minimization, we desire a minimum number of compatible sets that cover all original states. Pick from primes.

- Choice of conditionally compatible set implies choosing all implied pairs.

- Set of implied compatibles pairs is called the class set, e.g., \(\{s_1, s_2\} \) is the class set of \(\{s_3, s_4\} \)

\[
CS_{(s,t)} = \{(s_i, t_i)\}
\]
Update and Strategy

- We just derived maximal compatibles that are prime
- Derive remaining prime compatibles
- Solve a covering problem
Class Sets

\[\Gamma((a,b)) = \{(a,d)\} \]
\[\Gamma((b,e)) = \{(d,e), (a,b), (a,e)\} \]
Class Sets and Primes

\[\Gamma(\{c,f,g\}) = \{(c,d),(e,h)\} \]

\[\Gamma(\{c,f\}) = \{(c,d)\} \]

Note \(\{c, f\}\) is prime: although \(\{c, f, g\} \supseteq \{c, f\}\),
\[\Gamma(\{c, f\}) \subseteq \Gamma(\{c, f, g\}) \]
Class Sets and Primes

\[\Gamma(\{d, e, h\}) = \{(a, b), (c, d)\} \]

\[\Gamma(\{e, h\}) = \{(a, b), (c, d)\} \]

Note \(\{e, h\} \) is not prime:

\[\{d, e, h\} \supseteq \{e, h\}, \quad \Gamma(\{e, h\}) \supseteq \Gamma(\{d, e, h\}) \]
Class Sets

\[\Gamma(\{a,b\}) = \{(a,d)\} \]
\[\Gamma(\{b,e\}) = \{(d,e),(a,b),(a,e)\} \]
\[\Gamma(\{a,b,e\}) = \{(a,d),(d,e)\} \]
\[\Gamma(\{a,b,d,e\}) = \emptyset \]

\[\Gamma(\{c,f\}) = \{(c,d)\} \]
\[\Gamma(\{c,f,g\}) = \{(c,d),(e,h)\} \]

Note \{c, f\} is prime:
\[\{c, f, g\} \supseteq \{c, f\}, \quad \text{but} \quad \Gamma(\{c, f\}) \subset \Gamma(\{c, f, g\}) \]
Maximal compatibles are prime

<table>
<thead>
<tr>
<th>Maximal compatibles</th>
<th>Class Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {a,b,d,e}</td>
<td>{}</td>
</tr>
<tr>
<td>2 {b,c,d}</td>
<td>{{a,b}, {a,g}, {d,e}}</td>
</tr>
<tr>
<td>3 {c,f,g}</td>
<td>{{c,d}, {e,h}}</td>
</tr>
<tr>
<td>4 {d,e,h}</td>
<td>{{a,b}, {a,d}}</td>
</tr>
<tr>
<td>11 {a,g}</td>
<td>{}</td>
</tr>
</tbody>
</table>

Note sub-compatibles \{b,c\} through \{d,h\} are added to the list of prime compatibles before maximal compatible \{a,g\}.

Other PCs

<table>
<thead>
<tr>
<th>Other compatibles</th>
<th>Class Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 {b,c}</td>
<td>{}</td>
</tr>
<tr>
<td>6 {c,d}</td>
<td>{{a,g}, {d,e}}</td>
</tr>
<tr>
<td>7 {c,f}</td>
<td>{{c,d}}</td>
</tr>
<tr>
<td>8 {c,g}</td>
<td>{{c,d}, {f,g}}</td>
</tr>
<tr>
<td>9 {f,g}</td>
<td>{{e,h}}</td>
</tr>
<tr>
<td>10 {d,h}</td>
<td>{}</td>
</tr>
<tr>
<td>12 {f}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Maximal compatibles are prime

