Optimization Technigues

Genetic
Algorithms

And other approaches for
similar applications

Optimization Techniques

e Mathematical Programming
e Network Analysis

e Branch & Bound

e Genetic Algorithm

e Simulated Annealing

e Tabu Search

Genetic Algorithm

e Based on Darwinian Paradigm

Reproduction » Competition
Survive < Selection

e Intrinsically a robust search and optimization mechanism

Conceptual Algorithm

Initialize Population

Evaluate Fithess

Ves satisfy constraints ?

N®

Select Survivors Randomly Vary Individuals

Output Results

Genetic Algorithm
Introduction 1

Inspired by natural evolution

Population of individuals

- Individual is feasible solution to problem

Each individual is characterized by a Fitness function

- Higher fitness is better solution

Based on their fitness, parents are selected to reproduce
offspring for a new generation

- Fitter individuals have more chance to reproduce
- New generation has same size as old generation; old generation dies

Offspring has combination of properties of two parents
If well designed, population will converge to optimal solution

Algorithm

(enerate initial population;
Conpute fitness of each i ndividual;
REPEAT /* New generation /*
FOR popul ation_size / 2 DO
Select two parents fromold generation;
/* biased to the fitter ones */
Reconbi ne parents for two offspring;
Compute fitness of offspring;
| nsert offspring in new generation
END FOR

UNTI L popul ati on has converged
END

Example of convergence

Fithess A

=

1 | | | | | | |
0 20 40 60 80 Generations

Introduction 2

e Reproduction mechanisms have no
knowledge of the problem to be solved

e Link between genetic algorithm and problem:
- Coding
- Fitness function

Basic principles 1

e Coding or Representation
- String with all parameters

e Fitness function
- Parent selection

e Reproduction
- Crossover
- Mutation

e Convergence
- When to stop

Basic principles 2

An individual is characterized by a set of parameters: Genes
The genes are joined into a string: Chromosome

The chromosome forms the genotype

The genotype contains all information to construct an
organism: the phenotype

Reproduction is a “dumb” process on the chromosome of
the genotype

Fitness i1s measured in the real world (‘struggle for life’) of
the phenotype

Coding

Parameters of the solution (genes) are concatenated to form
a string (chromosome)

All kind of alphabets can be used for a chromosome
(numbers, characters), but generally a binary alphabet is
used

Order of genes on chromosome can be important

Generally many different codings for the parameters of a
solution are possible

Good coding is probably the most important factor for the
performance of a GA

In many cases many possible chromosomes do not code for
feasible solutions

Genetic Algorithm

e Encoding

e Fitness Evaluation
e Reproduction

e Survivor Selection

Encoding

e Design alternative = individual (chromosome)
e Single design choice - gene
e Design objectives = fitness

Example

e Problem

- Schedule /7 jobs on /77 processors such that the
maximum span Is minimized.

Design alternative: job i () is assigned to processor | ()
Individual: A n-vector x such that

Design objective: minimize the maximal span

Fitness: the maximal span for each processor

Reproduction

e Reproduction operators
« Crossover
- Mutation

Reproduction

e Crossover
- Two parents produce two offspring

- There is a chance that the chromosomes of the two parents are
copied unmodified as offspring

- There is a chance that the chromosomes of the two parents are
randomly recombined (crossover) to form offspring

- Generally the chance of crossover is between 0.6 and 1.0
e Mutation

- There is a chance that a gene of a child is changed randomly
- Generally the chance of mutation is low (e.g. 0.001)

Reproduction Operators

e Crossover

- Generating offspring from two selected parents
[1Single point crossover
[1Two point crossover (Multi point crossover)
[JUniform crossover

One-point crossover 1

e Randomly one position in the chromosomes is chosen

e Child 1 is head of chromosome of parent 1 with tail of
chromosome of parent 2

e Child 2 i1s head of 2 with tail of 1

Random y chosen position

| |

Parent s: 1010001110 OOllQlOOlQ

[=

O fspring: 0101010010 0011001110

Reproduction Operators comparison

e Single point crossover

_m . [[EH H
9
WoE Em H EEN | |
Cross point

e Two point crossover (Multi point crossover)

