
Chapter 4

ARCHITECTURAL-LEVELARCHITECTURAL-LEVEL
SYNTHESISSYNTHESIS

         Giovanni DeGiovanni De Micheli Micheli
Stanford UniversityStanford University

Please read the
entire chapter 4

Outline
• Motivation.
• Compiling language models into

abstract models.
• Behavioral-level optimization and

program-level transformations.
• Architectural synthesis: an overview.

SynthesisSynthesis
• Transform behavioral into structural view.
• Architectural-level synthesis:

– Architectural abstraction level.
– Determine macroscopic structure.
– Example: major building blocks.

• Logic-level synthesis:
– Logic abstraction level.
– Determine microscopic structure.
– Example: logic gate interconnection.

Synthesis and optimizationSynthesis and optimization

ExampleExample
diffeq {
 read (x, y, u, dx, a);
 repeat {
 xl = x + dx;
 ul = u - (3 * x * u * dx) - (3 * y * dx);
 yl = y + u * dx;
 c = x < a;
 x = xl; u = ul; y = yl;
 }
 until (c) ;
 write (y);
}

Example of structuresExample of structures

Example

Architectural-level synthesis motivationArchitectural-level synthesis motivation

• Raise input abstraction level.
– Reduce specification of details.
– Extend designer base.
– Self-documenting design specifications.
– Ease modifications and extensions.

• Reduce design time.
• Explore and optimize macroscopic

structure:
– Series/parallel execution of operations.

Architectural-level synthesisArchitectural-level synthesis
• Translate HDL models into sequencing

graphs.
• Behavioral-level optimization:

– Optimize abstract models independently from the
implementation parameters.

• Architectural synthesis and optimization:
– Create macroscopic structure:

• data-path and control-unit.
– Consider area and delay information of the

implementation.

Compilation and behavioralCompilation and behavioral
optimizationoptimization

• Software compilation:
– Compile program into intermediate form.
– Optimize intermediate form.
– Generate target code for an architecture.

• Hardware compilation:
– Compile HDL model into sequencing graph.
– Optimize sequencing graph.
– Generate gate-level interconnection for a cell library.

Hardware and software compilation.Hardware and software compilation.

CompilationCompilation
• Front-end:

– Lexical and syntax analysis.
– Parse-tree generation.
– Macro-expansion.
– Expansion of meta-variables.

• Semantic analysis:
– Data-flow and control-flow analysis.
– Type checking.
– Resolve arithmetic and relational operators.

Parse tree example
a = p +q r

Behavioral-level optimizationBehavioral-level optimization

• Semantic-preserving transformations
aiming at simplifying the model.

• Applied to parse-trees or during their
generation.

• Taxonomy:
– Data-flow based transformations.
– Control-flow based transformations.

Data-flow based transformations

• Tree-height reduction.
• Constant and variable propagation.
• Common sub-expression elimination.
• Dead-code elimination.
• Operator-strength reduction.
• Code motion.

Tree-height reductionTree-height reduction

• Applied to arithmetic expressions.
• Goal:

– Split into two-operand expressions to exploit
hardware parallelism at best.

• Techniques:
– Balance the expression tree.
– Exploit commutativitycommutativity, , associativityassociativity andand

distributivitdistributivityy..

Example of tree-height reduction
using commutativity and associativity

x = a +b c +d) x = (a +d) +b c

Example of tree-height reductionExample of tree-height reduction
usingusing distributivity distributivity

 x = a (b c d +e)) x = a b c d +a e;

Examples of propagationExamples of propagation

• First Transformation type: Constant
propagation:
– a = 0, b = a +1, c = 2 * b,
– a = 0, b = 1, c = 2,

• Second Transformation type: Variable
propagation:
– a = x, b = a +1, c = 2 * a,
– a = x, b = x +1, c = 2 * x,

Sub-expression eliminationSub-expression elimination

• Logic expressions:
– Performed by logic optimization.
– Kernel-based methods.

• Arithmetic expressions:
– Search isomorphic patterns in the parse trees.
– Example:

• a = x +y, b = a +1, c = x +y,
• a = x +y, b = a +1, c = a.

Examples of other transformationsExamples of other transformations

• Dead-code elimination:
– a = x; b = x +1; c = 2 * x;
– a = x; can be removed if not referenced.

• Operator-strength reduction:
– a = x 2 ; b = 3 * x;
– a = x * x; t = x << 1; b = x + t;

• Code motion:
– for (i = 1; i ≤ a * b) { }
– t = a * b; for (i = 1; i ≤ t) { }

Control- flow based transformationsControl- flow based transformations

• Model expansion.
• Conditional expansion.
• Loop expansion.
• Block-level transformations.

Model expansionModel expansion
• Expand subroutine flatten hierarchy.
• Useful to expand scope of other optimization

techniques.
• Problematic when routine is called more than

once.
• Example:Example:

– x = a +b; y = a * b; z = foo(x; y);
– foo(p; q) {t = q - p; return(t); }
– By expanding foo:
– x = a +b; y = a * b; z = y - x

Conditional expansionConditional expansion
• Transform conditional into parallel execution

with test at the end.
• Useful when test depends on late signals.
• May preclude hardware sharing.
• Always useful for logic expressions.
• Example:

– y = ab; ifif (a) {x = b + d; } else else {x = bd;}
– can be expanded to: x = a(b +d) +a’a’ bd
– and simplified as: y = ab; x = y +d(a +b)

Loop expansionLoop expansion
• Applicable to loops with data-independent exit

conditions.
• Useful to expand scope of other optimization

techniques.
• Problematic when loop has many iterations.
• Example:

– x = 0;

 for (i = 1; i ≤ 3; i ++) {x = x +1; }
– Expanded to:
 x = 0; x = x +1; x = x +2; x = x +3

Architectural synthesis and optimizationArchitectural synthesis and optimization

• Synthesize macroscopic structure in terms of
building-blocks.

