
State Assignment

The problem:

� Assign a unique code to each state to produce a

logic level description.

� Given jSj states, needed at least dlog jSje state bits
(minimum width encoding), at most jSj state bits
(one-hot encoding).

� Need to estimate impact of encoding on the size

and delay of the optimized implementation.

� Most known techniques are directed towards re-

ducing the size. Di�cult to estimate delay before

optimization and thus to see the impact of encod-

ing on it.

� There are

�
2n

jSj

�
jSj! possible state assignments

for 2n codes (n � dlog jSje), since there are

�
2n

jSj

�

ways to select jSj distinct state codes and jSj! ways
to permute them.

1

State Assignment

Techniques are in two categories:

� Heuristic techniques: try to capture some aspect

of the process of optimizing the resulting logic,

e.g. common cube extraction. Usually, they are

two-steps processes:

{ Construct a weighted graph of the states. Weights

express the gain in keeping 'close' the codes of

the states.

{ Assign codes that minimize a proximity func-

tion (graph embedding step).

� Exact techniques: model precisely the process of

optimizing the resulting logic as an encoding prob-

lem. Usually, they are three-steps processes:

{ Perform an appropriate multi-valued logic min-

imization (optimization step).

{ Extract a set of encoding constraints, that set

conditions on the codes.

{ Assign codes that satisfy the encoding con-

straints.

2

State Assignment as an Encoding Prob-

lem

State assignment is a di�cult problem in a family of

encoding problems: transform 'optimally' a cover of

multi-valued (also called symbolic) logic functions into

an equivalent cover of two-valued logic functions.

Reason of transformation: available circuits realize two-

valued logic.

Encoding problems are hard because an optimal trans-

formation is sought. Various applications dictate vari-

ous de�nitions of optimality.

Encoding problems are classi�ed as input, output and

input-output encoding problems, according to whether

the symbolic variables appear as input, output or both.

State assignment is a case of input-output encoding

where the the state variable appears both as input and

output.

3

Encoding Problems

ENCODING PROBLEMS

INPUT ENCODING

two-level multi-level

Well-understood theory Basic theory developed

E�cient algorithms Algorithms not yet mature

Many applications Few applications

OUTPUT ENCODING

two-level multi-level

Well-understood theory No theory

No e�cient algorithm Heuristic algorithms

Few applications Few applications

INPUT-OUTPUT ENCODING

two-level multi-level

Well-understood theory No theory

No e�cient algorithm Heuristic algorithms

Few applications Few applications

4

Input Encoding for Two-Level Implemen-

tations

Reference: [De Micheli,Brayton,Sangiovanni 1985]

To solve the input encoding problem for minimum product-

term count:

� Represent the function as a multi-valued function.

� Apply multi-valued minimization to it.

� Extract from the minimized multi-valued cover in-

put encoding constraints.

� Obtain codes (of minimum length) that satisfy the

input encoding constraints.

5

Example of Input Encoding

Example: Single output of an FSM

3 inputs: state and two conditions c1 and c2
4 states: s0; s1; s2; s3
1 output: y

y is 1 when under the following conditions:

state= s0 and c2 = 1

((state = s0) or (state = s2)) and c1 = 0

state= s1 and c2 = 0 and c1 = 1

((state = s3) or (state = s2)) and c1 = 1

Pictorially:
c2

c1

state

0 1 2 3

1

1

Values along the state axis are not ordered.

6

Example of Input Encoding

Function Representation

� Symbolic variable represented by a multiple-valued

(MV) variable X restricted to P = f0;1; : : : ; n� 1g

� Output is a binary valued function f of a single

MV variable X and m� 1 binary variables

f : P �Bm�1
7! B

� Let S � P , then XS (a literal of X) is de�ned as:

XS =

�
1 if X 2 S
0 otherwise

y = Xf0g c2 + Xf0;2g c1 + Xf1g c1 c2 + Xf2;3g c1

The cover of the function can also be written in one-

hot encoded form:

-1 1000 1

0- 1010 1

10 0100 1

1- 0011 1

7

Example of Input Encoding

Two-Level Multi-Valued Minimization

y = Xf0g c2 + Xf0;2g c1 + Xf1g c1 c2 + Xf2;3g c1

Minimize using classical two-level minimization.
c2

c1

state

0 1 2 3

1

1

0 1 2 3

1

1

m-1
cube in PxB space

Minimized representation:

y = Xf0;2;3g c1 c2 + Xf0;2g c1 + Xf1;2;3g c1 c2

8

Example of Input Encoding

Extraction of Input (or Face) Constraints

y = Xf0;2;3g c1 c2 + Xf0;2g c1 + Xf1;2;3g c1 c2

The face constraints are:

(s0; s2; s3),
(s0; s2),

(s1; s2; s3).

� two-level minimization results in the fewest prod-

uct terms for any possible encoding

� would like to select an encoding that results in the

same number of product terms

� each MV literal should be embedded in a face (sub-

space or cube) in the encoded space

� unused codes may be used as don't cares

9

Example of Input Encoding

Satisfaction of face constraints

� lower bound can always be achieved (one-hot code

will do it), just need to do it with the fewest bits

� for a �xed code width need to �nd embedding that

will result in the fewest cubes

A satisfying solution is:

s0 = 001, s1 = 111, s2 = 101, s3 = 100.

The face constraints are assigned to the following faces:

(s0; s2; s3) () 202

(s0; s2) () 201

(s1; s2; s3) () 122

Encoded representation:

y = x2 c1 c2 + x3 x2 c1+ x1 c1 c2

0

1

3

2

x1

x2
x3

10

Procedure for Input Encoding

A summary of the steps is:

� Given an input constraint corresponding to a multi-

valued literal (group of symbolic values), the face

constraint is satis�ed by an encoding if the super-

cube of the codes of the symbolic values in the

literal does not intersect the codes of symbolic

values not in the literal.

� Satisfying all the face constraints of a multi-valued

cover, guarantees that the encoded and minimized

binary-valued cover will have a number of product-

terms no greater than the multi-valued cover.

� Once an encoding satisfying all face constraints

has been found, a binary-valued encoded cover

can be constructed directly from the multi-valued

cover, by replacing each multi-valued literal by the

super-cube corresponding to that literal.

11

Satisfaction of Input Constraints

Any set of face constraints can be satis�ed by one-hot

encoding the symbols. But code-length too long ...

To �nd an encoding of minimum code-length that sat-

is�es a given set of constraints is NP-hard

(Saldanha,Villa,Brayton,Sangiovanni 1991).

Many approaches proposed to the problem. Previous

reference describes the best algorithm currently known.

It is based on the concept of encoding-dichotomies

(Tracey 1965, Ciesielski 1989).

12

Applications of Input Encoding

Some of them are:

� PLA decomposition with multi-input decoders (Sasao

1984, K.C.Chen and Muroga 1988, Yang and Ciesiel-

ski 1989)

� Boolean decomposition in multi-level logic opti-

mization (Devadas, Wang, Newton, Sangiovanni

1989)

� Communication-based logic partitioning (Beardslee

1992, Murgai 1993)

� Approximation to state assignment (De Micheli,

Brayton, Sangiovanni 1985, Villa and Sangiovanni

1989)

13

Input Encoding: PLA Decomposition

Consider the PLA:

y1 = x1x3x
0

4x6+ x2x5x
0

6x7+ x1x4x
0

7+ x01x
0

3x4x
0

7

+x03x
0

5x
0

6x
0

7

y2 = x02x
0

4x6+ x3x
0

4x6+ x02x5x
0

6x7+ x01x
0

3x4x
0

7

+x01x
0

3x
0

5x
0

6x
0

7+ x02x
0

4x
0

5x
0

7

Decompose it in a driving PLA fed by inputs fX4;X5; X6;X7g

and a driven PLA fed by the outputs of the driving PLA

and the remaining inputs fX1; X2;X3g so as to mini-

mize the area.

14

Input Encoding: PLA Decomposition

Projecting on the selected inputs there are 5 product

terms: x04x6; x5x
0

6x7; x4x
0

7; x
0

5x
0

6x
0

7; x
0

4x
0

5x
0

7.