H (B B
9
noE Ew oon L | I

One-point crossover - Nature

1 5 1 2

[

Two-point crossover

e Randomly two positions in the chromosomes are chosen

e Avoids that genes at the head and genes at the tail of a
chromosome are always split when recombined

Random y chosen positions

| I

Parent s: 1010001110 \001;010010

| =

Of fspring: 0101010010 00110011710

Uniform crossover

e A random mask is generated

e The mask determines which bits are copied from one parent
and which from the other parent

e Bit density in mask determines how much material is taken
from the other parent (takeover parameter)
Mask: 0110011000 (Random y gener at ed)

Par ent s: 1010001110 0011010010

O fspring: 0011001010 1010010110

Reproduction Operators

e Uniform crossover

2 Pim N

* |s uniform crossover better than single crossover
point?

— Trade off between

 Exploration: introduction of new combination of features
» Exploitation: keep the good features in the existing solution

Problems with crossover

e Depending on coding, simple crossovers can have high
chance to produce illegal offspring

- E.g. In TSP with simple binary or path coding, most offspring will be
lllegal because not all cities will be in the offspring and some cities
will be there more than once

e Uniform crossover can often be modified to avoid this
problem
- E.g. In TSP with simple path coding:
[J Where mask is 1, copy cities from one parent

[] Where mask is 0, choose the remaining cities in the order of the other
parent

Reproduction Operators

e Mutation
- Generating new offspring from single parent

v

N N - LN I

- Maintaining the diversity of the individuals

[1 Crossover can only explore the combinations of the current
gene pool

[] Mutation can “generate” new genes

Reproduction Operators

e Control parameters:

- Problem specific
- Increase population size

[J Increase diversity and computation time for each generation
- Increase crossover probability

[1 Increase the opportunity for recombination but also disruption of
good combination

- Increase mutation probability
[] Closer to randomly search
[Help to introduce new gene or reintroduce the lost gene

e Varies the population

- Usually using crossover operators to recombine the genes to generate
the new population, then using mutation operators on the new
population

Parent/Survivor
Selection

e Strategies
» Survivor selection

deletion of the K worst
Inverse to their fithess

Parent/Survivor Selection

e Too strong fitness selection bias can lead to sub-
optimal solution

e Too little fithess bias selection results In
unfocused and meandering search

Parent selection

Chance to be selected as parent proportional to
fitness

e Roulette wheel

To avoid problems with fitness function
e Tournament

Not a very important parameter

Parent/Survivor
Selection

e Strategies

- Parent selection
[Uniform randomly selection
[Probability selection : proportional to their fitness
[Tournament selection (Multiple Objectives)
Build a small comparison set
Randomly select a pair with the higher rank one beats the lower one
Non-dominated one beat the dominated one

Niche count: the number of points in the population within
certain distance, higher the niche count, lower the
rank.

[1 Etc.

Global Optimal

Parameter Tuning
Parallelism

Random number generators

Example of coding for TSP

Travelling Salesman Problem

Binary
- Cities are binary coded; chromosome is string of bits

[J Most chromosomes code for illegal tour
[] Several chromosomes code for the same tour

Path

- Cities are numbered; chromosome is string of integers
[J Most chromosomes code for illegal tour
[Several chromosomes code for the same tour

Ordinal

- Cities are numbered, but code is complex

- All possible chromosomes are legal and only one chromosome for each
tour

Several others

Roulette wheel

e Sum the fitness of all chromosomes, call it T
e Generate a random number N between 1 and T

e Return chromosome whose fitness added to the running
total is equal to or larger than N

e Chance to be selected is exactly proportional to fitness

Chr onosone: 1 2 3 4 5 6
FI t ness: 8 2 17 7 4 11
Running total: 8 10 27 34 38 49
N (1 £ N < 49): 23

Sel ect ed: 3

Tournament

Binary tournament

- Two individuals are randomly chosen; the fitter of the two is selected
as a parent

Probabilistic binary tournament

- Two individuals are randomly chosen; with a chance p, 0.5<p<1, the
fitter of the two is selected as a parent

Larger tournaments

- nindividuals are randomly chosen; the fittest one is selected as a
parent

By changing n and/or p, the GA can be adjusted dynamically

Problems with fithess range

e Premature convergence
- AFitness too large
- Relatively superfit individuals dominate population
- Population converges to a local maximum
- Too much exploitation; too few exploration

e Slow finishing
- AFitness too small
- No selection pressure

- After many generations, average fitness has converged, but no
global maximum is found; not sufficient difference between best and
average fitness

