Optimization Techniques

Genetic Algorithms

And other approaches for similar applications

Optimization Techniques

- Mathematical Programming
- Network Analysis
- Branch & Bound
- Genetic Algorithm
- Simulated Annealing
- Tabu Search

Genetic Algorithm

Based on Darwinian Paradigm

Intrinsically a robust search and optimization mechanism

Conceptual Algorithm

Genetic Algorithm Introduction 1

- Inspired by natural evolution
- Population of individuals
 - Individual is feasible solution to problem
- Each individual is characterized by a Fitness function
 - Higher fitness is better solution
- Based on their fitness, parents are selected to reproduce offspring for a new generation
 - Fitter individuals have more chance to reproduce
 - New generation has same size as old generation; old generation dies
- Offspring has combination of properties of two parents
- If well designed, population will converge to optimal solution

Algorithm

```
BEGIN
  Generate initial population;
  Compute fitness of each individual;
  REPEAT /* New generation /*
    FOR population size / 2 DO
      Select two parents from old generation;
       /* biased to the fitter ones */
      Recombine parents for two offspring;
      Compute fitness of offspring;
      Insert offspring in new generation
    END FOR
  UNTIL population has converged
END
```

Example of convergence

Introduction 2

 Reproduction mechanisms have no knowledge of the problem to be solved

- Link between genetic algorithm and problem:
 - Coding
 - Fitness function

Basic principles 1

- Coding or Representation
 - String with all parameters
- Fitness function
 - Parent selection
- Reproduction
 - Crossover
 - Mutation
- Convergence
 - When to stop

Basic principles 2

- An individual is characterized by a set of parameters: Genes
- The genes are joined into a string: Chromosome
- The chromosome forms the genotype
- The genotype contains all information to construct an organism: the phenotype
- Reproduction is a "dumb" process on the chromosome of the genotype
- Fitness is measured in the real world ('struggle for life') of the phenotype

Coding

- Parameters of the solution (genes) are concatenated to form a string (chromosome)
- All kind of alphabets can be used for a chromosome (numbers, characters), but generally a binary alphabet is used
- Order of genes on chromosome can be important
- Generally many different codings for the parameters of a solution are possible
- Good coding is probably the most important factor for the performance of a GA
- In many cases many possible chromosomes do not code for feasible solutions

Genetic Algorithm

- Encoding
- Fitness Evaluation
- Reproduction
- Survivor Selection

Encoding

- Design alternative → individual (chromosome)
- Single design choice → gene
- Design objectives → fitness

Example

- Problem
 - Schedule n jobs on m processors such that the maximum span is minimized.

Design alternative: job i (i=1,2,...n) is assigned to processor j (j=1,2,...,m)

Individual: A n-vector **x** such that $x_i = 1, ..., or m$

Design objective: minimize the maximal span

Fitness: the maximal span for each processor

Reproduction

- Reproduction operators
 - Crossover
 - Mutation

Reproduction

Crossover

- Two parents produce two offspring
- There is a chance that the chromosomes of the two parents are copied unmodified as offspring
- There is a chance that the chromosomes of the two parents are randomly recombined (crossover) to form offspring
- Generally the chance of crossover is between 0.6 and 1.0

Mutation

- There is a chance that a gene of a child is changed randomly
- Generally the chance of mutation is low (e.g. 0.001)

Reproduction Operators

- Crossover
 - Generating offspring from two selected parents
 - I Single point crossover
 - I Two point crossover (Multi point crossover)
 - Uniform crossover

One-point crossover 1

- Randomly one position in the chromosomes is chosen
- Child 1 is head of chromosome of parent 1 with tail of chromosome of parent 2
- Child 2 is head of 2 with tail of 1

Parents: 1010001110 0011010010
Offspring: 0101010010 0011001110

Reproduction Operators comparison

Single point crossover

• Two point crossover (Multi point crossover)

One-point crossover - Nature

Two-point crossover

- Randomly two positions in the chromosomes are chosen
- Avoids that genes at the head and genes at the tail of a chromosome are always split when recombined

Uniform crossover

- A random mask is generated
- The mask determines which bits are copied from one parent and which from the other parent
- Bit density in mask determines how much material is taken from the other parent (takeover parameter)

