Optimization Techniques

Genetic Algorithms

And other approaches for similar applications
Optimization Techniques

- Mathematical Programming
- Network Analysis
- Branch & Bound
- **Genetic Algorithm**
- **Simulated Annealing**
- **Tabu Search**
Genetic Algorithm

- Based on Darwinian Paradigm

- Intrinsically a robust search and optimization mechanism
Conceptual Algorithm

1. Initialize Population
2. Evaluate Fitness
3. satisfy constraints? (Yes/No)
 - Yes: Output Results
 - No: Select Survivors
 - Randomly Vary Individuals
Genetic Algorithm
Introduction 1

- Inspired by natural evolution
- Population of individuals
 - Individual is feasible solution to problem
- Each individual is characterized by a Fitness function
 - Higher fitness is better solution
- Based on their fitness, parents are selected to reproduce offspring for a new generation
 - Fitter individuals have more chance to reproduce
 - New generation has same size as old generation; old generation dies
- Offspring has combination of properties of two parents
- If well designed, population will converge to optimal solution
Algorithm

BEGIN
Generate initial population;
Compute fitness of each individual;
REPEAT /* New generation */
 FOR population_size / 2 DO
 Select two parents from old generation;
 /* biased to the fitter ones */
 Recombine parents for two offspring;
 Compute fitness of offspring;
 Insert offspring in new generation
 END FOR
UNTIL population has converged
END
Example of convergence
Introduction 2

• Reproduction mechanisms have no knowledge of the problem to be solved

• Link between genetic algorithm and problem:
 • Coding
 • Fitness function
Basic principles 1

- **Coding or Representation**
 - String with all parameters
- **Fitness function**
 - Parent selection
- **Reproduction**
 - Crossover
 - Mutation
- **Convergence**
 - When to stop
Basic principles 2

- An individual is characterized by a set of parameters: **Genes**
- The genes are joined into a string: **Chromosome**
- The chromosome forms the **genotype**
- The genotype contains all information to construct an organism: the **phenotype**

- **Reproduction** is a “dumb” process on the chromosome of the genotype
- **Fitness** is measured in the real world (‘struggle for life’) of the phenotype
Coding

- Parameters of the solution (genes) are concatenated to form a string (chromosome)
- All kind of alphabets can be used for a chromosome (numbers, characters), but generally a binary alphabet is used
- Order of genes on chromosome can be important
- Generally many different codings for the parameters of a solution are possible
- Good coding is probably the most important factor for the performance of a GA
- In many cases many possible chromosomes do not code for feasible solutions
Genetic Algorithm

- Encoding
- Fitness Evaluation
- Reproduction
- Survivor Selection
Encoding

- Design alternative \rightarrow individual (chromosome)
- Single design choice \rightarrow gene
- Design objectives \rightarrow fitness
Example

- **Problem**
 - Schedule \(n \) jobs on \(m \) processors such that the maximum span is minimized.

 Design alternative: job \(i \) (\(i=1,2,...,n \)) is assigned to processor \(j \) (\(j=1,2,...,m \))

 Individual: A \(n \)-vector \(x \) such that \(x_i = 1, ..., or \, m \)

 Design objective: minimize the maximal span

 Fitness: the maximal span for each processor
Reproduction

- Reproduction operators
 - Crossover
 - Mutation
Reproduction

- **Crossover**
 - Two parents produce two offspring
 - There is a chance that the chromosomes of the two parents are copied unmodified as offspring
 - There is a chance that the chromosomes of the two parents are randomly recombined (crossover) to form offspring
 - Generally the chance of crossover is between 0.6 and 1.0

- **Mutation**
 - There is a chance that a gene of a child is changed randomly
 - Generally the chance of mutation is low (e.g. 0.001)
Reproduction Operators

- Crossover
 - Generating offspring from two selected parents
 - Single point crossover
 - Two point crossover (Multi point crossover)
 - Uniform crossover
One-point crossover 1