<table>
<thead>
<tr>
<th></th>
<th>Maximal Class</th>
<th>Compatible Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{a,b,d,e}</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{b,c,d}</td>
<td>{a,b}, {a,g}, {d,e}</td>
</tr>
<tr>
<td>3</td>
<td>{c,f,g}</td>
<td>{{c,d}, {e,h}}</td>
</tr>
<tr>
<td>4</td>
<td>{d,e,h}</td>
<td>{{a,b}, {a,d}}</td>
</tr>
<tr>
<td>11</td>
<td>{a,g}</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{b,c}</td>
<td>{}</td>
</tr>
<tr>
<td>6</td>
<td>{c,d}</td>
<td>{{a,g}, {d,e}}</td>
</tr>
<tr>
<td>7</td>
<td>{c,f}</td>
<td>{{c,d}}</td>
</tr>
<tr>
<td>8</td>
<td>{c,g}</td>
<td>{{c,d}, {f,g}}</td>
</tr>
<tr>
<td>9</td>
<td>{f,g}</td>
<td>{{e,h}}</td>
</tr>
<tr>
<td>10</td>
<td>{d,h}</td>
<td>{}</td>
</tr>
<tr>
<td>12</td>
<td>{f}</td>
<td>{}</td>
</tr>
</tbody>
</table>

Note that subsets \{b, d\} and \{d, e\} are not prime because they are contained in \{a, b, d, e\}, which has an empty class set.
Maximal compatibles are prime

<table>
<thead>
<tr>
<th>Maximal class compatible set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {a,b,d,e} { }</td>
</tr>
<tr>
<td>2 {b,c,d} {a,b},{a,g},{d,e}</td>
</tr>
<tr>
<td>3 {c,f,g} {{c,d}, {e,h}}</td>
</tr>
<tr>
<td>4 {d,e,h} {{a,b}, {a,d}}</td>
</tr>
<tr>
<td>11 {a,g} { }</td>
</tr>
<tr>
<td>Other PCs</td>
</tr>
<tr>
<td>5 {b,c} { }</td>
</tr>
<tr>
<td>6 {c,d} {{a,g}, {d,e}}</td>
</tr>
<tr>
<td>7 {c,f} {{c,d}}</td>
</tr>
<tr>
<td>8 {c,g} {{c,d}, {f,g}}</td>
</tr>
<tr>
<td>9 {f,g} {{e,h}}</td>
</tr>
<tr>
<td>10 {d,h} { }</td>
</tr>
<tr>
<td>12 {f} { }</td>
</tr>
</tbody>
</table>

Note that subset \(\{e,h\}\), with class set \(\{\{a,b\},\{a,d\}\}\), is not prime because it is contained in \(\{d,e,h\}\), whose class set is the same.

\[\exists q \text{ such that} \]
\[
\begin{align*}
(1) & \ q \supseteq s \\
(2) & \ \Gamma_s \supseteq \Gamma_q
\end{align*}
\]
Maximal compatibles are prime

maximal class compatible set

1 \{a,b,d,e\} \{\}
2 \{b,c,d\} \{a,b\}, \{a,g\}, \{d,e\}
3 \{c,f,g\} \{\{c,d\}, \{e,h\}\}
4 \{d,e,h\} \{\{a,b\}, \{a,d\}\}
11 \{a,g\} \{\}

other PCs

5 \{b,c\} \{\}
6 \{c,d\} \{\{a,g\}, \{d,e\}\}
7 \{c,f\} \{\{c,d\}\}
8 \{c,g\} \{\{c,d\}, \{f,g\}\}
9 \{f,g\} \{\{e,h\}\}
10 \{d,h\} \{\}
12 \{f\} \{\}

After treating subsets of size 2, we still have to check all subsets of size 1, which have empty class sets.

Note

\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{g\}

are all contained in primes with empty class sets, so they are not prime.

But \{f\} is not, so it is prime.
Goal: To Find Prime Compatibles

Maximal Compatibles are prime.

Other prime compatibles are subsets of primes such that:

s is prime iff its class set does not contain the class set of a larger prime $s' \supset s$.

\[\begin{align*}
\text{maximal class compatible set} \\
1 & \{a,b,d,e\} & \{\} \\
2 & \{b,c,d\} & \{a,b\}, \{a,g\}, \{d,e\} \\
3 & \{c,f,g\} & \{\{c,d\}, \{e,h\}\} \\
4 & \{d,e,h\} & \{\{a,b\}, \{a,d\}\} \\
11 & \{a,g\} & \{\} \\
\text{other PCs} \\
5 & \{b,c\} & \{\} \\
6 & \{c,d\} & \{\{a,g\}, \{d,e\}\} \\
7 & \{c,f\} & \{\{c,d\}\} \\
8 & \{c,g\} & \{\{c,d\}, \{f,g\}\} \\
9 & \{f,g\} & \{\{e,h\}\} \\
10 & \{d,h\} & \{\} \\
12 & \{f\} & \{\}
\end{align*}\]

