

Hybercube Embedding

c

a b

25

6

12 17

125

6

 2 17

state groups :
{2,5,12,17}
{2,6,17}

wrong!

Fanin-Oriented (exam next state pair)

• The same present state causes transition to
next state pair.

 $$$ S1 S2 $$$$
 $$$ S1 S4 $$$$

 Add n/2 to w(S2,S4) because of S1

S1

S2 S3

FSM Optimization

S2

S1

S3

01
-0

00

10
-1

0-1-01
-0

11

11

Combinational
 Logic

PI PO

PS NS

u1

u2

v1

v2

S4

Hypercube Embedding Technique

• Observation : one -hot encoding is the easiest
 to decode
 Am I in state 2,5,12 or 17?
 binary : x4’x3’x2’x1x0’(00010) +
 x4’x3’x2x1’x0 (00101) +
 x4’x3x2x1’x0’(01100) +
 x4x3’x2’x1’x0 (10001)
 one hot : x2+x5+x12+x17

 But one hot uses too many flip flops.
• Exploit this observation
 1. two-level minimization after one hot
 encoding identifies useful state group for
 decoding
 2. assigning the states in each group to a single
 face of the hypercube allows a single product
 term to decode the group to states.

State Assignment

• Assign unique code to each state to produce
logic-level description
– utilize unassigned codes effectively as don’t

cares
• Choice for S state machine

– minimum-bit encoding

 log S
– maximum-bit encoding

• one-hot encoding
• using one bit per state
• something in between

• Modern techniques
– hypercube embedding of face constraint

derived for collections of states (Kiss,Nova)
– adjacency embedding guided by weights

derived between state pairs (Mustang)

Example

Ex: state machine
 input current-state next state output
 0 start S6 00
 0 S2 S5 00
 0 S3 S5 00
 0 S4 S6 00
 0 S5 start 10
 0 S6 start 01
 0 S7 S5 00
 1 start S4 01
 1 S2 S3 10
 1 S3 S7 10
 1 S4 S6 10
 1 S5 S2 00
 1 S6 S2 00
 1 S7 S6 00

Symbolic Implicant : represent a transition from
one or more state to a next state under some input
condition.

State Assignment

Symbolic cover representation is related to a
multiple-valued logic.
Positional cube notation : a p multiple-valued
logic is represented as P bits
 (V1,V2,...,Vp)
Ex: V = 5 for 5-value logic
 (00010)
 represent a set of values by one string
 V = 2 or V = 4
 (01010)

State Assignment

Find a minimum multiple-valued-input cover
- espresso
Ex: A minimal multiple-valued-input cover
 0 0110001 0000100 00
 0 1001000 0000010 00
 1 0001001 0000010 10

State Assignment

Consider the first symbolic implicant
 0 011001 0000100 00
• This implicant shows that input “0” means
 “state-2” or “state-3” or “state-7” into “state-5”
 and assert output “00”
• This example shows the effect of symbolic

logic minimization is to group together the
states that are mapped by some input into the
same next-state and assert the same output.

• We call it “state group” if we give encodings to
 the states in the state group in adjacent binary
 logic and no other states in the group face, then

the states group can be implemented as a cube.

State Assignment

• group face : the minimal dimension subspace
containing the encoding assigned to that group.

 Ex: 0010 0**0 group face
 0100
 0110

Hybercube Embedding

c

a b

25

6

12 17

125

6

 2 17

state groups :
{2,5,12,17}
{2,6,17}

wrong!

Hybercube Embedding

• Advantage :
– use two-level logic minimizer to

identify good state group
– almost all of the advantage of one-hot

encoding, but fewer state-bit

Adjacency-Based State Assignment

Basic algorithm:
(1) Assign weight w(s,t) to each pair of states

– weight reflects desire of placing states
 adjacent on the hybercube
(2) Define cost function for assignment of codes
 to the states

– penalize weights for the distance between
the state code

 eg. w(s,t) * distance(enc(s),enc(t))
(3) Find assignment of codes which minimize
 this cost function summed over all pairs of
 states.

– heuristic to find initial solution
– pairwise interchange (simulated annealing)

 to improve solution

Adjacency-Based State Assignment

• Mustang : weight assignment technique based
on loosely maximizing common cube factors

How to Assign Weight to State Pair

• Assign weights to state pairs based on
ability to extract a common-cube factor if
these two states are adjacent on the
hybercube.

Fan-Out-Oriented
(examine present-state pairs)

• Present state pair transition to the same
next state

S1 S3

S2

$$$ S1 S2 $$$$
$$$ S3 S2 $$$$

Add n to w(S1,S3) because of S2

Fan-Out-Oriented

• present states pair asserts the same output

S2

S3S1

S2

$/j $/j

Add 1 to w(S1 , S3) because of output j

$$$ S1 S2 $$$1$
$$$ S3 S4 $$$1$

Fanin-Oriented (exam next state pair)

• The same present state causes transition to
next state pair.

 $$$ S1 S2 $$$$
 $$$ S1 S4 $$$$

 Add n/2 to w(S2,S4) because of S1

S1

S2 S3

Fanin-Oriented (exam next state pair)

• The same input causes transition to next
state pair.

 0 S1 S2 $$$$
 0 S3 S4 $$$$

 Add 1 to w(S2,S4) because of input 2

i i

S1 S3

S2 S4

Which Method Is Better?

• Which is better?
FSMs have no useful two-level
face constraints => adjacency-embedding
FSMs have many two-level
face constraints => face-embedding