• Randomly one position in the chromosomes is chosen
• Child 1 is head of chromosome of parent 1 with tail of chromosome of parent 2
• Child 2 is head of 2 with tail of 1

Parents: 10100011100011010010 0011010010

Offspring: 0101010010 0011001110

Randomly chosen position
Reproduction Operators comparison

- Single point crossover

- Cross point

- Two point crossover (Multi point crossover)
One-point crossover - Nature
Two-point crossover

- Randomly two positions in the chromosomes are chosen.
- Avoids that genes at the head and genes at the tail of a chromosome are always split when recombined.

\[
\text{Parents: } 10100011100011010010 \quad 0011010010
\]
\[
\text{Randomly chosen positions}
\]
\[
\text{Offspring: } 01010100010 \quad 001100110
\]
Uniform crossover

- A random mask is generated
- The mask determines which bits are copied from one parent and which from the other parent
- Bit density in mask determines how much material is taken from the other parent (takeover parameter)

Mask: 0110011000 (Randomly generated)

Parents: 1010001110 0011010010

Offspring: 0011001010 1010010110
Reproduction Operators

- Uniform crossover

- Is uniform crossover better than single crossover point?
 - Trade off between
 - Exploration: introduction of new combination of features
 - Exploitation: keep the good features in the existing solution
Problems with crossover

- Depending on coding, simple crossovers can have high chance to produce illegal offspring
 - E.g. in TSP with simple binary or path coding, most offspring will be illegal because not all cities will be in the offspring and some cities will be there more than once
- Uniform crossover can often be modified to avoid this problem
 - E.g. in TSP with simple path coding:
 - Where mask is 1, copy cities from one parent
 - Where mask is 0, choose the remaining cities in the order of the other parent
Reproduction Operators

• Mutation
 • Generating new offspring from single parent
 • Maintaining the diversity of the individuals
 - Crossover can only explore the combinations of the current gene pool
 - Mutation can “generate” new genes
Reproduction Operators

- Control parameters: population size, crossover/mutation probability
 - Problem specific
 - Increase population size
 - Increase diversity and computation time for each generation
 - Increase crossover probability
 - Increase the opportunity for recombination but also disruption of good combination
 - Increase mutation probability
 - Closer to randomly search
 - Help to introduce new gene or reintroduce the lost gene

- Varies the population
 - Usually using crossover operators to recombine the genes to generate the new population, then using mutation operators on the new population
Parent/Survivor Selection

- Strategies
 - Survivor selection
 - Always keep the best one
 - Elitist: deletion of the K worst
 - Probability selection: inverse to their fitness
 - Etc.
Parent/Survivor Selection

- Too strong fitness selection bias can lead to sub-optimal solution
- Too little fitness bias selection results in unfocused and meandering search
Parent selection

Chance to be selected as parent proportional to fitness
- Roulette wheel

To avoid problems with fitness function
- Tournament

Not a very important parameter
Parent/Survivor Selection

- Strategies
 - Parent selection
 - Uniform randomly selection
 - Probability selection: proportional to their fitness
 - Tournament selection (Multiple Objectives)
 Build a small comparison set
 Randomly select a pair with the higher rank one beats the lower one
 Non-dominated one beat the dominated one
 Niche count: the number of points in the population within certain distance, higher the niche count, lower the rank.
 - Etc.
Others

- Global Optimal
- Parameter Tuning
- Parallelism
- Random number generators
Example of coding for TSP

Travelling Salesman Problem

• Binary
 • Cities are binary coded; chromosome is string of bits
 • Most chromosomes code for illegal tour
 • Several chromosomes code for the same tour

• Path
 • Cities are numbered; chromosome is string of integers
 • Most chromosomes code for illegal tour
 • Several chromosomes code for the same tour

• Ordinal
 • Cities are numbered, but code is complex
 • All possible chromosomes are legal and only one chromosome for each tour

