CSCE790 Topics in Information Technology

Computational Models (Lecture 5)

Department of Computer Science \& Engineering
University of South Carolina
Spring, 2002

Review

- Data Flow Graph
- data dependency
- Control/Data Flow Graph
- control dependency
- How about a reactive system?

Finite State Machine

What?

If the driver turns on the key, and does not fasten the seat belt within 5 seconds
then
an alarm beeps for 5 seconds, or until the driver fastens the seat belt, or until the driver turns off the key

An FSM

An FSM (Cont'd)

- States
- Alarm off, Alarm on, Wait
- Initial State
- Alarm off
- Inputs
- Turrn on/off the key, fasten the seat belt, timer reads
- Outputs
- Start/stop the timer
- Start transitions
- Alarm off + Turn on the key \rightarrow Wait
- Output
- Alarm off + Turin on the key \rightarrow start the timer

Finite State Machine

- $\mathbf{F S M}=\left(\mathbf{S}, \mathbf{I}, \mathbf{O}, \mathbf{s}_{\mathbf{0}}, \boldsymbol{\delta}, \boldsymbol{\lambda}\right)$
- $\mathbf{S}=\left\{\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathbf{k}}\right\}$
- $\mathbf{I}=\left\{\mathbf{i}_{\mathbf{1}}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{\mathbf{m}}\right\}$
$-\mathbf{O}=\left\{\mathbf{o}_{1}, \mathbf{0}_{2}, \ldots, \mathbf{o}_{\mathrm{n}}\right\}$
$-\delta: S \times I \rightarrow S$ (Transition function)
$-\lambda: \mathbf{S x I} \rightarrow \mathbf{O}$ (Output function)
- Given an input sequence, an output sequence is produced which is depended on s_{0}, δ, and λ.

Representation

- Given
- States
- Alarm off $\left(\mathrm{S}_{0}\right)$, Alarm on $\left(\mathrm{S}_{1}\right)$, Wait $\left(\mathrm{S}_{2}\right)$
- Initial State
- Alarm off $\left(\mathrm{S}_{0}\right)$
- Inputs
- Turn on/off the key $\left(i_{0} / i_{1}\right)$, fasten the seat belt ($\left.i_{2}\right)$, timer > $5\left(i_{3}\right)$, time $>10\left(i_{4}\right)$
- Outputs
- Start/stop the timer $\left(\mathrm{o}_{0} / \mathrm{o}_{1}\right)$

Transition Graph

Transition Function

- Transition Function

$$
\begin{array}{ll}
s 1=s 0 * i 0 & s 0=s 1 * \mathrm{i} 1 \\
s 2=s 1 * i 3 & s 0=s 2 *(i 1+i 2+i 4)
\end{array}
$$

- Output Function

$$
\begin{array}{ll}
O_{0}=s_{0} * i_{0} & O_{1}=s_{1} * i_{1} \\
O_{1}=s_{2} *\left(i_{1}+i_{2}+i_{4}\right) &
\end{array}
$$

Transition Table

State

	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$
i_{0}	$\mathrm{~S}_{1}$	X	X
i_{1}	X	S_{0}	$\mathrm{~S}_{0}$
i_{2}	X	S_{2}	$\mathrm{~S}_{0}$
i_{3}	X	X	X
i_{4}	X	X	S_{0}

	S_{0}	S_{1}	S_{2}
i_{0}	o_{0}	-	-
i_{1}	-	o_{1}	o_{1}
i_{2}	-	-	o_{1}
i_{3}	-	-	-
i_{4}	-	-	o_{1}

X: don't care

Mealy Machine and Moore Machine

- Mealy Machine
- The output is a function of both the current state and the input
- Moore Machine
- The output is only a function of the current state

Transition Graph For Moore Machine

Mealy/Moore Machine

- An FSM can be realized either by Mealy or Moore machine
- Mealy machine may use less flip-flops and output signals are immediately after the transition
- Moore machine may use more flip-flops and output signals valid except during the transition

Nondeterministic FSM

- Deterministic FSM
- Given a state and input, there is exactly one next state
- Nondeterministic FSM (NFSM)
- Given a state and input, there maybe more than one next state, or a state can transform from one state to anther without any input, or for some given input there no next state at all
- For any NFSM, there is always one equivalent FSM

Nondeterministic FSM

- For unknown/unspecified behavior
- Less states, more compact
- Useful for
- Optimization
- Verification
- Can be refined
- For any NFSM, there is always one equivalent DFSM

NFSM and FSM

Equivalence

- Two FSMs are equivalent iff for any given input sequence, identical output sequences are produced

Equivalence

Minimization

- What
- Given an FSM, find the equivalent FSM with a minimum number of states
- Two states s1 and s2 in an FSM are equivalent iff each input sequence beginning from s1 yields an output sequence identical to that obtained by starting from s2
- How

Minimization(Moore Machine)

> For each pair of the states (si,sj)
> If si and sj have different output
> \quad Mark si and si as not equivalent
> End for
> Do
> for each unmarked pair
> for each input, si and sj are transferred to states which \quad are not equivalent
> \quad Mark si and sj as not equivalent
> end for
> end for
> until no mark is possible
> Unmarked pairs are equivalent

Minimization

$$
(\mathrm{s} 0, \mathrm{~s} 1)(\mathrm{s} 0, \mathrm{~s} 2)(\mathrm{s} 0, \mathrm{~s} 3) \quad(\mathrm{s} 1, \mathrm{~s} 2)(\mathrm{s} 1, \mathrm{~s} 3) \quad(\mathrm{s} 2, \mathrm{~s} 3)
$$

Minimization

$$
(\mathrm{s} 0, \mathrm{~s} 1)(\mathrm{s} 0, \mathrm{~s} 2)(\mathrm{s} 0, \mathrm{~s} 3) \quad(\mathrm{s} 1, \mathrm{~s} 2)(\mathrm{s} 1, \mathrm{~s} 3) \quad(\mathrm{s} 2, \mathrm{~s} 3)
$$

