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OutlineOutline

• Resource-dominated circuits.
– Flat and hierarchical graphs.
– Functional and memory resources.

•  ExtensionsExtensions.
– Non resource-dominated circuits.
– Concurrent scheduling and binding.
– Module selection.

Resource sharing is the assignment of a resource to more than
one operation



Allocation and bindingAllocation and binding
• Allocation:

– Number of resources is available. Which resource for
which operation.

•  Binding:
– Binding is a relation between operations and resources.

•  Sharing:
– Many-to-one relation. Several operations share one

resource
•  Optimum binding/sharing:

– Minimize the resource usage.



BindingBinding
• Limiting cases of binding:

– Dedicated resources:
•  One resource per operation.
•  No sharing.

– One multi-task resource:
•  ALU.

– One resource per type.

Resource binding can be applied to sequencing graphs that are
scheduled or unscheduled.



Examples of types of sharing.Examples of types of sharing.
• The simplest case is when  operations can be

matched to resources with the same type
• Generalization - operations with different types can

be implemented (covered) by one resource of
appropriate type.
– Addition, subtraction and comparison  by ALU

• A further generalization is the case when any
operation can be implemented by more than one
resource type, possibly with different area and
performance.
– Example: addition operation can be implemented in

different kind of adders.



Sharing and Binding for Resource-Sharing and Binding for Resource-
Dominated CircuitsDominated Circuits

• Two or more operations may be bound to the
same resource if they are not concurrent and
they can be implemented by resources of the
same type.

• When these conditions are met, the operations
are said to be compatible.



Optimum sharing problemOptimum sharing problem

• We start from scheduled sequencing
graphs.
– Operation concurrency is well defined.

• We consider operation types
independently.
– Problem decomposition.
– Perform analysis for each resource type.



Compatibility graphs and conflict graphsCompatibility graphs and conflict graphs

•• Operation compatibility:Operation compatibility:
– Same type.
– Non concurrent.

•  (Resource) Compatibility graph:
– Vertices: operations.
– Edges: compatibility relation.

•  Conflict graph:
– Complement of compatibility graph.

These are the same compatibility and incompatibility
graphs as we discussed already many times



DefinitionsDefinitions
• Definition 6.2.1.

– The resource compatibility graph is a graph whose vertex
set V={vi, i=1,2,…nops}is in one-to-one correspondence
with the operations and whose edge set E={{vi,
vj},i,j=1,2,… nops denotes the compatible operation pairs.

• Definition 6.2.2.
– The resource conflict graph is a graph whose vertex set

V={vi, i=1,2,…nops}is in one-to-one correspondence with
the operations and whose edge set E={{vi, vj},i,j=1,2,…
nops denotes the conflict operation pairs



Multiplier         ALU

Examples ofExamples of
Compatibility graphsCompatibility graphs
and conflict graphsand conflict graphs

Compatibility graphs

Observe that 1 and 2 are not compatible since
they are executed concurrently

Compatibility graph isCompatibility graph is
a complement of aa complement of a

conflict graphconflict graph

We start from scheduled



Conflict graphs for the multiplierConflict graphs for the multiplier
and ALU typesand ALU types
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Algorithmic solution toAlgorithmic solution to
the optimum binding problemthe optimum binding problem

• Compatibility graph.
– Partition the graph into a minimum number of cliques.
– Find clique cover number κκκκκκκκ(G(G++ ). ).

•  (Resource) Conflict graph.
– Color the vertices by a minimum number of colors.
– Find chromatic number γγγγγγγγ(G(G--))

• NP-complete problems - Heuristic algorithms.

It is obvious that conflict graph is the complement
of the compatibility graph



Examples of using conflict andExamples of using conflict and
compatibility graphs for bindingcompatibility graphs for binding

•

resources

x, s, z

y,t

We start from scheduled graph

Since operations with different
types are always conflicting, it is
convenient to consider the conflict
graphs for each type independently.