- Too few exploitation; too much exploration

Solutions for these problems

e Use tournament selection
- Implicit fitness remapping

e Adjust fithess function for roulette wheel

- Explicit fitness remapping
[IFitness scaling
[IFitness windowing
[IFitness ranking

W1l be expl ai ned bel ow

Fithess Function

Purpose

Parent selection
Measure for convergence
For Steady state: Selection of individuals to die

Should reflect the value of the chromosome Iin some “real”
way

Next to coding the most critical part of a GA

Fithess scaling

e Fitness values are scaled by subtraction and division so that
worst value is close to 0 and the best value is close to a
certain value, typically 2

- Chance for the most fit individual is 2 times the average
- Chance for the least fit individual is close to O

e Problems when the original maximum is very extreme
(super-fit) or when the original minimum is very extreme
(super-unfit)

- Can be solved by defining a minimum and/or a maximum value for
the fitness

Example of Fithess Scaling

—

Number !

1"1, Adjusted Fitness Raw Fitness

0 1 2 3 4 5 6 Fithess

Fithess windowing

e Same as window scaling, except the
amount subtracted Is the minimum
observed In the n previous generations,
with ne.g. 10

e Same problems as with scaling

Fithess ranking

Individuals are numbered In order of increasing
fitness

The rank in this order is the adjusted fithess

Starting number and increment can be chosen In
several ways and influence the results

No problems with super-fit or super-unfit
Often superior to scaling and windowing

Fithess Evaluation

e A key component in GA
e Time/quality trade off
e Multi-criterion fitness

Multi-Criterion Fitness

e Dominance and indifference

- For an optimization problem with more than one
objective function

- given any two solution X, and X, then

[1X, dominates , If
(X,)>=1F(X,), foralli =1,..,n

1 X, 1S Indifferent with if X, does not dominate
and does not dominate

Multi-Criterion Fitness

e Pareto Optimal Set

- If there exists no solution in the search space
which dominates any member in the set ~, then
the solutions belonging the the set /~ constitute a
global Pareto-optimal set.

- Pareto optimal front
e Dominance Check

Multi-Criterion Fitness

e Weighted sum

» F(X) = Wili(Xy) + Wolo(X5) +... 4 W, T, (X,)
- Problems?
[1Convex and convex Pareto optimal front
Sensitive to the shape of the Pareto-optimal front
[1Selection of weights?
Need some pre-knowledge
Not reliable for problem involving uncertainties

Multi-Criterion Fitness

e Optimizing single objective
- Maximize: 1(X)
Subject to:
(X)) <=K, I<>k
X in F where F Is the solution space

Multi-Criterion Fitness

e Weighted sum

» F(X) = Wili(Xy) + Wolo(X5) +... 4 W, T, (X,)
- Problems?
[1Convex and convex Pareto optimal front
Sensitive to the shape of the Pareto-optimal front
[1Selection of weights?
Need some pre-knowledge
Not reliable for problem involving uncertainties

Multi-Criterion Fitness

e Preference based weighted sum

(lSMAUT Imprecisely Specific Multiple Attribute Utility Theory)
» F(X) = wify(Xy) + Wolo(X3) +... #WTn(X,)
- Preference

[1Given two know individuals X and Y, if we prefer X than
Y, then

that is
Wl(fl(Xd_fl(yd) +"'+Wn(fn(Xn)_fn(yn)) >0

Multi-Criterion Fitness

LJAIl the preferences constitute a linear space
W.,={w,w,,...,w,}
Wl(fl(Xﬁ_fl(yd) +"'+Wn(fn(Xn)_fn(yn)) >0
wWi(T1(Z2)-1:(P2)) +... #+Wp(F,(2,)-T,(P,)) = O, etc

[IFor any two new individuals Y”and Y”, how to
determine which one is more preferable?

Multi-Criterion Fitness

Min: g => w[f (Y")-f (Y'")]

W

n

Min: g'=> w[f (Y"™) - f (Y")]

W

n

Multi-Criterion Fitness

Then,

U>0=Y' =Y"

Y-

Y’ ~Y77

Otherwise,

Construct the dominant relationship among some
Indifferent ones according to the preferences.