• Several others
Roulette wheel

- Sum the fitness of all chromosomes, call it T
- Generate a random number N between 1 and T
- Return chromosome whose fitness added to the running total is equal to or larger than N
- Chance to be selected is exactly proportional to fitness

<table>
<thead>
<tr>
<th>Chromosome:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness:</td>
<td>8</td>
<td>2</td>
<td>17</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Running total:</td>
<td>8</td>
<td>10</td>
<td>27</td>
<td>34</td>
<td>38</td>
<td>49</td>
</tr>
<tr>
<td>N (1 ≤ N ≤ 49):</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tournament

• **Binary tournament**
 • Two individuals are randomly chosen; the fitter of the two is selected as a parent

• **Probabilistic binary tournament**
 • Two individuals are randomly chosen; with a chance p, $0.5 < p < 1$, the fitter of the two is selected as a parent

• **Larger tournaments**
 • n individuals are randomly chosen; the fittest one is selected as a parent

• By changing n and/or p, the GA can be adjusted dynamically
Problems with fitness range

- **Premature convergence**
 - ΔFitness too large
 - Relatively superfit individuals dominate population
 - Population converges to a local maximum
 - Too much exploitation; too few exploration

- **Slow finishing**
 - ΔFitness too small
 - No selection pressure
 - After many generations, average fitness has converged, but no global maximum is found; not sufficient difference between best and average fitness
 - Too few exploitation; too much exploration
Solutions for these problems

- Use tournament selection
 - Implicit fitness remapping
- Adjust fitness function for roulette wheel
 - Explicit fitness remapping
 - Fitness scaling
 - Fitness windowing
 - Fitness ranking

Will be explained below
Fitness Function

Purpose

- Parent selection
- Measure for convergence
- For Steady state: Selection of individuals to die

- Should reflect the value of the chromosome in some “real” way
- Next to coding the most critical part of a GA
Fitness scaling

- Fitness values are scaled by subtraction and division so that worst value is close to 0 and the best value is close to a certain value, typically 2
 - Chance for the most fit individual is 2 times the average
 - Chance for the least fit individual is close to 0
- Problems when the original maximum is very extreme (super-fit) or when the original minimum is very extreme (super-unfit)
 - Can be solved by defining a minimum and/or a maximum value for the fitness
Example of Fitness Scaling

![Graph showing adjusted and raw fitness distributions.](image-url)
Fitness windowing

- Same as window scaling, except the amount subtracted is the minimum observed in the n previous generations, with n e.g. 10
- Same problems as with scaling
Fitness ranking

- Individuals are numbered in order of increasing fitness
- The rank in this order is the adjusted fitness
- Starting number and increment can be chosen in several ways and influence the results

- No problems with super-fit or super-unfit
- Often superior to scaling and windowing
Fitness Evaluation

- A key component in GA
- Time/quality trade off
- Multi-criterion fitness
Multi-Criterion Fitness

- Dominance and indifference
 - For an optimization problem with more than one objective function \((f_i, i=1,2,...,n)\)

- given any two solution \(X_1\) and \(X_2\), then
 - \(X_1\) dominates \(X_2\) (\(X_1 \succ X_2\)), if
 - \(f_i(X_1) \geq f_i(X_2), \text{ for all } i = 1, ..., n\)

 - \(X_1\) is indifferent with \(X_2\) (\(X_1 \sim X_2\)), if \(X_1\) does not dominate \(X_2\),
 and \(X_2\) does not dominate \(X_1\)
Multi-Criterion Fitness

- Pareto Optimal Set
 - If there exists no solution in the search space which dominates any member in the set P, then the solutions belonging the set P constitute a global Pareto-optimal set.
- Pareto optimal front
- Dominance Check
Multi-Criterion Fitness

- Weighted sum
 \[F(x) = w_1 f_1(x_1) + w_2 f_2(x_2) + \ldots + w_n f_n(x_n) \]

