Branch and bound algorithm for covering
Reduction strategies

- Partitioning:
 - If A is block diagonal:
 - Solve covering problem for corresponding blocks.

- Essentials:
 - Column incident to one (or more) row with single 1:
 - Select column.
 - Remove covered row(s) from table.

Discuss the historic example of essential subset and function core
Branch and bound algorithm for covering. Reduction strategies

- **Column dominance:**
 - If $a_{ki} \geq a_{kj} \ \forall k$:
 - remove column j.

- **Row dominance:**
 - If $a_{ik} \geq a_{jk} \ \forall k$:
 - Remove row i.
Example

\[
A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]
Example reduction

- Fourth column is essential.
- Fifth column is dominated.
- Fifth row is dominant.

\[
A = \begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
\end{pmatrix}
\]
EXACT COVER(A; x; b) f
Reduce matrix A and update corresponding x;
if (Current estimate j bj) return(b);
if (A has no rows) return (x);
Select a branching column c;
xc =1 ;
e
A = A after deleting c and rows incident to it;
e
x =EXACT COVER(
e
A; x; b);
if (j
e
xj < j bj)
b =
e
x ;
xc =0 ;
e
A = A after deleting c ;
e
x =EXACT COVER(
e
A; x; b);
if (j
e
Bounding function

- Estimate lower bound on the covers derived from the current x.
- The sum of the ones in x, plus bound on cover for local A:
 - Independent set of rows:
 - No 1 in same column.
 - Build graph denoting pair-wise independence.
 - Find clique number.
 - Approximation by defect is acceptable.
Example

\[A = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{pmatrix} \]

- Row 4 independent from 1, 2, 3.
- Clique number is 2.
- Bound is 2.
Example

\[A = \begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix} \]

- There are no independent rows.
- Clique number is 1 (one vertex).
- Bound is 1 + 1 (already selected essential).
Example

\[
A = \begin{pmatrix}
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 0 & 1 & 1 \\
\end{pmatrix}
\]

- Choose first column:
 - Recur with \(\bar{A} = [11] \).
 - Delete one dominated column.
 - Take other column (essential).
 - New cost is 3.

- Exclude first column:
 - Find another solution with cost 3 (discarded).
Unate and binate cover

• Set covering problem:
 – Involves a unate clause.

• Covering with implications:
 – Involves a binate clause.

• Example:
 – The choice of an element implies the choice of another element.
Unate and binate covering problems

- **Unate cover:**
 - Exact minimization of Boolean functions.

- **Binate cover:**
 - Exact minimization of Boolean relations.
 - Exact library binding.
 - Exact state minimization.
Unate and binate covering problems

• **Unate cover:**
 – It always has a solution.
 – Adding and element to a feasible solution preserves feasibility.

• **Binate cover:**
 – It may not have a solution.
 – *Adding and element to a feasible solution may make it unfeasible.*
 – Minimum-cost satisfiability problem.
 – Intrinsically more difficult.
Algorithms for unate and binate covering

- Branch and bound algorithm:
 - Extended to weighted covers.
- More complex in the binate case:
 - Dominant clauses can be discarded only if weight dominates.
 - Harder to bound.
- Only problems of smaller size are solvable, comparing to unate.
- Heuristic for binate cover are also more difficult to develop.