
And other approaches for
similar applications

Optimization Techniques

Optimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization TechniquesOptimization Techniques

•• Mathematical ProgrammingMathematical Programming
•• Network AnalysisNetwork Analysis
•• Branch & BoundBranch & Bound
•• Genetic AlgorithmGenetic Algorithm
•• Simulated AnnealingSimulated Annealing
•• TabuTabu Search Search

GGGGeeeennnneeeettttiiiicccc AAAAllllggggoooorrrriiiitttthhhhmmmmGGGGeeeennnneeeettttiiiicccc AAAAllllggggoooorrrriiiitttthhhhmmmm
• Based on Darwinian Paradigm

• Intrinsically a robust search and optimization mechanism

Reproduction Competition

SelectionSurvive

Conceptual Conceptual Conceptual Conceptual AlgorithmAlgorithmAlgorithmAlgorithmConceptual AlgorithmConceptual AlgorithmConceptual AlgorithmConceptual Algorithm

Genetic Algorithm
Introduction 1

• Inspired by natural evolution
• Population of individuals

• Individual is feasible solution to problem

• Each individual is characterized by a Fitness function
• Higher fitness is better solution

• Based on their fitness, parents are selected to reproduce
offspring for a new generation
• Fitter individuals have more chance to reproduce
• New generation has same size as old generation; old generation dies

• Offspring has combination of properties of two parents
• If well designed, population will converge to optimal solution

Algorithm
BEGIN

Generate initial population;

Compute fitness of each individual;

REPEAT /* New generation /*

FOR population_size / 2 DO

Select two parents from old generation;

/* biased to the fitter ones */

Recombine parents for two offspring;

Compute fitness of offspring;

Insert offspring in new generation

END FOR

UNTIL population has converged

END

Example of convergence

Introduction 2
• Reproduction mechanisms have no

knowledge of the problem to be solved

• Link between genetic algorithm and problem:
• Coding
• Fitness function

Basic principles 1
• Coding or Representation

• String with all parameters

• Fitness function
• Parent selection

• Reproduction
• Crossover
• Mutation

• Convergence
• When to stop

Basic principles 2
• An individual is characterized by a set of parameters: Genes
• The genes are joined into a string: Chromosome

• The chromosome forms the genotype
• The genotype contains all information to construct an

organism: the phenotype

• Reproduction is a “dumb” process on the chromosome of
the genotype

• Fitness is measured in the real world (‘struggle for life’) of
the phenotype

Coding
• Parameters of the solution (genes) are concatenated to form

a string (chromosome)
• All kind of alphabets can be used for a chromosome

(numbers, characters), but generally a binary alphabet is
used

• Order of genes on chromosome can be important
• Generally many different codings for the parameters of a

solution are possible
• Good coding is probably the most important factor for the

performance of a GA
• In many cases many possible chromosomes do not code for

feasible solutions

GGGGeeeennnneeeettttiiiicccc AAAAllllggggoooorrrriiiitttthhhhmmmmGGGGeeeennnneeeettttiiiicccc AAAAllllggggoooorrrriiiitttthhhhmmmm
• Encoding
• Fitness Evaluation
• Reproduction
• Survivor Selection

EEEEnnnnccccooooddddiiiinnnnggggEEEEnnnnccccooooddddiiiinnnngggg
• Design alternative � individual (chromosome)
• Single design choice � gene
• Design objectives � fitness

EEEExxxxaaaammmmpppplllleeeeEEEExxxxaaaammmmpppplllleeee
• Problem

• Schedule n jobs on m processors such that the
maximum span is minimized.

Design alternative: job i (i=1,2,…n) is assigned to processor j (j=1,2,…,m)

Individual: A n-vector x such that xi = 1, …,or m

Design objective: minimize the maximal span

Fitness: the maximal span for each processor

Reproduction
• Reproduction operators

• Crossover
• Mutation

Reproduction
• Crossover

• Two parents produce two offspring
• There is a chance that the chromosomes of the two parents are

copied unmodified as offspring
• There is a chance that the chromosomes of the two parents are

randomly recombined (crossover) to form offspring
• Generally the chance of crossover is between 0.6 and 1.0

• Mutation
• There is a chance that a gene of a child is changed randomly
• Generally the chance of mutation is low (e.g. 0.001)

Reproduction Operators

• Crossover
• Generating offspring from two selected parents

❘ Single point crossover
❘ Two point crossover (Multi point crossover)
❘ Uniform crossover