\[\text{e.g., } \{e,h\} \rightarrow \{(a,b),(a,d)\}\]

is not prime
Finding Prime Compatibles

Procedure(MAXCOMPS,CM) {
 p = LARGEST(MAXCOMPS); k_max = |p|
 for(k = k_max; k ≥ 1; k --) {
 Q = SELECT_BY_SIZE(MAXCOMPS,k)
 for(q ∈ Q) ENQUEUE(P,q)
 foreach(p ∈ P; |p|= k) {
 CS_p = CLASS_SET(CM,p)
 if(CS_p = ∅) continue
 S_p = MAX_SUBSETS(p)
 for(s ∈ S_p) {
 if(DONE(s)) continue
 CS_s = CLASS_SET(CM,s)
 prime = 1
 foreach(q ∈ P; |q|≥ k) {
 if(s ⊆ q) {
 CS_q = CLASS_SET(CM,q)
 if(CS_s ⊇ CS_q) {prime = 0; break}
 }
 }
 if (prime = 1) ENQUEUE(P,s)
 }
 }
 }
}

Enqueue known primes of size k
Test subcompatibles for primality
Finding Prime Compatibles

Procedure \(\text{MAXCOMPS}, CM\) {
\[p = \text{LARGEST}(\text{MAXCOMPS}); \quad k_{\text{max}} = |p| \]
\[\text{for}(k = k_{\text{max}}; k \geq 1; k --) \{ \]
\[Q = \text{SELECT_BY_SIZE}(\text{MAXCOMPS}, k) \]
\[\text{for}(q \in Q) \text{ ENQUEUE}(P, q) \]
\[\text{foreach}(p \in P; |p| = k) \{ \]
\[CS_p = \text{CLASS_SET}(CM, p) \]
\[\text{if}(CS_p = \emptyset) \text{ continue} \]
\[S_p = \text{MAX_SUBSETS}(p) \]

For each value of \(k\), the for-loop of Line 1 puts the maximal compatibles of size \(k\) onto the queue of primes, \(P\).

For \(k = 4\), only \(\{a, b, d, e\}\) is enqueued
For \(k = 3\), \(\{b, c, d\}, \{c, f, g\}, \{d, e, h\}\) are enqueued
Finding Prime Compatibles

For each enqueued prime p (of size k), we check every subset of size $k - 1$.

s is a prime compatible if and only if

$$
\neg \exists q \text{ such that } \begin{align*}
(1) & \quad q \supseteq s \\
(2) & \quad \Gamma_s \supseteq \Gamma_q
\end{align*}
$$

$$\begin{align*}
S_p &= \text{MAX_SUBSETS}(p) \\
\text{for} (s \in S_p) \{ \\
4 \quad \text{if (DONE}(s)) \quad \text{continue} \\
CS_s &= \text{CLASS_SET}(CM, s) \\
\text{prime} &= 1 \\
5 \quad \text{foreach}(q \in P; |q| \geq k) \{ \\
\quad \text{if } (s \subseteq q) \{ \\
\quad\quad CS_q &= \text{CLASS_SET}(CM, q) \\
6 \quad\quad \text{if } (CS_s \supseteq CS_q) \{ \text{prime} = 0; \text{break} \} \\
\quad\} \\
7 \quad \text{if } (\text{prime} = 1) \quad \text{ENQUEUE}(P, s) \\
\text{HASH_TABLE_INSERT}(\text{DONE}, s)
\end{align*}$$
Building the Reduced Machine

Minimization

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
 a & a,0 & -- & d,0 & e,1 & b,0 & a,-- & -- \\
 b & b,0 & d,1 & a,-- & -- & a,-- & a,1 & -- \\
 c & b,0 & d,1 & a,1 & -- & -- & -- & g,0 \\
 d & -- & e,-- & -- & b,-- & b,0 & -- & a,-- \\
 e & b,-- & e,-- & a,-- & -- & b,-- & e,-- & a,1 \\
 f & b,0 & c,-- & --,1 & h,1 & f,1 & g,0 & -- \\
 g & -- & c,1 & -- & e,1 & -- & g,0 & f,0 \\
 h & a,1 & e,0 & d,1 & b,0 & b,-- & e,-- & a,1 \\
\end{array}
\]

\[
\{ c_1, c_4, c_5, c_9 \}
\]

