RESOURCE SHARING
© Giovanni De Micheli
Stanford University

Outline

» Resource-dominated circuits.
— Flat and hierarchical graphs.
— Functional and memory resources.

e EXtensions.
— Non resource-dominated circuits.
— Concurrent scheduling and binding.
— Module selection.

Allocation and binding

Allocation:

— Number of resources is available. Which resource for
which operation.

Binding:
— Binding is a relation between operations and resources.
Sharing:

— Many-to-one relation. Several operations share one
resurce

Optimum binding/sharing:
— Minimize the resource usage.

Binding

e Limiting cases of binding:
— Dedicated resources:

» One resource per operation.
* No sharing.

— One multi-task resource:
e ALU.

— One resource per type.

Optimurm sharing problem

* We start from scheduled sequencing
graphs.
—Operation concurrency iIs well defined.
e \We consider operation types
Independently.
—Problem decomposition.
—Perform analysis for each resource type.

Compatibility graphs and conflict graphs

e Operation compatibility:
— Same type.
— Non concurrent.
« Compatibility graph:
— Vertices: operations.
— Edges: compatibility relation.
o Conflict graph:
— Complement of compatibility graph.

These are the same compatibility and incompatibility
graps as we discussed already many times

We start from scheduled 0

Examples of

\ Compatibility graphs
Q @ @ and conflict graphs

TIME 2

@ é Compatibility graph is
@ a complement of a
é); conflict graph

Multiplier ALU

63
A
|
TIME 3 E:? (f]
/
5
TIME 4

7

. .““i\
H\ ——

{ NOPE"
H.____“‘_l_r’

9i

Compatibility graphs sl

Observe that 1 and 2 are not compatible since
they are executed concurrently

Algorithmic solution to
the optimum binding problem

« Compatibility graph.
— Partition the graph into a minimum number of cliques.
— Find clique cover number K(G,).

e Conflict graph.
— Color the vertices by a minimum number of colors.

— Find chromatic number WG)
* NP-complete problems - Heuristic algorithms.

Examples of using conflict and
compatibility graphs for binding

Conflict Compatibility

P

O OO

=]

Coloring Covering

@ " %o
o o

ALUIL: 13,5
ALU2: 2.4

tl x=a+b y=c+d

t2 s=x+y t=x—y

/ /

We start from scheduled

resources

X, S, Z

Perfect graphs

« Comparability graph:
— Graph G(V, E) has an orientation G(V, F) with the
transitive property.
—(vi,v;)OFO(v;,v)OF) => (vi;vy)OF.
 Interval graph:
— Vertices correspond to intervals.
— Edges correspond to interval intersection.

— Interval graphs are a subset of chordal graphs:
« Every loop with more than three edges has a chord.

What is a Perfect graph?

Data-flow graphns
(at sequencing graphs)

* The compatibility/conflict graphs have special

properties.
— Compatibility:
e Comparability graph.
— Conflict:
e Interval graph.
* Polynomial time solutions:
— Golumbic's algorithm.
— Left-edge algorithm.

Example of
compatinility graph
peing a comparanility
grapn

We start from scheduled

This graph shows both scheduling
order and compatibility

TIME 2 This graph is a comparability graph
1,3,7 = Multipli o

TIME 3 HIHPRHET Solution is not

o unique, 4,10,11,5

6,8 = Multiplier

TIME 4 Solution
10,11,49=ALU Latency =4

Multipliers = 2

5=ALU ALU =2

We start from scheduled

Example of using conflict
) graph which is an

y “':::'+' g™, .
interval graph

TIME 1 : {1,2,10} As we see,
| Q @ 1,2,3,6,7,8 can

=

{3,6,11} have the same

TIME 2

b B
é (5.9}

“'*~m,, i & é X
] g

color grey

Solution _

{1,3,7}=multiplier 3
Later)cy =4 {2,6,8}=multiplier E| EI
MUltlpllerS =2 {4,5,10,11}=ALU
ALU =2

{9}=ALU

L eft-edge algorithm for coloring interval

graph
e Input:
— Set of Intervals with left and right edge.
e Rationale:

— Sort intervals by left edge.

— Assign non overlapping intervals to first color using
the sorted list.

— When possible intervals are exhausted increase color
counter and repeat.

|_eft-edge algorithm

LEFT _EDGE(I) {
Sort elements of I in a list L in ascending order of [, ;

c=0;
while (some interval has not been colored) do {
S=Q;
r=0;
while (5 O L such that | ,>r) do {
s = First element in the list L with | ;> ;
S=S0O{s};
r=rg;
Delete s from L;
}
c=c +1;

Label elements of S with color c;

L eft-edge
algorithm

|_ast slide
for today

ILP formulation of binding

» Boolean variables b ;,
— Operation 1 bound to resource r.

Hierarchical sequencing graphs

* Hierarchical conflict/compatibility graphs.
— Hierarchical graphs are easy to compute.

— Hierarchical graphs prevent sharing across
hierarchy.

e Flatten hierarchy.
— Flattening the hierarchy produces bigger graphs.
— It also destroys nice properties.