• Explore area/performance trade-o:
– maximum performance implementations subject to

area constraints.
– minimum area implementations subject to

performance constraints.
• Determine an optimal implementation.
• Create logic model for data-path and control.

Design space and objectivesDesign space and objectives
• Design space:

– Set of all feasible implementations.
• Implementation parameters:

– Area.
– Performance:

• Cycle-time.
• Latency.
• Throughput (for pipelined implementations).

– Power consumption

Design evaluation spaceDesign evaluation space

Hardware modelingHardware modeling

• Circuit behavior:
– Sequencing graphs.

• Building blocks:
– Resources.

• Constraints:
– Timing and resource usage.

ResourcesResources

• Functional resources:
– Perform operations on data.
– Example: arithmetic and logic blocks.

• Memory resources:
– Store data.
– Example: memory and registers.

• Interface resources:
– Example: busses and ports.

• Standard resources:
– Existing macro-cells.
– Well characterized (area/delay).
– Example: adders, multipliers, ...

• Application-specific resources:
– Circuits for specific tasks.
– Yet to be synthesized.
– Example: instruction decoder.

Functional resourcesFunctional resources

Resources and circuit familiesResources and circuit families

• Resource-dominated circuits.
– Area and performance depend on few, well-

characterized blocks.
– Example: DSP circuits.

• Non resource-dominated circuits.
– Area and performance are strongly influenced

by sparse logic, control and wiring.
– Example: some ASIC circuits.

Implementation constraintsImplementation constraints

• Timing constraints:
– Cycle-time.
– Latency of a set of operations.
– Time spacing between operation pairs.

• Resource constraints:
– Resource usage (or allocation).
– Partial binding.

Synthesis in the temporal domainSynthesis in the temporal domain

• Scheduling:
– Associate a start-time with each operation.
– Determine latency and parallelism of the

implementation.
• Scheduled sequencing graph:

– Sequencing graph with start-time annotation.

Example of Synthesis in the temporal domainSynthesis in the temporal domain

ASAP

Synthesis in the spatial domainSynthesis in the spatial domain
• Binding:

– Associate a resource with each operation with the
same type.

– Determine area of the implementation.
• Sharing:

– Bind a resource to more than one operation.
– Operations must not execute concurrently.

• Bound sequencing graph:
– Sequencing graph with resource annotation.

Example of Synthesis in the spatial domainExample of Synthesis in the spatial domain

• First
multiplier

• Second
multiplier • Third

multiplier • Fourth
multiplier

• First ALU

• Second
ALU

• Solution
• Four

Multipliers
• Two ALUs
• Four Cycles

Binding specificationBinding specification
• Mapping from the vertex set to the set of

resource instances, for each given type.
• Partial binding:

– Partial mapping, given as design constraint.
• Compatible binding:

– Binding satisfying the constraints of the partial
binding.

Example of Binding specificationExample of Binding specification
• Binding to

the same
multiplier

EstimationEstimation
• Resource-dominated circuits.

– Area = sum of the area of the resources bound to the
operations.

• Determined by binding.

– Latency = start time of the sink operation (minus start
time of the source operation).

• Determined by scheduling

• Non resource-dominated circuits.
– Area also affected by:

• registers, steering logic, wiring and control.

– Cycle-time also affected by:
• steering logic, wiring and (possibly) control.

Approaches to architecturalApproaches to architectural
optimizationoptimization

• Multiple-criteria optimization problem:
– area, latency, cycle-time.

• Determine Pareto optimal points:
– Implementations such that no other has all

parameters with inferior values.
• Draw trade-off curves:

– discontinuous and highly nonlinear.

Approaches to architecturalApproaches to architectural
optimizationoptimization

• Area/latency trade-off,
– for some values of the cycle-time.

• Cycle-time/latency trade-off,
– for some binding (area).

• Area/cycle-time trade-off,
– for some schedules (latency).

Area/latency trade-off for various cycle timesArea/latency trade-off for various cycle times

• Area/Latency
for cycle
time=30

• Area/Latency
for cycle
time=40

Pareto Pareto pointspoints
in threein three

dimensionsdimensions

Area-latency trade-offArea-latency trade-off
• Rationale:

– Cycle-time dictated by system constraints.
• Resource-dominated circuits:

– Area is determined by resource usage.
• Approaches:

– Schedule for minimum latency under resource
constraints

– Schedule for minimum resource usage under
latency constraints

• for varying constraints.

SummarySummary
• Behavioral optimization:

– Create abstract models from HDL models.
– Optimize models without considering

implementation parameters.
• Architectural synthesis and optimization.

– Consider resource parameters.
– Multiple-criteria optimization problem:

• area, latency, cycle-time.