- \(c_1 = \{ a, b, d, e \} \)
- \(c_4 = \{ d, e, h \} \)
- \(c_5 = \{ b, c \} \)
- \(c_9 = \{ f, g \} \)
Reduced Machine

Where there is a choice, choose 1 (as in x2-successor of compatible 1):

{d,e} contained in \(c_1 \) or \(c_4 \).
Closed Cover

- Closed Cover: Choosing Compatibles
- Every state of the original machine must be covered
- Every implied compatible must be present in the solution
Closed Cover

maximal class compatibles set
1 \{a,b,d,e\} {} Let's check if the following set of compatibles forms a closed cover: \{c_1, c_4, c_5, c_9\}
2 \{b,c,d\} \{\{a,b\}, \{a,g\}, \{d,e\}\}
3 \{c,f,g\} \{\{c,d\}, \{e,h\}\}
4 \{d,e,h\} \{\{a,b\}, \{a,d\}\}
11 \{a,g\} {}
other PCs
5 \{b,c\} {}
6 \{c,d\} \{\{a,g\}, \{d,e\}\}
7 \{c,f\} \{\{c,d\}\}
8 \{c,g\} \{\{c,d\}, \{f,g\}\}
9 \{f,g\} \{\{e,h\}\}
10 \{d,h\} {}
12 \{f\} {}

Coverage:

\Gamma(c_1): a \in c_1
b, c \in c_5
d, e \in c_4
f, g \in c_9
h \in c_4

Closure:

\Gamma(c_1): \{a, b\} \in c_1 \quad \{a, d\} \in c_1
\Gamma(c_5): \Gamma(c_4): \{a, b\} \in c_1 \quad \{a, d\} \in c_1
\Gamma(c_9): \{e, h\} \in c_4
Covering Constraints--POS FORM

Maximal Class Compatibles Set

<table>
<thead>
<tr>
<th>Class</th>
<th>Compatibles</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{a,b,d,e}</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{b,c,d}</td>
<td>{a,b}, {a,g}, {d,e}</td>
</tr>
<tr>
<td>3</td>
<td>{c,f,g}</td>
<td>{c,d}, {e,h}</td>
</tr>
<tr>
<td>4</td>
<td>{d,e,h}</td>
<td>{a,b}, {a,d}</td>
</tr>
<tr>
<td>11</td>
<td>{a,g}</td>
<td>{}</td>
</tr>
</tbody>
</table>

Other PCs

<table>
<thead>
<tr>
<th>Class</th>
<th>Compatibles</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>{b,c}</td>
<td>{}</td>
</tr>
<tr>
<td>6</td>
<td>{c,d}</td>
<td>{a,g}, {d,e}</td>
</tr>
<tr>
<td>7</td>
<td>{c,f}</td>
<td>{c,d}</td>
</tr>
<tr>
<td>8</td>
<td>{c,g}</td>
<td>{c,d}, {f,g}</td>
</tr>
<tr>
<td>9</td>
<td>{f,g}</td>
<td>{e,h}</td>
</tr>
<tr>
<td>10</td>
<td>{d,h}</td>
<td>{}</td>
</tr>
<tr>
<td>12</td>
<td>{f}</td>
<td>{}</td>
</tr>
</tbody>
</table>

- Every state of the original machine must be covered.

\[
\begin{align*}
(c_1 + c_{11})(c_1 + c_2 + c_5) \\
(c_2 + c_3 + c_5 + c_6 + c_7 + c_8) \\
(c_1 + c_2 + c_4 + c_6 + c_{10}) \\
(c_1 + c_4)(c_3 + c_7 + c_9 + c_{12}) \\
(c_3 + c_8 + c_9 + c_{11}) \\
(c_4 + c_{11}) = 1
\end{align*}
\]
Covering Constraints--POS FORM

Every state of the original machine must be covered.