Perfect graphsPerfect graphs
• Comparability graph:

– Graph G(V, E) has an orientation G(V, F) with the
transitive property.

– (v i , v j ) ∈∈∈∈  F ∧∧∧∧  (v j , v k ) ∈∈∈∈  F )  =>  (v i ; v k ) ∈∈∈∈  F.
•  Interval graph:

– Vertices correspond to intervals.
– Edges correspond to interval intersection.
– Interval graphs are a subset of chordal graphs:

•  Every loop with more than three edges has a chord.

What is a What is a PerfectPerfect graph? graph?



Data-flow graphsData-flow graphs
( at sequencing graphs)( at sequencing graphs)

• The compatibility/conflict graphs have special
properties.
– Compatibility:

•  Comparability graph.

– Conflict:
•  Interval graph.

•  Polynomial time solutions:
– Golumbic's algorithm.
– Left-edge algorithm.



•

•All operations have unit execution delay

•All operations whose type is a multiplier
and whose start time is larger than or equal
2 are compatible with v1

• Acomparability graph can be constructed
by traversing the sequencing graph in
O(|V|2) time

•This is a comparability graph because it
has a transitive orientation property.

•Relation of time ordering is transitive.

V1 = start
time t1



•We start from scheduled

This graph shows both scheduling
order and compatibility

This graph is a comparability graph

Example ofExample of
compatibility graphcompatibility graph
being a comparabilitybeing a comparability
graphgraph

Solution
Latency = 4
Multipliers = 2
ALU = 2

Solution
Latency = 4
Multipliers = 2
ALU = 2

1,3,7 = Multiplier

6,8 = Multiplier

10,11,4,9 = ALU

5 = ALU

Solution is not
unique, 4,10,11,5



•

•Let us consider the conflict graph
for each resource type.

•The edges of the conflict graph
denote intersections among intervals;
hence they are interval graphs.

•The search for minimum coloring
can be achieved in polynomial time.
Left-edge algorithm.

•Usually, resource sharing and
binding is achieved by considering
the conflict graphs for each type,
because resources are assumed to
have a single type.Thus the overall
conflict graph is of limited interest.

1 and 2
have
conflict

3 and 6
have
conflict

time



We start from scheduled Example of using conflictExample of using conflict
graph which  is angraph which  is an

interval graphinterval graph

{1,2,10}

{3,6,11}

{4,7,8}

{5,9}

As we see,
1,3,7 can have
the same color

Solution
Latency = 4
Multipliers = 2
ALU = 2

{1,3,7}=multiplier

{2,6,8}=multiplier

{4,5,10,11}=ALU

{9}=ALU



Left-edge algorithm for coloring intervalLeft-edge algorithm for coloring interval
graphgraph

• Input:
– Set of intervals with left and right edge.

•  Rationale:
– Sort intervals by left edge.
– Assign non overlapping intervals to first color using

the sorted list.
– When possible intervals are exhausted increase color

counter and repeat.



Left-edge algorithmLeft-edge algorithm
LEFT_EDGE(I) {
               Sort elements of I in a list L in ascending order of li ;
              c = 0;
              while (some interval has not been colored ) do {
                            S =φφφφ ;
                            r = 0;
                            while (∃∃∃∃ s ∈∈∈∈  L such that l s > r) do {{
                                    s = First element in the list L with l s > r ;
                                   S = S ∪∪∪∪  { s } ;
                                    r = rs ;
                                   Delete s from L;
                                     }}
                          c = c +1;
                          Label elements of S with color c;
                   }
}



Example ofExample of
Left-edgeLeft-edge
algorithmalgorithm

Interval graph

Coloring of interval graph

There is an edge in
the graph when
intersection of
intervals is not
empty



ILP formulation of bindingILP formulation of binding

• Boolean variables b  irir
– Operation i i bound to resource r r.

•  Boolean variables x  i li l
– Operation i i scheduled to start at step l l.