Product terms x4x
0

7 and x05x
0

6x
0

7 are not disjoint, neither

are x05x
0

6x
0

7 and x04x
0

5x
0

7.

To re-encode make disjoint all product-terms involving

selected inputs:

y1 = x1x3x
0

4x6+ x2x5x
0

6x7+ x1x4x
0

7+ x01x
0

3x4x
0

7

+x03x
0

4x
0

5x
0

6x
0

7

y2 = x02x
0

4x6+ x3x
0

4x6+ x02x5x
0

6x7+ x01x
0

3x4x
0

7

+x01x
0

3x
0

4x
0

5x
0

6x
0

7+ x02x
0

4x
0

5x
0

6x
0

7

Projecting on the selected inputs there are 4 disjoint

product terms: x04x6; x5x
0

6x7; x4x
0

7; x
0

4x
0

5x
0

6x
0

7.

15

Input Encoding: PLA Decomposition

View x04x6; x5x
0

6x7; x4x
0

7; x
0

4x
0

5x
0

6x
0

7 as 4 values, s1; s2; s3; s4,
of an MV variable S:

y1 = x1x3S
f1g + x2S

f2g + x1S
f3g + x01x

0

3S
f3g + x03S

f4g

y2 = x02S
f1g + x3S

f1g + x02S
f2g + x01x

0

3S
f3g + x01x

0

3S
f4g

+x02S
f4g

Perform MV two-level minimization:

y1 = x1x3S
f1;3g + x2S

f2g + x03S
f3;4g

y2 = x02S
f1;2;4g + x3S

f1g + x01x
0

3S
f3;4g

Face constraints are: (s1; s3); (s3; s4); (s1; s2; s4).

Codes of minimum length are: enc(s1) = 001; enc(s2) =
011; enc(s3) = 100; enc(s4) = 111

16

Input Encoding: PLA Decomposition

The driven PLA becomes:

y1 = x1x3x
0

9+ x2x
0

8x9x10+ x03x8

y2 = x02x10+ x3x
0

8x
0

9x10+ x01x
0

3x8

The driving PLA implements the function:

f : fX4;X5; X6; X7g ! fX8;X9; X10g:

f(x04x6) = enc(s1) � 001;

f(x5x
0

6x7) = enc(s2) � 011;

f(x4x
0

7) = enc(s3) � 100;

f(x04x
0

5x
0

6x
0

7) = enc(s4) � 111:

represented in SOP as:

x8 = x4+ x07+ x04x
0

5x
0

6x
0

7

x9 = x5+ x06x7+ x04x
0

5x
0

6x
0

7

x10 = x04x6+ x5x
0

6x7+ x04x
0

5x
0

6x
0

7

Area before decomposition: 160. Area after decompo-

sition: 128.

17

Output Encoding for Two-Level Imple-

mentations

The problem: Find binary codes for symbolic outputs

in a logic function so as to minimize a two-level imple-

mentation of the function.

Terminology:

� Assume that we have a symbolic cover S with a

symbolic output assuming n values. The di�erent

values are denoted v0; : : : ; vn�1.

� The encoding of a symbolic value vi is denoted

enc(vi).

� The on-set of vi is denoted ONi. Each ONi is a

set of Di minterms fmi1; : : : ;miD
i
g.

� Each minterm mij has a tag as to what sym-

bolic value's on-set it belongs to. A minterm can

only belong to a single symbolic value's on-set.

Minterms are also called 0-cubes.

18

Facts on Output Encoding

Consider a function f with symbolic outputs and two

di�erent encoded realizations of f :

0001 out1 0001 001 0001 10000

00-0 out2 00-0 010 00-0 01000

0011 out2 0011 010 0011 01000

0100 out3 0100 011 0100 00100

1000 out3 1000 011 1000 00100

1011 out4 1011 100 1011 00010

1111 out5 1111 101 1111 00001

An encoded cover is a multiple-output logic function.

Two-level logic minimization exploits the sharing be-

tween the di�erent outputs to produce a minimum

cover.

In the second realization no sharing is possible. The

�rst realization is reduced by two-level minimization to:

1111 001

1-11 100

0100 011

0001 101

1000 011

00-- 010

A good output encoding maximizes the sharing at the

two-level minimization step.