<table>
<thead>
<tr>
<th>maximal compatibles</th>
<th>class set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {a,b,d,e}</td>
<td>{}</td>
</tr>
<tr>
<td>2 {b,c,d}</td>
<td>{{a,b},{a,g},{d,e}}</td>
</tr>
<tr>
<td>3 {c,f,g}</td>
<td>{{c,d},{e,h}}</td>
</tr>
<tr>
<td>4 {d,e,h}</td>
<td>{{a,b},{a,d}}</td>
</tr>
<tr>
<td>11 {a,g}</td>
<td>{}</td>
</tr>
</tbody>
</table>

other PCs

5 {b,c}	{}
6 {c,d}	{{a,g},{d,e}}
7 {c,f}	{{c,d}}
8 {c,g}	{{c,d},{f,g}}
9 {f,g}	{{e,h}}
10 {d,h}	{}
12 {f}	{}

- a $(c_1 + c_{11})(c_1 + c_2^b + c_5)$
- b $(c_2 + c_3^c + c_5 + c_6 + c_7)$
- c $(c_1 + c_2 + c_4 + c_6 + c_{10})$
- d $(c_1^e + c_4)(c_3 + c_7^f + c_9 + c_{12})$
- e $(c_3 + c_8^g + c_9 + c_{11})$
- f $(c_4 + c_{10})$
Finding a Minimum Closed Cover

- Associate a variable c_i to the i^{th} prime compatible
- For each $s \in S$, form the coverage constraint $\prod_{s \in S} \left(\sum_{s \in c_i} c_i \right)$

1. $\{a, b, d, e\} \quad \{\}$
2. $\{b, c, d\} \quad \{\{a, b\}, \{a, g\}, \{d, e\}\}$
3. $\{c, f, g\} \quad \{\{c, d\}, \{e, h\}\}$
4. $\{d, e, h\} \quad \{\{a, b\}, \{a, d\}\}$

$$b \quad (c_1 + c_2)$$

$$a \quad b \quad c \quad d \quad e \quad f \quad g \quad h$$

$$c_1(c_1 + c_2)(c_2 + c_3)(c_1 + c_2 + c_3)(c_1 + c_4)c_3c_3c_4$$

$$=c_1c_3c_4 \quad \text{This cover is not closed, since } c_2 \text{ is excluded}$$
Closure Constraints

C_Γ is the set of prime compatibles with non-empty class sets

Note $\left(c_i \Rightarrow c_j \right) \iff \left(c'_i + c_j \right)$

<table>
<thead>
<tr>
<th>Class Sets</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {a,b,d,e} {}</td>
<td>$(c'_2 + c_1)$ {a,b}\subseteq{a,b,d,e}</td>
</tr>
<tr>
<td>2 {b,c,d} {{a,b}, {a,g}, {d,e}}</td>
<td>$(c'2 + c{11})$ {a,g}\subseteq{a,g}</td>
</tr>
<tr>
<td>3 {c,f,g} {{c,d}, {e,h}}</td>
<td>$(c'2 + c{11} + c_4)$ {d,e}\subseteq{a,b,d,e}</td>
</tr>
<tr>
<td>4 {d,e,h} {{a,b}, {a,d}}</td>
<td>$(c'_3 + c_4)$... {d,e}\subseteq{d,e,h}</td>
</tr>
<tr>
<td>11 {a,g} {}</td>
<td>$(c'_2 + c_1 + c_4)$ {d,e}\subseteq{a,b,d,e}</td>
</tr>
<tr>
<td>5 {b,c} {}</td>
<td>$(c'_3 + c_4)$... {d,e}\subseteq{d,e,h}</td>
</tr>
<tr>
<td>6 {c,d} {{a,g}, {d,e}}</td>
<td>$(c'_3 + c_4)$... {d,e}\subseteq{d,e,h}</td>
</tr>
<tr>
<td>7 {c,f} {{c,d}}</td>
<td>$(c'_3 + c_4)$... {d,e}\subseteq{d,e,h}</td>
</tr>
</tbody>
</table>
\[
(c_1 + c_{11})(c_1 + c_2 + c_5)(c_2 + c_3 + c_5 + c_6 + c_7 + c_8)
\]
\[
(c_1 + c_2 + c_4 + c_6 + c_{10})(c_1 + c_4)(c_3 + c_7 + c_9 + c_{12})
\]
\[
(c_3 + c_8 + c_9 + c_{11})(c_4 + c_{11})
\]
\[
(c_2' + c_1)(c_2' + c_{11})
\]
\[
(c_2' + c_1 + c_4)(c_3' + c_2 + c_6)(c_3' + c_4)(c_4' + c_1)(c_6' + c_{11})
\]
\[
(c_6' + c_1 + c_4)(c_7' + c_2 + c_6)(c_8' + c_2 + c_6)(c_8' + c_3 + c_9)
\]
\[
(c_9' + c_4) = 1
\]
Covering Constraints--Matrix FORM