- Problems?
 - Convex and convex Pareto optimal front
 - Sensitive to the shape of the Pareto-optimal front
 - Selection of weights?
 - Need some pre-knowledge
 - Not reliable for problem involving uncertainties
Multi-Criterion Fitness

• Optimizing single objective

 • Maximize: $f_k(X)$

 Subject to:

 $f_j(X) \leq K_i, \quad i \neq k$

 X in F where F is the solution space.
Multi-Criterion Fitness

- Weighted sum
 - \(F(x) = w_1 f_1(x_1) + w_2 f_2(x_2) + \ldots + w_n f_n(x_n) \)
- Problems?
 - Convex and convex Pareto optimal front
 - Sensitive to the shape of the Pareto-optimal front
 - Selection of weights?
 - Need some pre-knowledge
 - Not reliable for problem involving uncertainties
Multi-Criterion Fitness

- Preference based weighted sum

 \(F(x) = w_1 f_1(x_1) + w_2 f_2(x_2) + \ldots + w_n f_n(x_n) \)

- Preference

 Given two known individuals \(X \) and \(Y \), if we prefer \(X \) than \(Y \), then

 \(F(X) > F(Y) \),

 that is

 \(w_1(f_1(x_1)-f_1(y_1)) + \ldots + w_n(f_n(x_n)-f_n(y_n)) > 0 \)
Multi-Criterion Fitness

- All the preferences constitute a linear space
 \[W_n = \{w_1, w_2, \ldots, w_n\} \]
 \[w_1(f_1(x_1)-f_1(y_1)) + \ldots + w_n(f_n(x_n)-f_n(y_n)) > 0 \]
 \[w_1(f_1(z_1)-f_1(p_1)) + \ldots + w_n(f_n(z_n)-f_n(p_n)) > 0, \text{ etc} \]

- For any two new individuals \(Y' \) and \(Y'' \), how to determine which one is more preferable?
Multi-Criterion Fitness

Min: $\mu = \sum_k w_k [f_k (Y')] - f_k (Y'')]$

s.t.: W_n

Min: $\mu' = \sum_k w_k [f_k (Y'')] - f_k (Y')]$

s.t.: W_n
Multi-Criterion Fitness

Then,

\[\mu > 0 \implies Y' \succ Y'' \]

Otherwise,

\[\mu' > 0 \implies Y'' \succ Y' \]

Construct the dominant relationship among some indifferent ones according to the preferences.
Other parameters of GA 1

- **Initialization:**
 - Population size
 - Random
 - Dedicated greedy algorithm

- **Reproduction:**
 - Generational: as described before (insects)
 - Generational with elitism: fixed number of most fit individuals are copied unmodified into new generation
 - Steady state: two parents are selected to reproduce and two parents are selected to die; two offspring are immediately inserted in the pool (mammals)
Other parameters of GA 2

- **Stop criterion:**
 - Number of new chromosomes
 - Number of new and unique chromosomes
 - Number of generations

- **Measure:**
 - Best of population
 - Average of population

- **Duplicates**
 - Accept all duplicates
 - Avoid too many duplicates, because that degenerates the population (inteelt)
 - No duplicates at all
Example run

Maxima and Averages of steady state and generational replacement
Simulated Annealing

- What
 - Exploits an analogy between the annealing process and the search for the optimum in a more general system.
Annealing Process

• Annealing Process
 • Raising the temperature up to a very high level (melting temperature, for example), the atoms have a higher energy state and a high possibility to re-arrange the crystalline structure.
 • Cooling down slowly, the atoms have a lower and lower energy state and a smaller and smaller possibility to re-arrange the crystalline structure.
Simulated Annealing

- Analogy
 - Metal \leftrightarrow Problem
 - Energy State \leftrightarrow Cost Function
 - Temperature \leftrightarrow Control Parameter
 - A completely ordered crystalline structure \leftrightarrow the optimal solution for the problem