One-point crossover 1
• Randomly one position in the chromosomes is chosen
• Child 1 is head of chromosome of parent 1 with tail of

chromosome of parent 2
• Child 2 is head of 2 with tail of 1

Parents: 1010001110 0011010010

Offspring: 0101010010 0011001110

Randomly chosen position

Reproduction Operators comparison

• Single point crossover

Cross point

�

�

• Two point crossover (Multi point crossover)

One-point crossover - Nature

1 2

12

1

2

2

1

Two-point crossover

Parents: 1010001110 0011010010

Offspring: 0101010010 0011001110

Randomly chosen positions

• Randomly two positions in the chromosomes are chosen
• Avoids that genes at the head and genes at the tail of a

chromosome are always split when recombined

Uniform crossover
• A random mask is generated
• The mask determines which bits are copied from one parent

and which from the other parent
• Bit density in mask determines how much material is taken

from the other parent (takeover parameter)
Mask: 0110011000 (Randomly generated)

Parents: 1010001110 0011010010

Offspring: 0011001010 1010010110

Reproduction Operators

• Uniform crossover

�

• Is uniform crossover better than single crossover
point?
– Trade off between

• Exploration: introduction of new combination of features
• Exploitation: keep the good features in the existing solution

Problems with crossover
• Depending on coding, simple crossovers can have high

chance to produce illegal offspring
• E.g. in TSP with simple binary or path coding, most offspring will be

illegal because not all cities will be in the offspring and some cities
will be there more than once

• Uniform crossover can often be modified to avoid this
problem
• E.g. in TSP with simple path coding:

❘ Where mask is 1, copy cities from one parent
❘ Where mask is 0, choose the remaining cities in the order of the other

parent

Reproduction Operators

• Mutation
• Generating new offspring from single parent

• Maintaining the diversity of the individuals
❘ Crossover can only explore the combinations of the current

gene pool
❘ Mutation can “generate” new genes

�

Reproduction Operators
• Control parameters: population size, crossover/mutation

probability
• Problem specific
• Increase population size

❘ Increase diversity and computation time for each generation
• Increase crossover probability

❘ Increase the opportunity for recombination but also disruption of
good combination

• Increase mutation probability
❘ Closer to randomly search
❘ Help to introduce new gene or reintroduce the lost gene

• Varies the population
• Usually using crossover operators to recombine the genes to generate

the new population, then using mutation operators on the new
population

• Strategies
• Survivor selection

❘ Always keep the best one
❘ Elitist: deletion of the K worst
❘ Probability selection : inverse to their fitness
❘ Etc.

Parent/Survivor Selection

• Too strong fitness selection bias can lead to sub-
optimal solution

• Too little fitness bias selection results in
unfocused and meandering search

Parent selection
Chance to be selected as parent proportional to

fitness
• Roulette wheel

To avoid problems with fitness function
• Tournament

Not a very important parameter

Parent/Survivor
Selection

• Strategies
• Parent selection

❘ Uniform randomly selection
❘ Probability selection : proportional to their fitness
❘ Tournament selection (Multiple Objectives)

Build a small comparison set
Randomly select a pair with the higher rank one beats the lower one

Non-dominated one beat the dominated one
Niche count: the number of points in the population within

 certain distance, higher the niche count, lower the
 rank.

❘ Etc.

Others

• Global Optimal
• Parameter Tuning
• Parallelism
• Random number generators

Example of coding for TSP
Travelling Salesman Problem

• Binary
• Cities are binary coded; chromosome is string of bits

❘ Most chromosomes code for illegal tour
❘ Several chromosomes code for the same tour

• Path
• Cities are numbered; chromosome is string of integers

❘ Most chromosomes code for illegal tour
❘ Several chromosomes code for the same tour

• Ordinal
• Cities are numbered, but code is complex
• All possible chromosomes are legal and only one chromosome for each

tour

• Several others

Roulette wheel
• Sum the fitness of all chromosomes, call it T
• Generate a random number N between 1 and T
• Return chromosome whose fitness added to the running

total is equal to or larger than N
• Chance to be selected is exactly proportional to fitness

Chromosome: 1 2 3 4 5 6

Fitness: 8 2 17 7 4 11

Running total: 8 10 27 34 38 49

N (1 ≤≤≤≤ N ≤≤≤≤ 49): 23

Selected: 3

Tournament
• Binary tournament

• Two individuals are randomly chosen; the fitter of the two is selected
as a parent