\[(c_1 + c_{11})(c_1 + c_2 + c_5)(c_2 + c_3 + c_5 + c_6 + c_7 + c_8)\]
\[(c_1 + c_2 + c_4 + c_6 + c_{10})(c_1 + c_4)(c_3 + c_7 + c_9 + c_{12})\]
\[(c_3 + c_8 + c_9 + c_{11})(c_4 + c_{11})\]

\[
\begin{bmatrix}
c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{10} & c_{11} & c_{12} \\
a & 1 & & & & & & & & & & 1 \\
b & 1 & 1 & & & & & & & & & 1 \\
c & 1 & 1 & 1 & 1 & 1 & 1 & & & & & 1 \\
d & 1 & 1 & & & & & & & & 1 & 1 \\
e & 1 & & & & & & & & & & 1 \\
f & 1 & 1 & 1 & 1 & & & & & & & 1 \\
g & 1 & & 1 & 1 & 1 & & & & & & 1 \\
h & 1 & & & & & & & & & & 1 \\
\end{bmatrix}
\]
Row Dominance

Col Dominance?
(see below)
Closure Constraints--Matrix FORM

For each pair p_j in the class set of each compatible c_i, form the clause

\[c_i' + \sum_{k} c_k \]

where k ranges over the indices of compatibles that contain p_j.

<table>
<thead>
<tr>
<th>Class Set</th>
<th>Compatibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {a,b,d,e}</td>
<td>{}</td>
</tr>
<tr>
<td>2 {b,c,d}</td>
<td>{{a,b},{a,g},{d,e}}</td>
</tr>
<tr>
<td>3 {c,f,g}</td>
<td>{{c,d}, {e,h}}</td>
</tr>
<tr>
<td>4 {d,e,h}</td>
<td>{{a,b}, {a,d}}</td>
</tr>
<tr>
<td>11 {a,g}</td>
<td>{}</td>
</tr>
<tr>
<td>5 {b,c}</td>
<td>{}</td>
</tr>
<tr>
<td>6 {c,d}</td>
<td>{{a,g}, {d,e}}</td>
</tr>
<tr>
<td>7 {c,f}</td>
<td>{{c,d}}</td>
</tr>
</tbody>
</table>

\[
(c_2' + c_1) \\
(c_2' + c_{11}) \\
(c_2' + c_1 + c_4) \\
\]

\[
\begin{array}{cccccccccccc}
 & c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{10} & c_{11} & c_{12} \\
\Gamma_2 & 1 & 0 & & & & & & & & & & \\
\Gamma_2 & 0 & & & & & & & & & & & \\
\Gamma_2 & 1 & 0 & & & & & & & & & & \\
\end{array}
\]
Closure Constraints--Matrix FORM

Cover rows by including a 1-col **OR** excluding a 0-col

\[c'_i \Rightarrow c_j \]

<table>
<thead>
<tr>
<th></th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
<th>(c_5)</th>
<th>(c_6)</th>
<th>(c_7)</th>
<th>(c_8)</th>
<th>(c_9)</th>
<th>(c_{10})</th>
<th>(c_{11})</th>
<th>(c_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Closed Covering Problem

Minimization

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Covering Constraints

Find a minimum set of columns which cover all rows: \{1,4,5,9\}

Closure Constraints

A row is covered by either including a 1-col or excluding a 0-col.
Binate Covering Problem

- Similar to unate covering
- Matrix
 - Variables on columns
 - Sum expressions on the rows
- Solution may not exist when product is 0
The Binate Covering Problem