•We consider a similar framework to the one presented for scheduling.

•For the sake of simplicity, we assume all operations and resources have
the same type.

The binary variable , bir , is 1 only when operation vi is bound to
resource r, i.e. β(vi) = (1,r).

The binary  constant , x il, is 1 only when operation vi starts in step l of
the schedule, i.e. l = ti. These values are known constants , because we
consider scheduled sequencing graphs.



ILP formulation of bindingILP formulation of binding
• Boolean variables b  irir

– Operation i i bound to resource r r.

•  Boolean variables x  i li l
– Operation i i scheduled to start at step l l.

Searching for a binding compatible with a given schedule (represented
by X) and a resource bound a is equivalent to searching for a set of
values of B satisfying the following constraints:

bir are
binary



ILP formulation of bindingILP formulation of binding
• Boolean variables b  irir

– Operation i i bound to resource r r.
•  Boolean variables x  i li l

– Operation i i scheduled to start at step l l.

This constraint states
that each operation vi
should be assigned to
one and only one
resource.

•This constraint states
that at most one
operation can be
executing, among those
assigned to resource r, at
any time step.

• Note that it suffices to
require the variables in
B to be non-negative
integers to satisfy that bir
are binary. Hence the
problem can be
formulated as an ILP
and not necessarily as
ZOLP.

Example will be shown
later on for analogous
problem



Resource Sharing in HierarchicalResource Sharing in Hierarchical
sequencing graphssequencing graphs

• Hierarchical conflict/compatibility graphs.
– Hierarchical graphs are easy to compute.
– Hierarchical graphs prevent sharing across

hierarchy.
•  Flatten hierarchy.

– Flattening the hierarchy produces bigger graphs.
– It also destroys nice properties.



Resource Sharing in HierarchicalResource Sharing in Hierarchical
sequencing graphssequencing graphs

• A simplistic approach to resource sharing is to perform it
independently within each sequencing graph  entity.

• Such an approach is overly restrictive, because it would not allow
sharing resources in different entities.

• Therefore we consider resource sharing across the hierarchy levels.
• Let us first restrict our attention to sequencing graphs where the

hierarchy is induced by model calls. When two  link vertices
corresponding to different called models are not concurrent, any
operation pair implementable by resources with the same type and in
the different called models is compatible.

• Conversely, concurrency of the called models does not necessarily
imply conflicts of operation pairs in the models themselves.



Hierarchical conflicts and compatibilityHierarchical conflicts and compatibility

• Model m1

+

+

*

*

Time 1

Time 2

Time 3

Time 4

Time 5

a

b

Model a = addition
followed by multiplication

Addition has
one unit delay

multiplication
has two units
delay

When a model m1
has a call to model a
followed by a call to
model b, a and b are
not concurrent and
the corresponding
addition and
multiplication are
compatible

Model b = multiplication  followed by addition



Hierarchical conflicts andHierarchical conflicts and
compatibilitycompatibility

• Model m2

multiplication
has two units
delay

+

+

*

*

Time 1

Time 2

Time 3

Time 4

Time 5

a

b

Model b = multiplication
followed by addition

Addition has
one unit delay

•In model m2 two calls to
a and b overlap in time.

•Then we cannot say a
priori that the operations
of a and b are conflicting.

•Indeed the
multiplications are not
compatible while the
additions are compatible.

Therefore the appropriate way
of computing the compatibility
of operations across different
levels of the hierarchy is to
flatten the hierarchyflatten the hierarchy.



Dealing with complex modelsDealing with complex models
• Flattening expansion can be done

– explicitly, by replacing the link vertices by the graphs of corresponding models.
– Implicitly, by computing the execution intervals of each operation with respect

to the source operation of the root model in the hierarchy

• To determine the properties of the compatibility and conflict graphs,
we need to distinguish the cases when models are called once or more
than once.

