WHAT IS THIS CLASS ABOUT?

DESIGN OF VLSI CIRCUITS

© Giovanni De Micheli
Stanford University
Microelectronics

• Enabling and strategic technology.

• Primary markets:
 – Information systems.
 – Telecommunications.
 – Consumer.

• Secondary markets:
 – Systems (e.g., transportation).
 – Manufacturing (e.g., robots).

• Application of VSLI circuit technology.
Computer-Aided Design

- Enabling design *methodology*.
- Makes electronic design possible:
 - Large scale design management.
 - Design optimization.
 - Reduced design time.
- Key strategic importance.
Electronic market
Trends in microelectronics

• Improvements in device technology:
 – Smaller circuits.
 – Higher performance.
 – More devices on a chip.

• Higher degree of integration.
 – More complex systems.
 – Lower cost of computation.
 – Higher reliability.
Moore's law
Integration-scale limitations

- Intrinsic physical scaling limits.
- Capital investment for fabrication.
 - Use of appropriate design styles.
- Large-scale design management.
 - Use of CAD design tools.
Microelectronic design problems

• Use most recent technologies.
 – To be competitive in performance.
• Reduce design cost.
 – To be competitive in price.
• Speed-up design time.
 – Time-to-market is critical.
Microelectronic economics

• Design cost:
 – *Design time* and *fabrication cost*.
 – Large *capital investment*.
 – Near impossibility to *repair*.

• Recapture costs:
 – Large *volume* production is beneficial.
 – *Zero-defect* designs are essential.
 – Follow market *evolution*.
Microelectronic circuits

- General-purpose processors:
 - High-volume sales.
 - High performance.

- Application-Specific Integrated Circuits (ASICs):
 - Varying volumes and performances.

- Prototypes.

- Special applications (e.g. space).
Microelectronic design styles

- Adapt circuit design style to market requirements:
 - Parameters:
 - Cost.
 - Performance.
 - Volume.
 - Custom and semi-custom design.
Semi-custom design

- **CELL-BASED**
 - STANDARD-CELLS: Hierarchical cells
 - MACRO-CELLS:
 - Memory generators
 - PLA generators
 - Sparse logic generators
 - Gate matrix generators
- **ARRAY-BASED**
 - PRE-DIFFUSED:
 - Gate arrays
 - Sea of gates
 - Compacted arrays
 - PRE-WIRED:
 - Anti-fuse based
 - Memory-based
Standard cells

• **Cell library:**
 – Cells are designed once.
 – Cells are highly optimized.

• **Layout style:**
 – Cells are placed in rows.
 – Channels are used for wiring.

• **Compatible with macro-cells** (e.g. RAMs).
Macro-cells

• Module generators:
 – Synthesized layout.
 – Variable area and aspect-ratio.

• Examples:
 – RAMs, ROMs, PLAs, general logic blocks.

• Features:
 – Layout can be highly optimized.
 – Structured-custom design.
Array-based design

- **Pre-diffused** arrays:
 - Personalization by metalization/contacts.
 - Mask-Programmable Gate-Arrays.
- **Pre-wired** arrays:
 - Personalization on the field.
 - Field-Programmable Gate-Arrays.
MPGAs

• Array of **sites**:
 – Each site is a set of transistors.
• Batches of wafers can be pre-fabricated.
• Few masks to personalize chip.
• Lower cost than cell-based design.
FPGAs

• Array of cells:
 – Each cell performs a logic function.

• Personalization:
 – Soft: memory cell (e.g. Xilinx).
 – Hard: Anti-fuse (e.g. Actel).

• Immediate turn-around (for low volumes).

• Inferior performances and density.

• Good for prototyping.
Semi-custom style trade-off

<table>
<thead>
<tr>
<th>Density</th>
<th>Custom</th>
<th>Cell-based</th>
<th>Pre-diff.</th>
<th>Pre-wired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Medium-Low</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Medium-Low</td>
</tr>
<tr>
<td>Design time</td>
<td>Very Long</td>
<td>Short</td>
<td>Short</td>
<td>Very Short</td>
</tr>
<tr>
<td>Man. time</td>
<td>Medium</td>
<td>Medium</td>
<td>Short</td>
<td>Very Short</td>
</tr>
<tr>
<td>Cost - lv</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Cost - hv</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium-High</td>
</tr>
</tbody>
</table>
Microelectronic circuit design and production
Microelectronic circuit design

- Conceptualization and modeling:
 - Hardware Description Languages (HDLs).
- Synthesis and optimization:
 - Model refinement.
- Validation:
 - Check for correctness.
Modeling abstractions

ARCHITECTURAL LEVEL

...
PC = PC + 1;
FETCH (PC);
DECODE (INST);
...

LOGIC LEVEL

GEOMETRICAL LEVEL
Modeling abstractions

- **Architectural level:**
 - Operations implemented by resources.

- **Logic level:**
 - Logic functions implemented by gates.

- **Geometrical level:**
 - Devices are geometrical objects.
Modeling views

- Behavioral view
- Structural view
- Physical view
Modeling views

- **Behavioral view:**
 - Abstract function.

- **Structural view:**
 - An interconnection of parts.

- **Physical view:**
 - Physical objects with size and positions.
Modeling views and abstractions
Circuit synthesis

- **Architectural-level synthesis:**
 - Determine the macroscopic structure:
 - Interconnection of major building blocks.

- **Logic-level synthesis:**
 - Determine the microscopic structure:
 - Interconnection of logic gates.

- **Geometrical-level synthesis:** (Physical design)
 - Determine positions and connections.
Modeling views
Microelectronic circuit optimization

- **Performance:**
 - Delay and cycle-time.
 - Latency.
 - Throughput (for pipeline applications).

- **Power consumption.**
- **Area** (yield and packaging cost).
- **Testability.**
Design space and evaluation space
Optimization trade-off in combinational circuits
Optimization trade-off in sequential circuits
Pareto points

- Multi-criteria optimization.
- Multiple objectives.

Pareto point:
- A point of the design space is a Pareto point if there is **no other point** with:
 - at least one inferior objectives.
 - all other objectives inferior or equal.
Example

- Implement $f = p \ q \ r \ s$ with:
 - 2-input or 3-input AND gates.
- Area and delay proportional to number of inputs.
Example
design evaluation space
Summary

• Computer-aided design methodology:
 – Capture design by HDL models.
 – Synthesize more detailed abstractions.
 – Optimize circuit parameters.

• Logic synthesis and optimization:
 – Manipulate and optimize circuit models at the logic abstraction levels.