• Note: M replaced by F to emphasize POS semantics

• Also there is one addition (for empty solution space)

```
Procedure BCP($F$, $U$, currentSol)
1  $(F$, currentSol) = REDUCE($M$, currentSol)
   if (terminalCase($F$)) {
      if ($F \neq 0$ and COST(currentSol) < $U$) {
         $U = \text{COST}(\text{currentSol})$
      }
      return (currentSol)
   }
2  else return ("no (better) solution (in this subspace)"
3
4   $L = \text{LOWER\_BOUND} (F$, currentSol)
5   if ($L \geq U$) return ("no (better) solution (in this subspace)"
6   $x_i = \text{CHOOSE\_VAR}(F)$ \\ longest column
7   $S^1 = \text{BCP}(F_{x_i}, U$, currentSol $\cup \{x_i\})$
8   if (COST($S^1$) = $L$) return ($S^1$)
9   $S^0 = \text{BCP}(F_{x_i}$, $U$, currentSol)
10  return BEST\_SOLUTION ($S^1$, $S^0$)
```

Also there is one addition (for empty solution space)
Unacceptable (anti-essential) Variables

When x_2' is essential, we say that x_2 is unacceptable.

When x_i' is essential, we may delete all rows of the matrix which has a zero in the i^{th} column.
Row Dominance

\[(x'_3 + x_2)(x'_3 + x_2 + x'_1) = (x'_3 + x_2)\]

Row 1 \((f_1)\) dominates row 2 \((f_2)\) since row 2 matches row 1 at all care entries.

Row 1 may be deleted.

Formally: Row \(f_1\) dominates row \(f_2\) if \(f_1\) is satisfied, in a Boolean sense, whenever \(f_2\) is satisfied, that is,

\[f_1 \leq f_2\]

\[
\begin{array}{cccc|c}
 x_1 & x_2 & x_3 & x_4 & f_i \\
 \hline
 0 & 1 & 0 & & f_1 \\
 - & 1 & 0 & - & f_2 \\
 1 & - & - & 1 & f_3 \\
 1 & 0 & 1 & 0 & f_4 \\
\end{array}
\]
Column Dominance

Let F_j and F_k be two columns of F. We say that F_j dominates F_k if, for each row f_i of F, one of the following conditions hold:

1. $f_{ij} = 1$
2. $f_{ij} = -$ and $f_{ik} \neq 1$
3. $f_{ij} = 0$ and $f_{ik} = 0$

Example: reduced column F_1 dominates F_4.

\[
\begin{array}{cccc|c}
 x_1 & x_2 & x_3 & x_4 & f_i \\
 \hline
 0 & 1 & 0 & \multicolumn{1}{|c}{f_1} \\
 -1 & 0 & - & \multicolumn{1}{|c}{f_2} \\
 1 & - & - & 1 & \multicolumn{1}{|c}{f_3} \\
 1 & 0 & 1 & 0 & \multicolumn{1}{|c}{f_4} \\
\end{array}
\]
Maximal Independent Set

- Two rows are **independent** if it is not possible to satisfy both clauses by assigning one variable to 1.
- Thus in finding the MIS, we ignore rows (clauses) that contain 0s, since these are satisfied by assigning variables to 0.

\[
\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 1 & 1 & - & - & f_1 \\
 - & 1 & 1 & - & f_2 \\
 - & 0 & - & 1 & f_3 \\
\end{array}
\]

\[
\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 1 & 0 & - & - & f_1 \\
 0 & 1 & - & - & f_2 \\
 - & 0 & 1 & - & f_3 \\
 - & - & 0 & 1 & f_4 \\
\end{array}
\]

\[\text{MIS} = \{f_1\}\]

- cyclic, \[\text{MIS} = \{\}\]
Infeasible Subproblems

$F = 0$ cannot occur in original problem (first call to the recursive procedure). But it can happen after one or more recursions:

$$
\begin{array}{cc}
 x_1 & x_2 \\
 1 & 1 \\
 0 & 1 \\
 1 & 0 \\
 0 & 0 \\
\end{array}
$$

$F = \equiv (x_1 + x_2)(x_1' + x_2)(x_1 + x_2')(x_1' + x_2') = 0$

This is detected by REDUCTION, which discovers that both x_2 and x'_2 are essential
Reduction