• Probabilistic binary tournament
• Two individuals are randomly chosen; with a chance p, 0.5<p<1, the

fitter of the two is selected as a parent

• Larger tournaments
• n individuals are randomly chosen; the fittest one is selected as a

parent

• By changing n and/or p, the GA can be adjusted dynamically

Problems with fitness range
• Premature convergence

• ∆Fitness too large
• Relatively superfit individuals dominate population
• Population converges to a local maximum
• Too much exploitation; too few exploration

• Slow finishing
• ∆Fitness too small
• No selection pressure
• After many generations, average fitness has converged, but no

global maximum is found; not sufficient difference between best and
average fitness

• Too few exploitation; too much exploration

Solutions for these problems

• Use tournament selection
• Implicit fitness remapping

• Adjust fitness function for roulette wheel
• Explicit fitness remapping

❘ Fitness scaling
❘ Fitness windowing
❘ Fitness ranking

Will be explained below

Fitness Function
Purpose
• Parent selection
• Measure for convergence
• For Steady state: Selection of individuals to die

• Should reflect the value of the chromosome in some “real”
way

• Next to coding the most critical part of a GA

Fitness scaling
• Fitness values are scaled by subtraction and division so that

worst value is close to 0 and the best value is close to a
certain value, typically 2
• Chance for the most fit individual is 2 times the average
• Chance for the least fit individual is close to 0

• Problems when the original maximum is very extreme
(super-fit) or when the original minimum is very extreme
(super-unfit)
• Can be solved by defining a minimum and/or a maximum value for

the fitness

Example of Fitness Scaling

Fitness windowing

• Same as window scaling, except the
amount subtracted is the minimum
observed in the n previous generations,
with n e.g. 10

• Same problems as with scaling

Fitness ranking

• Individuals are numbered in order of increasing
fitness

• The rank in this order is the adjusted fitness
• Starting number and increment can be chosen in

several ways and influence the results

• No problems with super-fit or super-unfit
• Often superior to scaling and windowing

Fitness EvaluationFitness EvaluationFitness EvaluationFitness EvaluationFitness EvaluationFitness EvaluationFitness EvaluationFitness Evaluation

• A key component in GA
• Time/quality trade off
• Multi-criterion fitness

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness
• Dominance and indifference

• For an optimization problem with more than one
objective function (fi, i=1,2,…n)

• given any two solution X1 and X2, then
❘ X1 dominates X2 (X1 X2), if

fi(X1) >= fi(X2), for all i = 1,…,n

❘ X1 is indifferent with X2 (X1 ~ X2), if X1 does not dominate X2,

and X2 does not dominate X1

�

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Pareto Optimal Set
• If there exists no solution in the search space

which dominates any member in the set P, then
the solutions belonging the the set P constitute a
global Pareto-optimal set.

• Pareto optimal front

• Dominance Check

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Weighted sum
• F(x) = w1f1(x1) + w2f2(x2) +…+wnfn(xn)
• Problems?

❘ Convex and convex Pareto optimal front
Sensitive to the shape of the Pareto-optimal front

❘ Selection of weights?
Need some pre-knowledge
Not reliable for problem involving uncertainties

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Optimizing single objective
• Maximize: fk(X)

Subject to:
 fj(X) <= Ki, i <> k

 X in F where F is the solution space.

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness
• Weighted sum

• F(x) = w1f1(x1) + w2f2(x2) +…+wnfn(xn)
• Problems?

❘ Convex and convex Pareto optimal front
Sensitive to the shape of the Pareto-optimal front

❘ Selection of weights?
Need some pre-knowledge
Not reliable for problem involving uncertainties

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

• Preference based weighted sum
(ISMAUT Imprecisely Specific Multiple Attribute Utility Theory)
• F(x) = w1f1(x1) + w2f2(x2) +…+wnfn(xn)
• Preference

❘ Given two know individuals X and Y, if we prefer X than
Y, then
 F(X) > F(Y),
that is
 w1(f1(x1)-f1(y1)) +…+wn(fn(xn)-fn(yn)) > 0

❘ All the preferences constitute a linear space
Wn={w1,w2,…,wn}

w1(f1(x1)-f1(y1)) +…+wn(fn(xn)-fn(yn)) > 0
w1(f1(z1)-f1(p1)) +…+wn(fn(zn)-fn(pn)) > 0, etc

❘ For any two new individuals Y’ and Y’’, how to
determine which one is more preferable?