Other parameters of GA 1

e Initialization:
- Population size
- Random
- Dedicated greedy algorithm

e Reproduction:
- Generational: as described before (insects)

- Generational with elitism: fixed number of most fit individuals are
copied unmodified into new generation

- Steady state: two parents are selected to reproduce and two parents
are selected to die; two offspring are immediately inserted in the
pool (mammals)

Other parameters of GA 2

e Stop criterion:
- Number of new chromosomes
- Number of new and unigue chromosomes
- Number of generations

e Measure:
- Best of population
- Average of population

e Duplicates
- Accept all duplicates

- Avoid too many duplicates, because that degenerates the population
(inteelt)

- No duplicates at all

Example run

Maxima and Averages of steady state and generational
replacement

45 + + St_maX
40 1 + St_aV.
g5 1 |~ Ge_max

301 |2¢— Geav.
25 1 i ’

N ¥
20 + /’

15 ¢
10 ¢
5+
0

0 5 10 15 20

Simulated
Annealing

e \What

- Exploits an analogy between the annealing
process and the search for the optimum In
a more general system.

Annealing Process

e Annealing Process

- Raising the temperature up to a very high level
(melting temperature, for example), the atoms
have a higher energy state and a high possibility
to re-arrange the crystalline structure.

- Cooling down slowly, the atoms have a lower and
lower energy state and a smaller and smaller
possibility to re-arrange the crystalline structure.

Simulated Annealing

e Analogy
- Metal <—-> Problem
- Energy State <—> Cost Function
- Temperature <—-> Control Parameter

- A completely ordered crystalline structure
< —> the optimal solution for the problem

Global optimal solution can be achieved as long as
the cooling process Is slow enough.

Metropolis Loop

e The essential characteristic of simulated annealing

e Determining how to randomly explore new solution,
reject or accept the new solution
at a constant temperature T.

e Finished until equilibrium is achieved.

Metropolis Criterion

Let

- X be the current solution and X’ be the new solution
- (C(X) (C(x’))be the energy state (cost) of x (X’)

Probability P, = exp [(C(x)-C(x'))/ T]
Let N=Random(0,1)

Unconditional accepted if
- C(X') < C(x), the new solution is better

Probably accepted if

- C(X')>=C(X), the new solution is worse . Accepted only
when N < P

accept

Algorithm

Initialize initial solution x , highest temperature T,,, and
coolest temperature T,

=T,
When the temperature is higher than T,

While not in equilibrium

Search for the new solution X’
Accept or reject X’ according to Metropolis Criterion

End

Decrease the temperature T
End

Simulated Annealing

e Definition of solution

e Search mechanism, 1.e. the definition of a
neighborhood

e Cost-function

Control Parameters

e Definition of equilibrium
- Cannot yield any significant improvement after certain
number of loops

- A constant number of loops

 Annealing schedule (i.e. How to reduce the
temperature)
- Aconstant value, T'=T - T

- A constant scale factor, T=T * R,
[1A scale factor usually can achieve better performance

Control Parameters

e Temperature determination
- Artificial, without physical significant
- Initial temperature
[180-90% acceptance rate

- Final temperature

[1A constant value, I.e., based on the total number of solutions
searched

[1No improvement during the entire Metropolis loop
[Acceptance rate falling below a given (small) value

- Problem specific and may need to be tuned

Example

e Traveling Salesman Problem (TSP)

- Given 6 cities and the traveling cost between any
two cities

- A salesman need to start from city 1 and travel
all other cities then back to city 1

- Minimize the total traveling cost

Example

e Solution representation
- An integer list, I.e., (1,4,2,3,6,5)
e Search mechanism

- Swap any two integers (except for the first
one)

1(1,4,2,3,6,5) > (1,4,3,2,6,5)
e Cost function

Example

e Temperature

- Initial temperature determination
[JAround 80% acceptation rate for “bad move”
[IDetermine acceptable (C.., — Co1q)

- Final temperature determination
[1Stop criteria
[1Solution space coverage rate

- Annealing schedule
[1Constant number (90% for example)
[IDepending on solution space coverage rate

e Global optimal is possible, but near
optimal Is practical

e Parameter Tuning

—Aarts, E. and Korst, J. (1989). Simulated
Annealing and Boltzmann Machines. John
Wiley & Sons.

e Not easy for parallel implementation
e Randomly generator

Optimization Technigues

e Mathematical Programming
e Network Analysis

e Branch & Bound

e Genetic Algorithm

e Simulated Annealing

e Tabu Search

Tabu
Search

e \What

- Neighborhood search + memory
[INeighborhood search
[IMemory
Record the search history
Forbid cycling search

Algorithm

Choose an initial solution x

Find a subset of N/(x) the neighbor of x which are not in the
tabu list.