Mask: 0110011000 (Randomly generated)

Parents: 1010001110 0011010010

Offspring: 0011001010 1010010110

Reproduction Operators

Uniform crossover

- Is uniform crossover better than single crossover point?
 - Trade off between
 - Exploration: introduction of new combination of features
 - Exploitation: keep the good features in the existing solution

Problems with crossover

- Depending on coding, simple crossovers can have high chance to produce illegal offspring
 - E.g. in TSP with simple binary or path coding, most offspring will be illegal because not all cities will be in the offspring and some cities will be there more than once
- Uniform crossover can often be modified to avoid this problem
 - E.g. in TSP with simple path coding:
 - I Where mask is 1, copy cities from one parent
 - I Where mask is 0, choose the remaining cities in the order of the other parent

Reproduction Operators

- Mutation
 - Generating new offspring from single parent

- Maintaining the diversity of the individuals
 - I Crossover can only explore the combinations of the current gene pool
 - I Mutation can "generate" new genes

Reproduction Operators

- Control parameters: population size, crossover/mutation probability
 - Problem specific
 - Increase population size
 - I Increase diversity and computation time for each generation
 - Increase crossover probability
 - I Increase the opportunity for recombination but also disruption of good combination
 - Increase mutation probability
 - I Closer to randomly search
 - I Help to introduce new gene or reintroduce the lost gene
- Varies the population
 - Usually using crossover operators to recombine the genes to generate the new population, then using mutation operators on the new population

Parent/Survivor Selection

- Strategies
 - Survivor selection
 - I Always keep the best one
 - I Elitist: deletion of the K worst
 - I Probability selection: inverse to their fitness
 - I Etc.

Parent/Survivor Selection

- Too strong fitness selection bias can lead to suboptimal solution
- Too little fitness bias selection results in unfocused and meandering search

Parent selection

Chance to be selected as parent proportional to fitness

Roulette wheel

To avoid problems with fitness function

Tournament

Not a very important parameter

Parent/Survivor Selection

Strategies

- Parent selection
 - I Uniform randomly selection
 - I Probability selection: proportional to their fitness
 - I Tournament selection (Multiple Objectives)
 - Build a small comparison set
 - Randomly select a pair with the higher rank one beats the lower one
 - Non-dominated one beat the dominated one
 - Niche count: the number of points in the population within certain distance, higher the niche count, lower the rank.

Etc.

Others

- Global Optimal
- Parameter Tuning
- Parallelism
- Random number generators

Example of coding for TSP

Travelling Salesman Problem

- Binary
 - Cities are binary coded; chromosome is string of bits
 - I Most chromosomes code for illegal tour
 - I Several chromosomes code for the same tour
- Path
 - Cities are numbered; chromosome is string of integers
 - I Most chromosomes code for illegal tour
 - I Several chromosomes code for the same tour
- Ordinal
 - Cities are numbered, but code is complex
 - All possible chromosomes are legal and only one chromosome for each tour
- Several others

Roulette wheel

- Sum the fitness of all chromosomes, call it T
- Generate a random number N between 1 and T
- Return chromosome whose fitness added to the running total is equal to or larger than N
- Chance to be selected is exactly proportional to fitness

```
6
Chromosome:
                       2
                             17
                                              11
Fitness:
Running total: 8
                                  34
                                        38
                       10
                             27
                                              49
N (1 \le N \le 49):
                             23
Selected:
                             3
```

Tournament

Binary tournament

- Two individuals are randomly chosen; the fitter of the two is selected as a parent
- Probabilistic binary tournament
 - Two individuals are randomly chosen; with a chance p, 0.5<p<1, the fitter of the two is selected as a parent
- Larger tournaments
 - n individuals are randomly chosen; the fittest one is selected as a parent
- By changing n and/or p, the GA can be adjusted dynamically

Problems with fitness range

Premature convergence

- ΔFitness too large
- Relatively superfit individuals dominate population
- Population converges to a local maximum
- Too much exploitation; too few exploration

Slow finishing

- ΔFitness too small
- No selection pressure
- After many generations, average fitness has converged, but no global maximum is found; not sufficient difference between best and average fitness
- Too few exploitation; too much exploration