Multi-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion FitnessMulti-Criterion Fitness

MMMMuuuullllttttiiii----CCCCrrrriiiitttteeeerrrriiiioooonnnn FFFFiiiittttnnnneeeessssssssMMMMuuuullllttttiiii----CCCCrrrriiiitttteeeerrrriiiioooonnnn FFFFiiiittttnnnneeeessssssss

n

k
kkk

Wts

ffwMin

:..

)]())([: ∑ −= 'Y'Y'µ

n

k
kkk

Wts

ffwMin

:..

)]())([': ∑ −= Y''Y'µ

MMMMuuuullllttttiiii----CCCCrrrriiiitttteeeerrrriiiioooonnnn FFFFiiiittttnnnneeeessssssssMMMMuuuullllttttiiii----CCCCrrrriiiitttteeeerrrriiiioooonnnn FFFFiiiittttnnnneeeessssssss

'Y'Y }'0 ⇒>µ

Y'Y }''0' ⇒>µ

Then,

Otherwise,
Y’ ~ Y’’

Construct the dominant relationship among some
indifferent ones according to the preferences.

Other parameters of GA 1
• Initialization:

• Population size
• Random
• Dedicated greedy algorithm

• Reproduction:
• Generational: as described before (insects)
• Generational with elitism: fixed number of most fit individuals are

copied unmodified into new generation
• Steady state: two parents are selected to reproduce and two parents

are selected to die; two offspring are immediately inserted in the
pool (mammals)

Other parameters of GA 2
• Stop criterion:

• Number of new chromosomes
• Number of new and unique chromosomes
• Number of generations

• Measure:
• Best of population
• Average of population

• Duplicates
• Accept all duplicates
• Avoid too many duplicates, because that degenerates the population

(inteelt)
• No duplicates at all

Example run
Maxima and Averages of steady state and generational
replacement

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20

St_max
St_av.
Ge_max
Ge_av.

• What
• Exploits an analogy between the annealing

process and the search for the optimum in
a more general system.

Annealing Process
• Annealing Process

• Raising the temperature up to a very high level
(melting temperature, for example), the atoms
have a higher energy state and a high possibility
to re-arrange the crystalline structure.

• Cooling down slowly, the atoms have a lower and
lower energy state and a smaller and smaller
possibility to re-arrange the crystalline structure.

Simulated AnnealingSimulated AnnealingSimulated AnnealingSimulated Annealing

• Analogy
• Metal �� Problem
• Energy State �� Cost Function
• Temperature �� Control Parameter
• A completely ordered crystalline structure

 �� the optimal solution for the problem

Global optimal solution can be achieved as long as
the cooling process is slow enough.

Metropolis Loop

• The essential characteristic of simulated annealing
• Determining how to randomly explore new solution,

reject or accept the new solution
at a constant temperature T.

• Finished until equilibrium is achieved.

Metropolis Criterion
• Let

• X be the current solution and X’ be the new solution
• C(x) (C(x’))be the energy state (cost) of x (x’)

• Probability Paccept = exp [(C(x)-C(x’))/ T]
• Let N=Random(0,1)
• Unconditional accepted if

• C(x’) < C(x), the new solution is better
• Probably accepted if

• C(x’) >= C(x), the new solution is worse . Accepted only
when N < Paccept

AAAAllllggggoooorrrriiiitttthhhhmmmm
Initialize initial solution x , highest temperature Th, and

coolest temperature Tl

T= Th

When the temperature is higher than Tl

 While not in equilibrium
 Search for the new solution X’

 Accept or reject X’ according to Metropolis Criterion
 End
 Decrease the temperature T
End

Simulated Annealing
• Definition of solution
• Search mechanism, i.e. the definition of a

neighborhood
• Cost-function

Control Parameters
• Definition of equilibrium

• Cannot yield any significant improvement after certain
number of loops

• A constant number of loops

• Annealing schedule (i.e. How to reduce the
temperature)
• A constant value, T’ = T - Td

• A constant scale factor, T’= T * Rd
❘ A scale factor usually can achieve better performance

Control Parameters

• Temperature determination
• Artificial, without physical significant
• Initial temperature

❘ 80-90% acceptance rate

• Final temperature
❘ A constant value, i.e., based on the total number of solutions

searched
❘ No improvement during the entire Metropolis loop
❘ Acceptance rate falling below a given (small) value

• Problem specific and may need to be tuned

Example
• Traveling Salesman Problem (TSP)