Global optimal solution can be achieved as long as the cooling process is slow enough.
Metropolis Loop

• The essential characteristic of simulated annealing
• Determining how to randomly explore new solution, reject or accept the new solution at a constant temperature T.
• Finished until equilibrium is achieved.
Metropolis Criterion

- Let
 - \(X \) be the current solution and \(X' \) be the new solution
 - \(C(x) \) (\(C(x') \)) be the energy state (cost) of \(x \) (\(x' \))
- Probability \(P_{\text{accept}} = \exp \left[\frac{(C(x)-C(x'))}{T} \right] \)
- Let \(N= \text{Random}(0,1) \)
- Unconditional accepted if
 - \(C(x') < C(x), \text{ the new solution is better} \)
- Probably accepted if
 - \(C(x') \geq C(x), \text{ the new solution is worse. Accepted only when } N < P_{\text{accept}} \)
Algorithm

Initialize initial solution x, highest temperature T_h, and coolest temperature T_l

$T = T_h$

When the temperature is higher than T_l

While not in equilibrium

Search for the new solution x'

Accept or reject x' according to Metropolis Criterion

End

Decrease the temperature T

End
Simulated Annealing

- Definition of solution
- Search mechanism, i.e. the definition of a neighborhood
- Cost-function
Control Parameters

• Definition of equilibrium
 • Cannot yield any significant improvement after certain number of loops
 • A constant number of loops

• Annealing schedule (i.e. How to reduce the temperature)
 • A constant value, $T' = T - T_d$
 • A constant scale factor, $T' = T \times R_d$
 * A scale factor usually can achieve better performance
Control Parameters

• Temperature determination
 • Artificial, without physical significant
 • Initial temperature
 ‣ 80-90% acceptance rate
 • Final temperature
 ‣ A constant value, i.e., based on the total number of solutions searched
 ‣ No improvement during the entire Metropolis loop
 ‣ Acceptance rate falling below a given (small) value

• Problem specific and may need to be tuned
Example

- Traveling Salesman Problem (TSP)
 - Given 6 cities and the traveling cost between any two cities
 - A salesman need to start from city 1 and travel all other cities then back to city 1
 - Minimize the total traveling cost
Example

- **Solution representation**
 - An integer list, i.e., \((1,4,2,3,6,5)\)

- **Search mechanism**
 - Swap any two integers (except for the first one)
 \[(1,4,\underline{2},3,6,5) \rightarrow (1,4,\underline{3},2,6,5)\]

- **Cost function**
Example

• Temperature
 • Initial temperature determination
 | Around 80% acceptance rate for “bad move”
 | Determine acceptable \((C_{\text{new}} - C_{\text{old}})\)
 • Final temperature determination
 | Stop criteria
 | Solution space coverage rate

• Annealing schedule
 | Constant number (90% for example)
 | Depending on solution space coverage rate
Others

- Global optimal is possible, but near optimal is practical
- Parameter Tuning
- Not easy for parallel implementation
- Randomly generator
Optimization Techniques

- Mathematical Programming
- Network Analysis
- Branch & Bound
- Genetic Algorithm
- Simulated Annealing
- Tabu Search
Tabu Search

- What
 - Neighborhood search + memory
 - Neighborhood search
 - Memory
 - Record the search history
 - Forbid cycling search
Algorithm

- Choose an initial solution x
- Find a subset of $N(x)$ the neighbor of x which are not in the tabu list.
- Find the best one (x') in $N(x)$.
- If $F(x') > F(x)$ then set $x = x'$.
- Modify the tabu list.
- If a stopping condition is met then stop, else go to the second step.
Effective Tabu Search

- **Effective Modeling**
 - Neighborhood structure
 - Objective function (fitness or cost)
 - **Example** Graph coloring problem: Find the minimum number of colors needed such that no two connected nodes share the same color.

