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Outline

» Resource-dominated circuits.
— Flat and hierarchical graphs.
— Functional and memory resources.

e EXtensions.
— Non resource-dominated circuits.
— Concurrent scheduling and binding.
— Module selection.




Allocation and binding

Allocation:

— Number of resources is available. Which resource for
which operation.

Binding:
— Binding is a relation between operations and resources.
Sharing:

— Many-to-one relation. Several operations share one
resurce

Optimum binding/sharing:
— Minimize the resource usage.



Binding

e Limiting cases of binding:
— Dedicated resources:

» One resource per operation.
* No sharing.

— One multi-task resource:
e ALU.

— One resource per type.



Optimurm sharing problem

* We start from scheduled sequencing
graphs.
—Operation concurrency iIs well defined.
e \We consider operation types
Independently.
—Problem decomposition.
—Perform analysis for each resource type.




Compatibility graphs and conflict graphs

e Operation compatibility:
— Same type.
— Non concurrent.
« Compatibility graph:
— Vertices: operations.
— Edges: compatibility relation.
o Conflict graph:
— Complement of compatibility graph.

These are the same compatibility and incompatibility
graps as we discussed already many times




We start from scheduled 0
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Algorithmic solution to
the optimum binding problem

« Compatibility graph.
— Partition the graph into a minimum number of cliques.
— Find clique cover number K(G, ).

e Conflict graph.
— Color the vertices by a minimum number of colors.

— Find chromatic number WG )
* NP-complete problems - Heuristic algorithms.




Examples of using conflict and
compatibility graphs for binding
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Perfect graphs

« Comparability graph:
— Graph G(V, E) has an orientation G(V, F) with the
transitive property.
—(vi,v;)OFO(v;,v )OF) => (vi;vy)OF.
 Interval graph:
— Vertices correspond to intervals.
— Edges correspond to interval intersection.

— Interval graphs are a subset of chordal graphs:
« Every loop with more than three edges has a chord.

What is a Perfect graph?



Data-flow graphns
( at sequencing graphs)

* The compatibility/conflict graphs have special

properties.
— Compatibility:
e Comparability graph.
— Conflict:
e Interval graph.
* Polynomial time solutions:
— Golumbic's algorithm.
— Left-edge algorithm.




Example of
compatinility graph
peing a comparanility
grapn

We start from scheduled

This graph shows both scheduling
order and compatibility
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We start from scheduled

Example of using conflict
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L eft-edge algorithm for coloring interval

graph
e Input:
— Set of Intervals with left and right edge.
e Rationale:

— Sort intervals by left edge.

— Assign non overlapping intervals to first color using
the sorted list.

— When possible intervals are exhausted increase color
counter and repeat.




|_eft-edge algorithm

LEFT _EDGE(I) {
Sort elements of I in a list L in ascending order of [, ;

c=0;
while (some interval has not been colored ) do {
S=Q;
r=0;
while (5 O L such that | ,>r) do {
s = First element in the list L with | ;> ;
S=S0O{s};
r=rg;
Delete s from L;
}
c=c +1;

Label elements of S with color c;



L eft-edge
algorithm

|_ast slide
for today




ILP formulation of binding

» Boolean variables b ;,
— Operation 1 bound to resource r.




Hierarchical sequencing graphs

* Hierarchical conflict/compatibility graphs.
— Hierarchical graphs are easy to compute.

— Hierarchical graphs prevent sharing across
hierarchy.

e Flatten hierarchy.
— Flattening the hierarchy produces bigger graphs.
— It also destroys nice properties.
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Example of Hierarchical
conflict/compatibility graphs
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Example of Hierarchical
confllctlcompatlbmty graphs
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Register binding problem

e Given a schedule:
— Lifetime intervals for variables.
— Lifetime overlaps.

e Conflict graph (interval graph).
— Vertices <--> variables.
— Edges <--> overlaps.
— Interval graph.
o Compatibility graph (comparability graph).
— Complement of conflict graph.




Register sharing data-flow graphs

e Glven:
— Variable lifetime conflict graph.
 Find:

— Minimum number of registers storing all the
variables.

e Key point:
— Interval graph:
o Left-edge algorithm. (Polynomial-time).