<table>
<thead>
<tr>
<th>(f_1) dominates (f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(F_1) dominates (F_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_4 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Binate Covering

<table>
<thead>
<tr>
<th>(F_2) dominates (F_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Solution:

\[x = (1, 0, 0, 0, 0) \]
State Encoding

• The number of possible assignments is very high

• If one uses k bits to encode p states, there are \(\frac{(2^k)!}{(2^k - p)!} \) possible assignments

• If one considers two assignments obtained by permutation or complementation of some of the bits as essentially the same assignment, then there are \(\frac{(2^k - 1)!}{(2^k - p)!} k! \) distinct assignments
Practical Encoding Algorithms

• Mustang tries to identify pairs of states by receiving adjacent pairs
 ◦ Two codes are adjacent if they only differ in one bit
• The first objective is to build a graph representing the attraction between each pair of states
 ◦ Two states that have a strong attraction should be given adjacent codes
• How to build attraction graph
 ◦ In the fanout-oriented algorithm, whenever two states, si and sj have a common fanout state, the weight of the edge (si, sj) of the attraction graph is increased
 ◦ In the fanin-oriented algorithm, if si and sj have a common fanin state, the weight of the edge (si, sj) of the attraction graph is increased
 ◦ Once the graph of the attractions is found, we try to assign codes to pairs of states that have strong attractions
Fanout Oriented Algorithm

- **Build two matrices**
 - The first with one row for each present state and one column for each next state
 - The second with one row for each present state and one column for each output
Embedding Algorithm

- Assign codes to states
 - Select first the node for which the sum of the weights of the Nb heaviest incident edges is maximum
Fanin Oriented Algorithm

- **Build two matrices**
 - The first with one row for each next state and one column for each present state
 - The second with one row for each next state and two columns for each output
 - One column is for the true input and the other is for the complement
Decomposition and Encoding

- Rather than aiming directly at minimizing the number of literals in the next-state functions, one may actually try to minimize the support of the functions.
- Reduction of the number of literals and simplification of the interconnections.
Partitions

• A partition π is on a set S is a collection of disjoint subsets of S whose set union is S, i.e. $\pi = \{ B_a \}$ such that $B_a \cap B_b = \emptyset$ for $a \neq b$

 and $\bigcup \{ B_a \} = S$

• Each subset is called a block of the partition

• If π_1 and π_2 are partitions on S, then $\pi_1 \pi_2$ is the partition on S such that $s \equiv t(\pi_1 \pi_2)$ if and only if $s \equiv t(\pi_1)$ and $s \equiv (\pi_2)$, whereas, $\pi_1 + \pi_2$ is the partition on S such that $s \equiv t(\pi_1 + \pi_2)$ if and only if there exists a sequence in S

 $s = s_0 \ s_1 \ s_2 \ldots \ s_n = t$

 for which either $s_i \equiv s_{i+1} (\pi_1)$ or $s_i \equiv s_{i+1} (\pi_2)$,

 $0 \leq i \leq n-1$
Partitions with Substitution Property

• A partition π on the set of states of the machine is said to have the substitution property if and only if $s \equiv t(\pi)$ implies that $\delta(s,a) \equiv \delta(t,a) (\pi)$ $\forall a \in I$

• A sequential machine M has a non-trivial parallel decomposition of its state behavior if and only if there exist two nontrivial S.P. partitions π_1 and π_2 on M such that $\pi_1 \pi_2 = 0$

• Independent component
• Dependent component
Computation of SP Partitions

- First generate the minimal SP partitions and then sum them until considering all possible sums.

- The minimal partitions are those obtained by requiring that two states only are included in a block.
General Decomposition and Encoding

• Need to resort to something more general than SP partitions, namely, partition pairs

• A partition pair \((\pi, \pi')\) on the machine is an ordered pair of partitions on \(S\) such that

\[s \equiv t(\pi) \text{ implies that } \delta(s,a) \equiv \delta(t,a) (\pi') \quad \forall a \in I \]

• The knowledge of the block of \(\pi\) containing the present state and of the current input allows one to compute the block \(\pi'\) of that will contain the next state.

• It is evident that if \((\pi, \pi)\) is a partition pair, then \(\pi\) has substitution property

" Partition pairs generalize SP partitions"