Solutions for these problems

- Use tournament selection
 - Implicit fitness remapping
- Adjust fitness function for roulette wheel
 - Explicit fitness remapping
 - I Fitness scaling
 - I Fitness windowing
 - I Fitness ranking

Will be explained below

Fitness Function

Purpose

- Parent selection
- Measure for convergence
- For Steady state: Selection of individuals to die
- Should reflect the value of the chromosome in some "real" way
- Next to coding the most critical part of a GA

Fitness scaling

- Fitness values are scaled by subtraction and division so that worst value is close to 0 and the best value is close to a certain value, typically 2
 - Chance for the most fit individual is 2 times the average
 - Chance for the least fit individual is close to 0
- Problems when the original maximum is very extreme (super-fit) or when the original minimum is very extreme (super-unfit)
 - Can be solved by defining a minimum and/or a maximum value for the fitness

Example of Fitness Scaling

Fitness windowing

- Same as window scaling, except the amount subtracted is the minimum observed in the *n* previous generations, with *n* e.g. 10
- Same problems as with scaling

Fitness ranking

- Individuals are numbered in order of increasing fitness
- The rank in this order is the adjusted fitness
- Starting number and increment can be chosen in several ways and influence the results

- No problems with super-fit or super-unfit
- Often superior to scaling and windowing

Fitness Evaluation

- A key component in GA
- Time/quality trade off
- Multi-criterion fitness

- Dominance and indifference
 - For an optimization problem with more than one objective function $(f_i, i=1,2,...n)$
 - given any two solution X_1 and X_2 , then
 - I X_1 dominates X_2 ($X_1 \succ X_2$), if $f_i(X_1) >= f_i(X_2)$, for all i = 1,...,n
 - I X_1 is indifferent with X_2 ($X_1 \sim X_2$), if X_1 does not dominate X_2 , and X_2 does not dominate X_1

- Pareto Optimal Set
 - If there exists no solution in the search space which dominates any member in the set P, then the solutions belonging the the set P constitute a global Pareto-optimal set.
 - Pareto optimal front
- Dominance Check

- Weighted sum
 - $F(\mathbf{x}) = W_1 f_1(x_1) + W_2 f_2(x_2) + ... + W_n f_n(x_n)$
 - Problems?
 - I Convex and convex Pareto optimal front Sensitive to the shape of the Pareto-optimal front
 - I Selection of weights?

Need some pre-knowledge

Not reliable for problem involving uncertainties

- Optimizing single objective
 - Maximize: $f_k(\mathbf{X})$ Subject to:

$$f_j(\mathbf{X}) <= K_{j}, \quad i <> k$$

X in F where F is the solution space.

- Weighted sum
 - $F(\mathbf{x}) = W_1 f_1(x_1) + W_2 f_2(x_2) + ... + W_n f_n(x_n)$
 - Problems?
 - I Convex and convex Pareto optimal front Sensitive to the shape of the Pareto-optimal front
 - I Selection of weights?

Need some pre-knowledge

Not reliable for problem involving uncertainties

Preference based weighted sum

(ISMAUT Imprecisely Specific Multiple Attribute Utility Theory)

- $F(\mathbf{x}) = W_1 f_1(x_1) + W_2 f_2(x_2) + ... + W_n f_n(x_n)$
- Preference
 - I Given two know individuals **X** and **Y**, if we prefer **X** than **Y**, then

that is

$$W_1(f_1(x_1)-f_1(y_1)) + ... + W_n(f_n(x_n)-f_n(y_n)) > 0$$

I All the preferences constitute a linear space

$$W_{n} = \{ w_{1}, w_{2}, ..., w_{n} \}$$

$$W_{1}(f_{1}(x_{1}) - f_{1}(y_{1})) + ... + W_{n}(f_{n}(x_{n}) - f_{n}(y_{n})) > 0$$

$$W_{1}(f_{1}(z_{1}) - f_{1}(p_{1})) + ... + W_{n}(f_{n}(z_{n}) - f_{n}(p_{n})) > 0, \text{ etc.}$$

I For any two new individuals **Y'** and Y'', how to determine which one is more preferable?

$$Min: \mu = \sum_{k} w_{k} [f_{k}(\mathbf{Y'})) - f_{k}(\mathbf{Y''})]$$

$$s.t.: W_{n}$$

$$Min: \mu' = \sum_{k} w_{k} [f_{k}(\mathbf{Y''})) - f_{k}(\mathbf{Y'})]$$

$$s.t.: W_{n}$$

Then,

$$\mu > 0 \Rightarrow \mathbf{Y'} \succ \mathbf{Y''}$$

$$\mu' > 0 \Rightarrow \mathbf{Y}'' \succ \mathbf{Y}'$$

Otherwise,

Construct the dominant relationship among some indifferent ones according to the preferences.