• In both cases, model calls make the sequencing graph representation
modular

• In the latter case, model calls express also the sharing of the
application-specific resource corresponding to the model.



• When all models are called only once, the hierarchy is
only a structured representation of the data-flow
information.

• Thus compatibility and conflict graphs have the special
properties described in the previous section.

• Let us consider now multiple calls to a model.
• We question the compatibility or conflict of the

operations in the called model with those in the calling
one, and the properties of the corresponding graphs.



•

Conflict graph
Hierarchical sequencing graph
fragment related to model m3

•Addition followed by multiplication

•addition has one unit delay, multiplication two

•Model a has an overall delay of 3 units.

•Consider then model m3 with
two calls to model a that are not
concurrent scheduled at times 1
and 5, respectively.

•Assume also that model m3
has three other multiplication
operations.

•We question the sharing of the
multipliers across the
hierarchy.

•Note that the double call to a
results in two non-contiguous
execution intervals for the
multiplication in a.a.

•As a result the conflict graph is
not an intersection among
intervals.



Example of Example of Hierarchical conflict/compatibility graphsHierarchical conflict/compatibility graphs

•

Conflict graph

Non-chordal conflict graph

Hierarchical sequencing graph
fragment related to model m3

•Addition followed by multiplication

•addition has one unit delay, multiplication two

The resulting graphs may
no longer have special
properties. They clique
partitioning and vertex
coloring are now
intractable problems.

No conflict of 2 and 4

No conflict of a and 3



Iterative constructs that can be unrolled and branching constructsIterative constructs that can be unrolled and branching constructs

• The Compatibility of the operations across the hierarchy can be
computed in a similar way in the presence of iterative constructs that
can be unrolled. Note that a resource bound to one operation in a loop
corresponds to a resource bound to multiple instances of that
operation when the loop is unrolled.

• Moreover that resource may be bound to other operations outside the
loop model. Note also that a single model call inside a loop body
becomes a multiple call when the loop body is unrolled.

• Let us consider now branching constructs
• When considering operation pairs in two alternative branching bodies,

their compatibility corresponds to having the same type.
• The computation of compatibility and conflict graphs can still be done

by traversing the hierarchy and using Definitions 6.2.1 and 6.2.2.
• The resulting compatibility and conflict graphs may not have any

special property, as shown below.



•

Example of Example of HierarchicalHierarchical
conflict/compatibility graphsconflict/compatibility graphs

Execution
intervals

Non-chordal
conflict graphHierarchical sequencing graph

fragment - conditional execution

c and d are  compatible because
executed in parallel

a and b are compatible

We assume that all
operations take two
time units.

Note that the alternative nature of
operations c and d makes them
compatible and prevents a chord
{vc,vd} to be present in the conflict
graph. Hence the conflict graph is
not an interval graph.



Register binding problemRegister binding problem

• Given a schedule:
– Lifetime intervals for variables. Interval from birth to death.
– Lifetime overlaps.

•  Conflict graph (interval graph).
– Vertices <--> variables.
– Edges <--> overlaps.
– Interval graph.

•  Compatibility graph (comparability grapcomparability graphh).
– Complement of conflict graph.

Consider registers that hold values of variables

As shown before, the variables with multiple assignments within one model are
aliased, so that each variable has a single lifetime in the frame of reference
corresponding to the sequencing graph entity where it is used.



Register sharing data-flow graphsRegister sharing data-flow graphs

• Given:
– Variable lifetime conflict graph.

•  Find:
– Minimum number of registers storing all the

variables.
•  Key point:

–  Interval graph:
•  Left-edge algorithm. (Polynomial-time).



Example of Register sharing data-flowExample of Register sharing data-flow
graphsgraphs

•

Conflict graphVariable
intervalsHierarchical sequencing graphs

We need 2
registers

There are six intermediate variables that must be stored in registers

Lifetime conflicts



Register sharing - general caseRegister sharing - general case

• Iterative constructs:
– Preserve values across iterations.
– Circular-arc conflict graph:

•  Coloring is intractable.