19

Facts on Output Encoding: Dominance
Constraints

Say that enc(vi) > enc(vj) i� the code of vi bit-wise
dominates the code of vj, i.e. for each bit position

where vj has 1, vi also has 1.

If enc(vi) > enc(vj), then ONi can be used as a DC-set

when minimizing ONj.

Example of symbolic cover, encoded cover, minimized

encoded cover:

0001 out1 0001 110 0001 110

00-0 out2 00-0 010 00-- 010

0011 out2 0011 010

Here enc(out1) = 110 > enc(out2) = 010. The input

minterm 0001 of out1 has been merged into the single

cube 00� � that asserts the code of out2. Note that

00�� contains the minterm 0001 that asserts out1.

Algorithms to exploit dominance constraints implemented

in Cappuccino (De Micheli, 1986) and Nova (Villa and

Sangiovanni, 1990).

20

Facts on Output Encoding: Disjunctive
Constraints

If enc(vi) = enc(vj) + enc(vk) (+ here is the boolean

disjunctive operator), ONi can be reduced using ONj

and ONk.

Example of symbolic cover, encoded cover, minimized

encoded cover:

101 out1 1 101 11 1 10- 01 1

100 out2 1 100 01 1 1-1 10 1

111 out3 1 111 10 1

Here enc(out1) = enc(out2) + enc(out3). The input

minterm 101 of out1 has been merged both with the

input minterm 100 of out2 (resulting in 10-) and with

the input minterm 111 of out3 (resulting in 1-1). Input

minterm 101 asserts 11 (i.e. the code of out1), by

activating both cube 10� that asserts 01 and cube

1� 1 that asserts 10.

Algorithm to exploit dominance and disjunctive con-

straints implemented in esp sa (Villa, Saldanha, Bray-

ton and Sangiovanni, 1995).

21

Exact Output Encoding

Proposed by Devadas and Newton, 1991.

The algorithm consists of the following steps:

� Generate generalized prime implicants (GPIs) from

the original symbolic cover.

� Solve a constrained covering problem, that requires

the selection of a minimum number of GPIs that

form an encodeable cover.

� Obtain codes (of minimum length) that satisfy the

encoding constraints.

� Given the codes of the symbolic outputs and the

selected GPIs, construct trivially a PLA with product-

term cardinality equal to the number of GPIs.

22

Generation of GPIs

� Minterms in the original symbolic cover are called

0-cubes.

� Each 0-cube has a tag corresponding to the sym-

bolic output it belongs to.

� 0-cubes can be merged to form 1-cubes, which in

turn can be merged to form 2-cubes and so on.

� The rules for generating GPIs are:

{ When two k-cubes merge to form a k+1-cube,

the tag of the k + 1-cube is the union of the

tags of the two k-cubes.

{ A k + 1-cube can cancel a k-cube only if the

k + 1-cube covers the k-cube and they have

identical tags.

23

Generation of GPIs

Example of function with symbolic outputs, list of 0-

cubes, list of 1-cubes:

1101 out1 1101 (out1) 110- (out1, out2)

1100 out2 1100 (out2) 11-1 (out1, out3)

1111 out3 1111 (out3) 000- (out4)

0000 out4 0000 (out4)

0001 out4 0001 (out4)

Since the 1-cube 000 � (out4) cancels the 0-cubes

0000 (out4) and 0001 (out4), the GPIs of the function
are:

110- (out1, out2)

11-1 (out1, out3)

000- (out4)

1101 (out1)

1100 (out2)

1111 (out3)

24

Generation of GPIs by Reduction to PIs

One can transform a function with a symbolic out-

put into a function with multiple binary-valued out-

puts such that the prime implicants (PIs) for this new

multiple-output function are in 1-1 correspondence with

the GPIs of the original function.