• Given 6 cities and the traveling cost between any
two cities

• A salesman need to start from city 1 and travel
all other cities then back to city 1

• Minimize the total traveling cost

Example
• Solution representation

• An integer list, i.e., (1,4,2,3,6,5)

• Search mechanism
• Swap any two integers (except for the first

one)
❘ (1,4,2,3,6,5) � (1,4,3,2,6,5)

• Cost function

Example
• Temperature

• Initial temperature determination
❘ Around 80% acceptation rate for “bad move”
❘ Determine acceptable (Cnew – Cold)

• Final temperature determination
❘ Stop criteria
❘ Solution space coverage rate

• Annealing schedule
❘ Constant number (90% for example)
❘ Depending on solution space coverage rate

• Global optimal is possible, but near
optimal is practical

• Parameter Tuning
–Aarts, E. and Korst, J. (1989). Simulated

Annealing and Boltzmann Machines. John
Wiley & Sons.

• Not easy for parallel implementation
• Randomly generator

Optimization Techniques
• Mathematical Programming
• Network Analysis
• Branch & Bound
• Genetic Algorithm
• Simulated Annealing
• Tabu Search

• What
• Neighborhood search + memory

❘ Neighborhood search
❘ Memory

Record the search history
Forbid cycling search

Algorithm

• Choose an initial solution X
• Find a subset of N(x) the neighbor of X which are not in the

tabu list.
• Find the best one (x’) in N(x).
• If F(x’) > F(x) then set x=x’.
• Modify the tabu list.
• If a stopping condition is met then stop, else go to the

second step.

Effective Tabu Search

• Effective Modeling
• Neighborhood structure
• Objective function (fitness or cost)

❘ Example Graph coloring problem: Find the minimum number of
colors needed such that no two connected nodes share the same
color.

• Aspiration criteria
• The criteria for overruling the tabu constraints and

differentiating the preference of among the neighbors

Effective Tabu Search

• Effective Computing
• “Move” may be easier to be stored and

computed than a completed solution
❘ move: the process of constructing of x’ from x

• Computing and storing the fitness
difference may be easier than that of the
fitness function.

Effective Tabu Search

•• Effective Memory UseEffective Memory Use
• Variable tabu list size

❘ For a constant size tabu list
Too long: deteriorate the search results
Too short: cannot effectively prevent from cycling

• Intensification of the search
❘ Decrease the tabu list size

• Diversification of the search
❘ Increase the tabu list size
❘ Penalize the frequent move or unsatisfied constraints

• A hybrid approach for graph coloring problem
• R. Dorne and J.K. Hao, A New Genetic Local

Search Algorithm for Graph Coloring, 1998

Problem
• Given an undirected graph G=(V,E)

• V={v1,v2,…,vn}
• E={eij}

• Determine a partition of V in a minimum
number of color classes C1,C2,…,Ck such that
for each edge eij, vi and vj are not in the
same color class.

• NP-hard

General Approach

• Transform an optimization problem into a
decision problem

• Genetic Algorithm + Tabu Search
• Meaningful crossover
• Using Tabu search for efficient local search

• Individual
• (Ci1, Ci2, …, Cik)

• Cost function
• Number of total conflicting nodes

❘ Conflicting node
having same color with at least one of its adjacent nodes

• Neighborhood (move) definition
• Changing the color of a conflicting node

• Cost evaluation
• Special data structures and techniques to improve the

efficiency

Implementation

• Parent Selection
• Random

• Reproduction/Survivor
• Crossover Operator

• Unify independent set (UIS) crossover
❘ Independent set

Conflict-free nodes set with the same color
❘ Try to increase the size of the independent set to

improve the performance of the solutions

UIS
Unify independent set

Implementation
• Mutation

• With Probability Pw, randomly pick neighbor
• With Probability 1 – Pw, Tabu search

❘ Tabu search
Tabu list

List of {Vi, cj}
Tabu tenure (the length of the tabu list)

L = a * Nc + Random(g)
Nc: Number of conflicted nodes
a,g: empirical parameters

Summary
• Neighbor Search
• TS prevent being trapped in the local minimum with

tabu list
• TS directs the selection of neighbor
• TS cannot guarantee the optimal result
• Sequential
• Adaptive

Hill climbing

sources
Jaap Hofstede, Beasly, Bull, Martin
Version 2, October 2000

Department of Computer Science & Engineering
University of South Carolina

Spring, 2002