•  Hierarchical graphs:
– General conflict graphs:

•  Coloring is intractable.

•  Heuristic algorithms.

Sequencing models of iterative bodies. In this case, some variables are
alive across the iteration boundary. For example, the loop-counter
variable. The cyclicity of the lifetimes is modeled accurately by
circular-arc graphs that represent intersection of arcs on a circle



•

Hierarchical sequencing graph

Example of Example of Register sharing-general caseRegister sharing-general case

Variable
lifetimes

This leads to circular conflict graph

7 intermediate variables, zi ,  3 loop variables (x,y,u), and 3 loop invariants (a,3,dx)

We consider intermediate and loop
variables and their assignment to
registers New x

created here



Example continuedExample continued
Variable-lifetimes and circular-arcVariable-lifetimes and circular-arc
conflict graphconflict graph

•

circular-arc
conflict graph Circular-arc conflict  graphVariable lifetimes as arcs on a circle

Five registers suffice to
store the 7+3=10
intermediate and loop
variables



Circular graphsCircular graphs
• The register sharing problem can then be cast as a minimumminimum

coloring of a circular-arc graphcoloring of a circular-arc graph.This problem is intractable.
• Stok has showed that this problem can be transformed to

multi-commodity flow problem and solved more efficiently.

• Register sharing can be extended to hierarchical models.
• In  general such graphs may have no special property.
• Springer and Thomas - polynomial time conflict graphs can

be achieved by enforcing some restrictions on the model
calls and on branch types.

• Can be reduced to ILP.



MultiportMultiport-memory binding-memory binding
• Find minimum number of ports to access the required

number of variables.
•  Variables use the same port:

– Port compatibility/conflict.
– Similar to resource binding.

•  Variables can use any port:
– Decision variable x il is TRUE when variable i is accessed at

step l.

–– Optimum:Optimum:



MultiportMultiport-memory binding-memory binding
• We consider now using multi-port memory arrays to store the values of the

variables.
• Let us assume a memory with a ports for either read or write requiring one cycle per

access
• Such a memory array can be  a general purpose register file common to RISC

architectures.
• We assume the memory to be large enough to hold all data.
• We consider in this section non-hierarchical sequencing graphs. Extensions are

straightforward.
• First problem - computing the minimum number of ports a required to access as

many variables as needed
• If each variable accesses the memory always through the same port, then the

problem reduces to binding variables to ports.
• Thus the considerations for functional resource binding from sec. 6.2.1 can be

applied to the ports, which can be seen as interface resources.



MultiportMultiport-memory binding: -memory binding: BalakrishnanBalakrishnan

• Find maximum number of variables to be stored through a
fixed number of ports aa.
– Subject to port limitations.

• Formulation
– Boolean variables {b i , i = 1, 2,…, n var}:

•  Variable i is stored in array.



Example formulation forExample formulation for Multiport Multiport-memory binding-memory binding

•

Consider the following scheduled sequence of operations, which
require the storage of variables zi, i=1,…15.



• Let us consider memory with a ports. Then the problem
can be represented by maximizing SUM i=1to15 of bi
under the following constraints.



Example  solutionExample  solution
• One port a = 1:

– {b 2 , b 4 , b 8 } non-zero.
– Only 3 variables stored in memory: v 2 , v 4 , v 8 .

•  Two ports a = 2:
– 6 variables stored: v 2 , v 4 , v 5 , v 10 , v 12 , v 14

•  Three ports a = 3:
– 9 variables stored: v 1 , v 2 , v 4 , v 6 , v 8 , v 10 , v 12 ,

v 13 , v 14

Example solution forExample solution for Multiport Multiport-memory binding-memory binding



Bus sharing and bindingBus sharing and binding
• The operation of writing a specific bus can be modeled explicitly as a vertex in the

sequencing graph model.
• In  this case, the compatible (or conflicting) data transfers may be represented by

compatibility (or conflict) graphs, as in the case of functional resources.
• Alternatively, buses may be explicitly described by sequencing graph model.
• Their optimum usage can be derived by exploiting the timing of the data transfers.
• Since busses have no memory, we consider only the transfers of data within each

schedule step (or across two adjacent schedule steps, when we assume that the bus
transfer is interleaved with computation).