Example of transformation:

1101 out1 1101 0111

1100 out2 1100 1011

1111 out3 1111 1101

0000 out4 0000 1110

0001 out4 0001 1110

25

Generation of GPIs by Reduction to PIs

espresso -Dprimes

.i 4

.o 4

.p 6

000- 1110

1101 0111

1100 1011

110- 0011

1111 1101

11-1 0101

espresso -Dprimes -fr

.i 4

.o 4

.p 22

01-- 1111

10-- 1111

0-1- 1111

-01- 1111

--10 1111

--1- 1101

0--- 1110

-0-- 1110

1--0 1011

-1-0 1011

---0 1010

1-01 0111

-101 0111

26

1-0- 0011

-10- 0011

1--1 0101

-1-1 0101

1--- 0001

-1-- 0001

--01 0110

--0- 0010

---1 0100

Generation of GPIs by Reduction to PIs

Why is this a wrong transformation ?

1101 out1 1101 1000

1100 out2 1100 0100

1111 out3 1111 0010

0000 out4 0000 0001

0001 out4 0001 0001

espresso -Dprimes

.i 4

.o 4

.p 4

000- 0001

1111 0010

1100 0100

1101 1000

espresso -Dprimes -fr

.i 4

.o 4

.p 12

01-- 1111

10-- 1111

0-1- 1111

-01- 1111

--10 1111

0--- 0001

-0-- 0001

27

--1- 0010

1--0 0100

-1-0 0100

1-01 1000

-101 1000

Encodeability of a Set of GPIs

Given all the GPIs, one has to select a minimum subset

of GPIs such that they cover all the minterms and form

an encodeable cover.

� Say that minterm m belongs to symbolic output

vm.

� Obviously, in any encoded and optimized cover, m
has to assert the code given to vm, namely e(vm).

� Let the selected set of GPIs be p1; :: pG.

� Let the GPIs that cover m in this selected subset

be pm;1; :: pm;M.

� For functionality to be maintained

M[
i=1

\
j

e(vpm;i; j) = e(vm) 8 m:

where the vp
m;i

; j are the symbolic outputs in the

tag of the GPI pm;i. These equations de�ne a set

of encoding constraints on the selected GPIs.

28

Encodeability of a Set of GPIs

Example of a selection of GPIs:

110- (out1, out2)

11-1 (out1, out3)

000- (out4)

Encoding constraints for each minterm:

1101: (enc(out1)\enc(out2))[(enc(out1)\enc(out3)) =
enc(out1)
1100: (enc(out1) \ enc(out2)) = enc(out2)
1111: (enc(out1) \ enc(out3)) = enc(out3)
0000: (enc(out4) = enc(out4)
0001: (enc(out4) = enc(out4)

If an encoding can be found that satis�es all these

constraints, then the selection of GPIs is encodeable.

The constraints associated with a selection of GPIs

may be mutually con
icting.

29

Covering with Encodeability Constraints

Solve a constrained covering problem, that requires the

selection of a minimum number of GPIs that form an

encodeable cover.

Must adapt de�nitions of domination.

Once a selected set of GPIs covers all elements, per-

form an encodeability check. If the cover is not encode-

able, branch-and-bound to �nd a minimum number of

GPIs which render the selected set encodeable.

An 'encodeability' lower bound must be de�ned.

30

Computation of the Codes

If a selection of GPIs covers all minterms and is encode-

able, then codes of minimum length must be obtained

that satisfy the encoding constraints.

Best algorithm to check satis�ability and �nd codes of

minimum length based on encoding-dichotomies (Sal-

danha, Villa, Sangiovanni 1991).

Example of an encodeable selection of GPIs:

110- (out1, out2)

11-1 (out1, out3)

000- (out4)

Codes of minimum length that satisfy the encoding

constraints are:

out1: 11

out2: 01

out3: 10

out4: 00

31

Construction of the Optimized Cover

Once codes have been computed, it is easy to compute

an encoded and optimized cover.

The cover will contain the selected GPIs. For each GPI,

the codes corresponding to all the symbolic values in

the tag of the GPI are bitwise ANDed to produce the

output part.

Example of an encodeable selection of GPIs and of cor-

responding optimized cover, using the codes previously

computed:

110- (out1, out2) 110- 01 1

11-1 (out1, out3) 11-1 10 1

000- (out4) 000- 00 1

32

Correctness of the Procedure

Theorem. A minimum cardinality encodeable cover can

be made up entirely of GPIs.