Other parameters of GA 1

Initialization:

- Population size
- Random
- Dedicated greedy algorithm

Reproduction:

- Generational: as described before (insects)
- Generational with elitism: fixed number of most fit individuals are copied unmodified into new generation
- Steady state: two parents are selected to reproduce and two parents are selected to die; two offspring are immediately inserted in the pool (mammals)

Other parameters of GA 2

Stop criterion:

- Number of new chromosomes
- Number of new and unique chromosomes
- Number of generations

Measure:

- Best of population
- Average of population

Duplicates

- Accept all duplicates
- Avoid too many duplicates, because that degenerates the population (inteelt)
- No duplicates at all

Example run

Maxima and Averages of steady state and generational replacement

Simulated Annealing

- What
 - Exploits an analogy between the annealing process and the search for the optimum in a more general system.

Annealing Process

- Annealing Process
 - Raising the temperature up to a very high level (melting temperature, for example), the atoms have a higher energy state and a high possibility to re-arrange the crystalline structure.
 - Cooling down slowly, the atoms have a lower and lower energy state and a smaller and smaller possibility to re-arrange the crystalline structure.

Simulated Annealing

- Analogy
 - Metal ←→ Problem
 - Energy State ←→ Cost Function
 - Temperature ←→ Control Parameter
 - A completely ordered crystalline structure
 ←→ the optimal solution for the problem

Global optimal solution can be achieved as long as the cooling process is slow enough.

Metropolis Loop

- The essential characteristic of simulated annealing
- Determining how to randomly explore new solution, reject or accept the new solution at a constant temperature T.
- Finished until equilibrium is achieved.

Metropolis Criterion

- Let
 - X be the current solution and X' be the new solution
 - C(x) (C(x')) be the energy state (cost) of x (x')
- Probability $P_{\text{accept}} = exp [(C(x)-C(x'))/T]$
- Let **N=Random**(0,1)
- Unconditional accepted if
 - C(x') < C(x), the new solution is better
- Probably accepted if
 - C(x') >= C(x), the new solution is worse. Accepted only when $N < P_{accept}$

Algorithm

```
Initialize initial solution x, highest temperature T_h, and
  coolest temperature T<sub>1</sub>
T = T_h
When the temperature is higher than T<sub>1</sub>
   While not in equilibrium
    Search for the new solution X'
     Accept or reject X' according to Metropolis Criterion
  End
  Decrease the temperature T
End
```

Simulated Annealing

- Definition of solution
- Search mechanism, i.e. the definition of a neighborhood
- Cost-function

Control Parameters

- Definition of equilibrium
 - Cannot yield any significant improvement after certain number of loops
 - A constant number of loops
- Annealing schedule (i.e. How to reduce the temperature)
 - A constant value, T' = T T_d
 - A constant scale factor, T'= T * R_d
 - I A scale factor usually can achieve better performance

Control Parameters

- Temperature determination
 - Artificial, without physical significant
 - Initial temperature
 - I 80-90% acceptance rate
 - Final temperature
 - I A constant value, i.e., based on the total number of solutions searched
 - I No improvement during the entire Metropolis loop
 - I Acceptance rate falling below a given (small) value
 - Problem specific and may need to be tuned

- Traveling Salesman Problem (TSP)
 - Given 6 cities and the traveling cost between any two cities
 - A salesman need to start from city 1 and travel all other cities then back to city 1
 - Minimize the total traveling cost

- Solution representation
 - An integer list, i.e., (1,4,2,3,6,5)
- Search mechanism
 - Swap any two integers (except for the first one)
 - $I (1,4,2,3,6,5) \rightarrow (1,4,3,2,6,5)$
- Cost function