Example of Register sharing data-flow
graphs
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Register sharing
general case

e |terative constructs:
— Preserve values across iterations.
— Circular-arc conflict graph:
« Coloring is intractable.
» Hierarchical graphs:
— General conflict graphs:
« Coloring is intractable.

e Heuristic algorithms.
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Example continued
Variable-lifetimes and circular-arc

conflict graph

z4 z3

N

circular-arc Compatibility graph
conflict graph




Multiport-memory binding

o Find minimum number of ports to access the required
number of variables.

e Variables use the same port:
— Port compatibility/conflict.
— Similar to resource binding.

* Variables can use any port:

— Decision variable x ;, i1s TRUE when variable | iIs accessed at
step |.

— Optimum:

1<l</\—|—l




Multiport-memory binding

e FInd maximum number of variables to
be stored through a fixed number of ports
a.

—Boolean variables {b;,1=1,2,...,n .}
— max )4 b; such that

— Yt by <a  1=1,2,...,A+1



Example formulation for Multiport-memory binding

IT'me—stepl ; r3=ri1+1r2; ri2=rnr1

IT'me —step 2 . rs =7r3+7T4 ; "7 =T3%T6 ; T13 = T3
Time—step 3 . rs=r3+r5; ro=r1+r7; r11 =r10/75
Tvme —step 4 . ria=r11/A\Trg ; 15 =712V 9

T''me —step 5 . r1 =714 ; T2 =T15

max > .2, b; such that

b1 + b2 - b12

b3 + b4 + bs + b6 - b13

b1 + 03 + bs + b7 + bs + b9 - - 011
bg + bg + b11 + b12 b1s

b1 + b2 - - b1s




Example solution for Multiport-memory binding

e Oneporta=1:

- {b,,b,, by} non-zero.

— 3 variables stored: v, , v, , V4.
e Two ports a = 2:

— 6 variables stored: v, , v, , V¢,V o,V 5,V
e Three ports a = 3:

— 9 variables stored: v , , vV, ,V,, Vs, Vg,Viy, Vi,
Viiz, Vg



Bus sharing and binding

Find the minimum number of busses to
accommodate all data transfer.

Find the maximum number of data transfers for
a fixed number of busses.

Similar to memory binding problem.
ILP formulation or heuristic algorithms.
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Scheduling and binding
Resource dominated circuits

o Area and delay of resources dominate.

o Strategy:

— Scheduling under area constraints:
 Minimize latency.

— Binding.
 Share resource within bounds.

e Decoupling between scheduling and binding.




Scheduling and binding
General circuits

o Area and delay influenced by:
— Sparse logic,
— Wiring,
— registers and control circuit.

* Binding affects the cycle-time:
— It may invalidate a schedule.

e Scheduling after binding:
— Binding under restrictive assumptions.
— Time-frame of operations not yet known.



Scheduling and binding
approaches

Concurrent scheduling and binding.
— ILP model- exact.
— Some heuristic algorithms.

Scheduling before binding:
— Good for DSP application.

Binding before scheduling:
Iterative techniques.




Module selection problem

 Library of resources:

— More than one resource per type.
e Example:

— Ripple-carry adder.

— Carry look-ahead adder.
* Resource modeling:

— Resource subtypes with:
* (area, delay) parameters.



Module selection solution

e |[LP formulation:

— Decision variables:
 Select resource sub-type.
o Determine (area, delay).

e Heuristic algorithms:

— Determine minimum latency with fastest
resource subtypes.

— Recover area by using slower resources on non-
critical paths.
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Example of
Module
selection
solution

First multiplier

Second multiplier

o Multipliers with: | area
— (Area, delay) = (5 1) and (2,2)

» Latency bound of 5. Second ALU-




Second Example of " B
Module selection solution for

the same problem MC 12 5 a @
TIME 1 \(E ; ) f

o [Latency bound of 4
(which is better!).

— Fast multipliers for {v, ,
V, , V3}.

— Slower multipliers can
be used elsewhere.

 Less sharing.

e Minimum-area design
uses fast multipliers

only. 2 multipliers
2 ALUs




summary

Resource sharing is reducible to coloring/cligue-
covering.

Simple for flat graphs.

Intractable, but still easy in practice, for other
graphs.

More complicated for non resource-dominated
circuits.

Extension: module selection.