Theorem. The selection of a minimum cardinality en-

codeable cover of GPIs represents an exact solution to

the output encoding problem.

[Devadas and Newton, 1991]

33

Problems with the Procedure

Only very small problems could be attempted because:

� Number of GPIs exceeds soon memory limitations

� Covering table exceeds soon capabilities of existing

covering solvers.

Some heuristics proposed [Devadas and Newton, 1991],

but no conclusive experimental evidence provided.

34

Problems with the Procedure

Covering with encodeability constraints is a clumsy pro-

cedure.

� A binate covering formulation has been proposed

that combines covering and encodeability check

[Somenzi, 1991].

� It returns an encodeable selection of GPIs and

codes that satisfy the encoding constraints.

� Limited to a �xed code-length.

� Current implementations not practical at all.

35

Extension to Symbolic Output Don't Cares

An extension to the case when some input minterms

assert one of a set of output symbols has been treated

in detail by Lin and Somenzi, 1990.

The problem is formulated as one of minimizing sym-

bolic boolean relations and an algorithm based on bi-

nate covering has been proposed.

36

Input-Output Encoding for Two-Level Im-
plementations

If symbolic variables appear both in the input and out-

put part, the previous techniques for input encoding

and output encoding can be uni�ed.

In particular, we are interested to the case of state

assignment, that is an input-output encoding problem

where one symbolic variable (representing the states)

appears both in the input and output part.

37

Facts on Input-Output Encoding: Domi-
nance Constraints

The initial speci�cation:

10 st1 st2 11

00 st2 st2 11

01 st2 st2 00

00 st3 st2 00

10 st2 st1 11

00 st1 st1 --

01 st3 st0 00

is equivalent to:

-0 st1,st2 st2 11

0- st2,st3 st2 00

10 st2 st1 11

00 st1 st1 --

01 st3 st0 00

provided that enc(st1) > enc(st2), and enc(st0) > enc(st2)
(i.e. st1 asserted implies st2 asserted and st0 asserted

implies st2 asserted) and face constraints (st1; ts2); (st2; st3)
are satis�ed.

38

Facts on Input-Output Encoding: Dis-
junctive Constraints

The initial speci�cation:

01 st2 st1 0

01 st1 st2 0

01 st4 st3 0

is equivalent to:

01 st2,st4 st1 0

01 st1,st4 st1 0

provided that enc(st3) = enc(st1) _ enc(st2) (i.e. st1
and st2 asserted are equivalent to st3 asserted and face
constraints (st2; st4); (st1; st4) are satis�ed.

A solution is enc(st1) = 01; enc(st2) = 10; enc(st3) =
11; enc(st4) = 00

39

Exact State Assignment for Two-Level
Implementations

A technique based on GPIs can be extended to state

assignment.

� Each minterm has a tag corresponding to the sym-

bolic next state whose ON-set it belongs to.

� Each minterm also has a tag that corresponds to

all the outputs asserted by the minterm.

� Minterms in the original symbolic cover are called

0-cubes.

40

Generation of GPIs

� 0-cubes can be merged to form 1-cubes. Merg-

ing may occur between minterms with the same

binary-valued part and di�erent multiple-valued parts

or uni-distant binary-valued parts and the same

multiple-valued parts. The next state tag of the

1-cube is the union of the next state tags of the

two minterms. The binary-valued output tag of

the 1-cube contains only the outputs that both

minterms assert.

� A 1-cube can cancel a 0-cube i� their next state

and binary-valued output tags are identical and

their multiple-valued parts are identical (except

when the multiple-valued input part of the 1-cube

contains all the symbolic states).

41

Generation of GPIs

Generalizing to k-cubes, the rules for generating GPIs

are:

� A k+1-cube formed from two k-cubes has a next

state tag that is the union of the two k-cubes'
next state tags and an output tag that is the in-

tersection of the outputs in the k-cubes' output
tags.

� A k + 1-cube can cancel a k-cube only if their

multiple-valued input parts are identical or if the

multiple-valued input part of the k+ 1-cube con-

tains all the symbolic states. In addition, the next

state and output tags have to be identical.