Find the best one (X’) iIn N(x).
If F(X') > F(X) then set x=X.
Modify the tabu list.

If a stopping condition is met then stop, else go to the
second step.

Effective Tabu Search

e Effective Modeling
- Neighborhood structure

- Objective function (fitness or cost)

[1Example Graph coloring problem: Find the minimum number of
colors needed such that no two connected nodes share the same
color.

o Aspiration criteria

- The criteria for overruling the tabu constraints and
differentiating the preference of among the neighbors

Effective Tabu Search

e Effective Computing
- “Move” may be easier to be stored and
computed than a completed solution
[Jmove: the process of constructing of x’ from x
- Computing and storing the fithess

difference may be easier than that of the
fitness function.

Effective Tabu Search

e Effective Memory Use

- Variable tabu list size
[1For a constant size tabu list
Too long: deteriorate the search results
Too short: cannot effectively prevent from cycling
- Intensification of the search
[1Decrease the tabu list size

- Diversification of the search
[1Increase the tabu list size
[1Penalize the frequent move or unsatisfied constraints

Example

e A hybrid approach for graph coloring problem

- R. Dorne and J.K. Hao, A New Genetic Local
Search Algorithm for Graph Coloring, 1998

Problem

e Glven an undirected graph G=(V,E)

e V={v,v,,...,v.}
- E={ey}

e Determine a partition of /in a minimum
number of color classes C,,C,,...,C, such that
for each edge ¢, v,and v; are not in the

Ul
same color class.

e NP-hard

General Approach

e Transform an optimization problem into a
decision problem

e Genetic Algorithm + Tabu Search
- Meaningful crossover
- Using Tabu search for efficient local search

Encoding

Individual
« (Cip, Cizs 5 Gy
Cost function

- Number of total conflicting nodes
[1 Conflicting node
having same color with at least one of its adjacent nodes

Neighborhood (move) definition
- Changing the color of a conflicting node

Cost evaluation

- Special data structures and techniques to improve the
efficiency

Implementation

e Parent Selection
- Random

e Reproduction/Survivor

e Crossover Operator

- Unify independent set (UIS) crossover
[IIndependent set
Conflict-free nodes set with the same color

[ITry to increase the size of the independent set to
Improve the performance of the solutions

UIS

Unify independent set

parent 1 0

conflict

parent 2 D

2202211 \

NENCIE

conflict O C) O O O O unions cbtained

le1,0=1p1,0 " 1p22 | le2,0 =1lp2,0* 1lp1

childi1 | 1] 2| 1]|0o|1|o|o| 2|0 le1a =lp1a*lp20 | le2a =lp2a1*1p12

1 =1 +1 1 =1 +1
origin p2 | pl pl|pl|p2|p2|pl|pl el.2 ™ "pl.2 " "pi.l €22~ "p2.2 " "pl.D

-

child2 | g | 2 | 2|2 | 0| 2| 2] 1| 2

origin p2 | p1 p2 | p2 | pl |p2 | p2 | pl

Implementation

e Mutation

- With Probability ~,,, randomly pick neighbor

- With Probability 7 — £, Tabu search
[1Tabu search

Tabu list
List of {V, ¢}

Tabu tenure (the length of the tabu list)
L =a* N, + Random(g)
N.: Number of conflicted nodes
a,9: empirical parameters

Summary

Neighbor Search

TS prevent being trapped in the local minimum with
tabu list

TS directs the selection of neighbor

TS cannot guarantee the optimal result
Sequential

Adaptive

Hill climbing

=

Fithess

Z

Hillclimb
X

sources

Department of Computer Science & Engineering
University of South Carolina
Spring, 2002