- **Aspiration criteria**
 - The criteria for overruling the tabu constraints and differentiating the preference of among the neighbors
Effective Tabu Search

- **Effective Computing**
 - “Move” may be easier to be stored and computed than a completed solution
 - move: the process of constructing of \(x' \) from \(x \)
 - Computing and storing the **fitness difference** may be easier than that of the fitness function.
Effective Tabu Search

- **Effective Memory Use**
 - Variable tabu list size
 - For a constant size tabu list
 - Too long: deteriorate the search results
 - Too short: cannot effectively prevent from cycling
 - Intensification of the search
 - Decrease the tabu list size
 - Diversification of the search
 - Increase the tabu list size
 - Penalize the frequent move or unsatisfied constraints
Example

• A hybrid approach for graph coloring problem
 • R. Dorne and J. K. Hao, *A New Genetic Local Search Algorithm for Graph Coloring*, 1998
Problem

- Given an undirected graph $G = (V, E)$
 - $V = \{v_1, v_2, ..., v_n\}$
 - $E = \{e_{ij}\}$
- Determine a partition of V in a minimum number of color classes $C_1, C_2, ..., C_k$ such that for each edge e_{ij}, v_i and v_j are not in the same color class.
- NP-hard
General Approach

- Transform an optimization problem into a decision problem
- Genetic Algorithm + Tabu Search
 - Meaningful crossover
 - Using Tabu search for efficient local search
Encoding

- Individual
 - \((C_{i1}, C_{i2}, \ldots, C_{ik})\)

- Cost function
 - Number of total conflicting nodes
 - Conflicting node having same color with at least one of its adjacent nodes

- Neighborhood (move) definition
 - Changing the color of a conflicting node

- Cost evaluation
 - Special data structures and techniques to improve the efficiency
Implementation

- Parent Selection
 - Random
- Reproduction/Survivor
- Crossover Operator
 - Unify independent set (UIS) crossover
 - Independent set
 - Conflict-free nodes set with the same color
 - Try to increase the size of the independent set to improve the performance of the solutions
UIS

Unify independent set

<table>
<thead>
<tr>
<th>parent 1</th>
<th>0</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>conflict</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>parent 2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>conflict</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>child 1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>origin</td>
<td>p2</td>
<td>p1</td>
<td>p1</td>
<td>p1</td>
<td>p2</td>
<td>p2</td>
<td>p1</td>
<td>p1</td>
<td></td>
</tr>
<tr>
<td>child 2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>origin</td>
<td>p2</td>
<td>p1</td>
<td>p2</td>
<td>p2</td>
<td>p1</td>
<td>p2</td>
<td>p2</td>
<td>p1</td>
<td></td>
</tr>
</tbody>
</table>

Unions obtained

- $l_{e1,0} = l_{p1,0} + l_{p2,2}$
- $l_{e1,1} = l_{p1,1} + l_{p2,0}$
- $l_{e1,2} = l_{p1,2} + l_{p2,1}$
- $l_{e2,0} = l_{p2,0} + l_{p1,1}$
- $l_{e2,1} = l_{p2,1} + l_{p1,2}$
- $l_{e2,2} = l_{p2,2} + l_{p1,0}$
Implementation

• Mutation
 • With Probability P_w randomly pick neighbor
 • With Probability $1 - P_w$ Tabu search
 Tabu search
 Tabu list
 List of $\{V_i, c_j\}$
 Tabu tenure (the length of the tabu list)
 $L = a \times N_c + \text{Random}(g)$
 N_c: Number of conflicted nodes
 a,g: empirical parameters
Summary

- Neighbor Search
- TS prevent being trapped in the local minimum with tabu list
- TS directs the selection of neighbor
- TS cannot guarantee the optimal result
- Sequential
- Adaptive
Hill climbing
sources

Jaap Hofstede, Beasly, Bull, Martin
Version 2, October 2000

Department of Computer Science & Engineering
University of South Carolina
Spring, 2002