• Two problems arise,
– first to find the minimum number of buses to accommodate all (Or part of) the data

transfers
– second to find the maximum number of data transfers that can be done through a given

number of busses.
• These problems are analogous to the multi-port binding problem and can be

modeled using ILP constraints.



Bus sharing and bindingBus sharing and binding

• Find the minimum number of busses to
accommodate all data transfer.

•  Find the maximum number of data transfers for
a fixed number of busses.

•  Similar to memory binding problem.
•  ILP formulation or heuristic algorithms.



•  One bus:
– 3 variables can be transferred on the bus. For example z1,z3, z5

•  Two busses:
– All variables can be transferred. Example of BusExample of Bus

sharing and bindingsharing and binding

Consider this sequencing graph
Assume that busses can transfer the
information across two adjacent
steps



Let the timing scheduled data transfers be modeled by constants
X={xil,I=1,..6, l=1,..5}. The values of the elements of X are all zeros,
except for x11, x21, x32, x42, x53 and x63 which are 1’s.

Then the  equation

yields:   b1+b2<a,     b3+b4<a,       b5+b6<a

This gives the same two solutions as before for a=1 and a=2



Scheduling and bindingScheduling and binding
Resource dominated circuitsResource dominated circuits

• Area and delay of resources dominate.
•  Strategy:

– Scheduling under area constraints:
•  Minimize latency.

– Binding.
•  Share resource within bounds.

•  Decoupling between scheduling and binding.



Scheduling and bindingScheduling and binding
General circuitsGeneral circuits

• Area and delay influenced by:
– Sparse logic,
– wiring,
– registers and control circuit.

•  Binding affects the cycle-time:
– It may invalidate a schedule.

•  Scheduling after binding:
– Binding under restrictive assumptions.
– Time-frame of operations not yet known.



Scheduling and bindingScheduling and binding
approachesapproaches

• Concurrent scheduling and binding.
–  ILP model- exact.
–  Some heuristic algorithms.

•  Scheduling before binding:
–  Good for DSP application.

•  Binding before scheduling:
•  Iterative techniques.



Module selection problemModule selection problem

• Library of resources:
– More than one resource per type.

•  Example:
– Ripple-carry adder.
– Carry look-ahead adder.

•  Resource modeling:
– Resource subtypes with:

• (area, delay) parameters.



Module selection solutionModule selection solution

• ILP formulation:
– Decision variables:

•  Select resource sub-type.
•  Determine (area, delay).

•  Heuristic algorithms:
– Determine minimum latency with fastest

resource subtypes.
– Recover area by using slower resources on non-

critical paths.



Example ofExample of
ModuleModule
selectionselection
solutionsolution

• Multipliers with:
–  (Area, delay) = (5,1) and (2,2)

•  Latency bound of 5.

First multiplier

Second multiplier

Second ALU

First ALU

area



Example (2)Example (2)

•  Latency bound of 4
(which is better!).
– Fast multipliers for {v1 ,

v2 , v3}.
– Slower multipliers can

be used elsewhere.
•  Less sharing.

•  Minimum-area design
uses fast multipliers
only.

Second Example ofSecond Example of
Module selection solution forModule selection solution for
the same problemthe same problem

2 multipliers

2 ALUs



SummarySummary
• Resource sharing is reducible to coloring/clique-

covering.
•  Simple for flat graphs.
•  Intractable, but still easy in practice, for other

graphs.
•  More complicated for non resource-dominated

circuits.
•  Extension: module selection.