A cube with a next state tag containing all the symbolic

states and with a null output tag can be discarded.

42

Generation of GPIs

Example of FSM and list of gpis (gpis are denoted by

a *):

0 s1 s1 1 * 0 100 (s1) (o1)

1 s1 s2 0 * 1 100 (s2) ()

1 s2 s2 0 * 1 010 (s2) ()

0 s2 s3 0 * 0 010 (s3) ()

1 s3 s3 1 1 001 (s3) (o1)

0 s3 s3 1 0 001 (s3) (o1)

* - 100 (s1,s2) ()

0 110 (s1,s3) ()

* 0 101 (s1,s3) (o1)

* 1 110 (s2) ()

1 101 (s2,s3) ()

* - 010 (s2,s3) ()

1 011 (s2,s3) ()

* 0 011 (s3) ()

* - 001 (s3) (o1)

* 0 111 (s1,s3) ()

* - 011 (s2,s3) ()

* 1 111 (s2,s3) ()

- 110 (s1,s2,s3) ()

43

Generation of GPIs by Reduction to PIs

One can transform a STT into a multiple-valued input,

binary-valued output function such that the GPIs for

the STT correspond to the PIs of the binary-valued

output function.

Example of transformation:

0 s1 s1 1 0 001 1 110 110

1 s1 s2 0 1 001 0 101 110

1 s2 s2 0 1 010 0 101 101

0 s2 s3 0 0 010 0 011 101

1 s3 s3 1 1 100 1 011 011

0 s3 s3 1 0 100 1 011 011

An explanation of the form taken by the transformation

involves some technicalities.

44

Encodeability of a set of GPIs and Cov-
ering

The rest of the procedure follows what seen for output

encoding.

The encodeability check must take into account that

GPIs may carry also face constraints. Although this

makes the constraint satisfaction problem more com-

plex, it can still be solved with the algorithms refer-

enced previously.

Example of selection of GPIs for previous example:

- 010 (s2,s3) ()

- 001 (s3) (o1)

0 100 (s1) (o1)

1 110 (s2) ()

Encoding constraints for each minterm:

0 100:

1 100:

1 010: ((enc(s2) \ enc(s3)) [enc(s2) = enc(s2)
0 010: (enc(s2) \ enc(s3)) = enc(s3)
1 001:

0 001:

face encoding constraint: (s1, s2) from GPI 1 110 (s2) ()

45

Codes and Construction of the Cover

Codes of minimum length that satisfy the encoding

constraints are:

s1: 01

s2: 11

s3: 10

Corresponding optimized cover:

- 010 (s2,s3) () - 11 10 0

- 001 (s3) (o1) - 10 10 1

0 100 (s1) (o1) 0 01 01 1

1 110 (s2) () 1 -1 11 0

46

Problems with the procedure

Only very small problems could be attempted because:

� Number of GPIs exceeds soon memory limitations

� Covering table exceeds soon capabilities of existing

covering solvers.

� Also binate covering formulation that combines

covering and encodeability check not practical at

all.

47

Encoding Algorithms for Multi-Level Im-

plementations

� Given a function speci�ed with symbolic variables,

encoding algorithms for multi-level implementa-

tions try to minimize the number of literals of

the encoded and multi-level minimized implemen-

tation.

� Current multi-level encoding algorithms can be clas-

si�ed as:

1. Estimation-based algorithms, that de�ne a dis-

tance measure between symbols. If "close"

symbols are assigned "close" codes (in terms

of Hamming distance), multi-level synthesis should

give good results.

mustang and jedi belong to this class.

2. Synthesis-based algorithms, that use the re-

sult of a multi-level optimization on one-hot

encoded or unencoded symbolic cover to drive

the encoding process.

muse and mis-MV belong to this class.

48

Mustang

� Mustang uses the state transition graph to assign

a weight to each pair of symbols. This weight

measures the desirability of giving to the two sym-

bols codes that are "as close as possible".

� Mustang has two distinct algorithms to assign the

weights, one of them ("fanout oriented") takes

into account the next state symbols, while the

other one ("fanin oriented") takes into account

the present state symbols.