- Temperature
 - Initial temperature determination
 - I Around 80% acceptation rate for "bad move"
 - I Determine acceptable $(C_{new} C_{old})$
 - Final temperature determination
 - I Stop criteria
 - I Solution space coverage rate
 - Annealing schedule
 - I Constant number (90% for example)
 - I Depending on solution space coverage rate

Others

- Global optimal is possible, but near optimal is practical
- Parameter Tuning
 - Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines. John Wiley & Sons.
- Not easy for parallel implementation
- Randomly generator

Optimization Techniques

- Mathematical Programming
- Network Analysis
- Branch & Bound
- Genetic Algorithm
- Simulated Annealing
- Tabu Search

Search Search

- What
 - Neighborhood search + memory
 - I Neighborhood search
 - I Memory
 - Record the search history
 - Forbid cycling search

Algorithm

- Choose an initial solution x
- Find a subset of N(x) the neighbor of x which are not in the tabu list.
- Find the best one (x') in N(x).
- If F(x') > F(x) then set x=x'.
- Modify the tabu list.
- If a stopping condition is met then stop, else go to the second step.

Effective Tabu Search

- Effective Modeling
 - Neighborhood structure
 - Objective function (fitness or cost)
 - I Example Graph coloring problem: Find the minimum number of colors needed such that no two connected nodes share the same color.
- Aspiration criteria
 - The criteria for overruling the tabu constraints and differentiating the preference of among the neighbors

Effective Tabu Search

- Effective Computing
 - "Move" may be easier to be stored and computed than a completed solution
 - I move: the process of constructing of x' from x
 - Computing and storing the fitness difference may be easier than that of the fitness function.

Effective Tabu Search

Effective Memory Use

- Variable tabu list size
 - I For a constant size tabu list

Too long: deteriorate the search results

Too short: cannot effectively prevent from cycling

- Intensification of the search
 - I Decrease the tabu list size
- Diversification of the search
 - I Increase the tabu list size
 - I Penalize the frequent move or unsatisfied constraints

- A hybrid approach for graph coloring problem
 - R. Dorne and J.K. Hao, A New Genetic Local Search Algorithm for Graph Coloring, 1998

Problem

- Given an undirected graph G=(V,E)
 - $V = \{V_1, V_2, ..., V_n\}$
 - $E = \{e_{ij}\}$
- Determine a partition of V in a minimum number of color classes $C_1, C_2, ..., C_k$ such that for each edge e_{ij} , V_i and V_j are not in the same color class.
- NP-hard

General Approach

- Transform an optimization problem into a decision problem
- Genetic Algorithm + Tabu Search
 - Meaningful crossover
 - Using Tabu search for efficient local search

Encoding

- Individual
 - $(C_{i1}, C_{i2}, ..., C_{ik})$
- Cost function
 - Number of total conflicting nodes
 - I Conflicting node having same color with at least one of its adjacent nodes
- Neighborhood (move) definition
 - Changing the color of a conflicting node
- Cost evaluation
 - Special data structures and techniques to improve the efficiency

Implementation

- Parent Selection
 - Random
- Reproduction/Survivor
- Crossover Operator
 - Unify independent set (UIS) crossover
 - I Independent set Conflict-free nodes set with the same color
 - I Try to increase the size of the independent set to improve the performance of the solutions

UIS

Unify independent set

Implementation

- Mutation
 - With Probability $P_{\mu\nu}$ randomly pick neighbor
 - With Probability $1 P_{\mu\nu}$ Tabu search
 - I Tabu search

Tabu list

List of $\{V_i, c_j\}$

Tabu tenure (the length of the tabu list)

 $L = a * N_c + Random(g)$

N_c: Number of conflicted nodes

a,g: empirical parameters

Summary

- Neighbor Search
- TS prevent being trapped in the local minimum with tabu list
- TS directs the selection of neighbor
- TS cannot guarantee the optimal result
- Sequential
- Adaptive

Hill climbing

sources

Jaap Hofstede, Beasly, Bull, Martin Version 2, October 2000

Department of Computer Science & Engineering
University of South Carolina
Spring, 2002