� Such a pair of algorithms is common to most

multi-level encoding programs, namely mustang,

jedi and muse.

49

Mustang

Adjacency Embedding

Reference: [DMNSV88]

1. Construct the attraction graph.

2. Use this graph for code assignment.

Attraction graph: The vertices correspond to states in

the STG. The weight on an edge, w(s1; s2) indicates
the number of di�erent places these two states will

appear together in the logic description.

Two ways in which the attraction graph is constructed:

1. Fanin-Oriented Algorithm

2. Fanout-Oriented Algorithm

50

Mustang

� Fanin-Oriented Algorithm:

{ # of places where a state pair asserts the same

output

� � � s1 s2 � � 1�

� � � s3 s4 � � 1�

Add 1 to w(s1; s3) since they both result in

out3 = 1.

{ # of places where a state pair have same next

state

� � � s1 s2 � � ��

� � � s3 s2 � � ��

Add n=2 to w(s1; s3) since they go to s2. (n
is the number of bits in the code. On the

average, half the bits in the code are 1.)

51

Mustang

� Fanout-Oriented Algorithm:

{ # of places where same input causes transition

to next state pair

�0� s1 s2 � � ��

�0� s3 s4 � � ��

Add 1 to w(s2; s4) since they both use in2 = 0.

{ # of places where same present state causes

transition to next-state pair

� � � s1 s2 � � ��

� � � s1 s4 � � ��

Add n to w(s2; s4) since they have a transition
from s1.

52

Mustang

Code Assignment

Assign codes such that:X
(si;sj)

w(si; sj) � distance(enc(si); enc(sj))

is minimized.

Annealing Solution: Use some heuristic to select an

initial solution. Pairwise interchange to improve solu-

tion.

Approximate solution:

while(unassigned codes) {

(s1, s2) = edge with highest weight;

if(enc(s1) != NIL) enc(s2) = closest(enc(s1));

else if(enc(s2) != NIL) enc(s1) = closest(enc(s2));

else (enc(s1), enc(s2)) = closest unused codes;

foreach((si, sj))

delete (si,sj) if both si and sj

have codes assigned;

}

Results sensitive to the initial form of the STT.

53

Jedi

� Jedi is aimed at generic symbol encoding rather

than at state assignment, and it applies a set of

heuristics that is similar to mustang's to de�ne a

set of weights among pairs of symbols.

� It uses either a simulated annealing algorithm or a

greedy assignment algorithm to perform the em-

bedding.

� The proximity of two cubes in a symbolic cover is

de�ned as the number of non-empty literals in the

intersection of the cubes. It is the "opposite" of

the Hamming distance between two cubes, de�ned

as the number of empty literals in their intersec-

tion.

54

Muse

� muse uses a one-hot encoding for both input and

output symbols, and then performs a multi-level

optimization.

� Some of the actual potential optimizations can be

evaluated, and their gain can be used to guide the

embedding.

55

Steps of Muse

� Encode symbolic inputs and outputs with one-hot

codes.

� Use misII to generate an optimized boolean net-

work.

� Compute a weight for each symbol pair

� Use a greedy embedding algorithm trying to min-

imize the sum over all state pairs of the weighted

distance among the codes.

� Encode the symbolic cover, and run misII again.

56

Mis-MV

� Performs input encoding in the multi-level case.

� As for the two-level case, perform a multi-level

symbolic minimization, and derive constraints that,

if satis�ed, can guarantee some degree of minimal-

ity of the encoded network.

� Mis-MV , unlike the previous programs, performs

a full multi-level multiple-valued minimization of a

network with one symbolic input. Its algorithms

are an extension to the multiple-valued case of

those used by misII

57

Steps of Mis-MV

� Read the symbolic cover. The symbolic output is

encoded one-hot, the symbolic input is left as a

multiple-valued variable.

� Perform multi-level optimization (simpli�cation, com-

mon subexpression extraction, decomposition) of

the multiple-valued network.

� Encode the symbolic input so that the total num-

ber of literals in the encoded network is minimal

(either simulated annealing or a dichotomoy-based

algorithm are used for this purpose).

58