=

Example of Hierarchical
conflict/compatibility graphs

i

+

>_

-7

\ |

A
—

1<

T
IME 7 \[/

Hierar{g}hical

sequencing
graphs

Conflict@raph

Compatibility graph
(c)

Example of Hierarchical
confllctlcompatlbmty graphs

| s
TIME 1 @ @ @
e R
TIME 2 >< BR c d cl |4 @ @

TIME 3

] \®/

TIME 4

(a)
Hierarchical sequenci

(b) (c)
g graphs Conflict Compatibility
graph graph

¢ and d are not\compatible

because executed in parallel
\

a and b are not compatible

Register binding problem

e Given a schedule:
— Lifetime intervals for variables.
— Lifetime overlaps.

e Conflict graph (interval graph).
— Vertices <--> variables.
— Edges <--> overlaps.
— Interval graph.
o Compatibility graph (comparability graph).
— Complement of conflict graph.

Register sharing data-flow graphs

e Glven:
— Variable lifetime conflict graph.
 Find:

— Minimum number of registers storing all the
variables.

e Key point:
— Interval graph:
o Left-edge algorithm. (Polynomial-time).

Example of Register sharing data-flow
graphs

We need 3registers

® TIME 1 Ql @2
zZ1\ z2
3

TIME 2 Q
z3 . %y 23| |z4
TIME 3

/
s [
TIME 4 Compatibility
: graph
@ Conflict (©)

Hierarchical sequencing graphs graph

Register sharing
general case

e |terative constructs:
— Preserve values across iterations.
— Circular-arc conflict graph:
« Coloring is intractable.
» Hierarchical graphs:
— General conflict graphs:
« Coloring is intractable.

e Heuristic algorithms.

Conflict

~ <@ -
graph
o
Y
I"‘ llllllllllllllllllll
I I A T R ——
E sSunnn L-E
L = :
TIME 1] ‘ 10 ;
[t
z1 z2 3. 1 a
| 11 1| |z :
TIME 2 b z . y X
z3 z4 e E
4 dx T 13 14 E
TIME 3 " *
y =
x\ | :
z z6 zZ7 z
- k! 3 z5 z6 Z7 E
TIME 4 E
Y
u$lll ? u Y E
Tonme =
; |||||||||||||||||||||| E
Tonnmnnnnnn RN RN RRRNRRRRRRNRRRRRREE =
(a) (b)

Hierarchical sequencing graphs

This leads to circular conflict graph

Example continued
Variable-lifetimes and circular-arc

conflict graph

z4 z3

N

circular-arc Compatibility graph
conflict graph

Multiport-memory binding

o Find minimum number of ports to access the required
number of variables.

e Variables use the same port:
— Port compatibility/conflict.
— Similar to resource binding.

* Variables can use any port:

— Decision variable x ;, i1s TRUE when variable | iIs accessed at
step |.

— Optimum:

1<l</\—|—l

Multiport-memory binding

e FInd maximum number of variables to
be stored through a fixed number of ports
a.

—Boolean variables {b;,1=1,2,...,n .}
— max)4 b; such that

— Yt by <a 1=1,2,...,A+1

Example formulation for Multiport-memory binding

IT'me—stepl ; r3=ri1+1r2; ri2=rnr1

IT'me —step 2 . rs =7r3+7T4 ; "7 =T3%T6 ; T13 = T3
Time—step 3 . rs=r3+r5; ro=r1+r7; r11 =r10/75
Tvme —step 4 . ria=r11/A\Trg ; 15 =712V 9

T''me —step 5 . r1 =714 ; T2 =T15

max > .2, b; such that

b1 + b2 - b12

b3 + b4 + bs + b6 - b13

b1 + 03 + bs + b7 + bs + b9 - - 011
bg + bg + b11 + b12 b1s

b1 + b2 - - b1s

Example solution for Multiport-memory binding

e Oneporta=1:

- {b,,b,, by} non-zero.

— 3 variables stored: v, , v, , V4.
e Two ports a = 2:

— 6 variables stored: v, , v, , V¢,V o,V 5,V
e Three ports a = 3:

— 9 variables stored: v , , vV, ,V,, Vs, Vg,Viy, Vi,
Viiz, Vg

Bus sharing and binding

Find the minimum number of busses to
accommodate all data transfer.

Find the maximum number of data transfers for
a fixed number of busses.

Similar to memory binding problem.
ILP formulation or heuristic algorithms.

1 2
TIME 1 Q @
z1 zi
3 g z1 z2
TIME 2 @
z Z rd

G—E=
\
TIME 3 zzb 4 ? !
|
One bus: Example of
— 3 variables can be transferred. .
| Bus sharing
Two busses: d bind;
— All variables can be transferred. an in mg

Scheduling and binding
Resource dominated circuits

o Area and delay of resources dominate.

o Strategy:

— Scheduling under area constraints:
 Minimize latency.

— Binding.
 Share resource within bounds.

e Decoupling between scheduling and binding.

Scheduling and binding
General circuits

o Area and delay influenced by:
— Sparse logic,
— Wiring,
— registers and control circuit.

* Binding affects the cycle-time:
— It may invalidate a schedule.

e Scheduling after binding:
— Binding under restrictive assumptions.
— Time-frame of operations not yet known.

Scheduling and binding
approaches

Concurrent scheduling and binding.
— ILP model- exact.
— Some heuristic algorithms.

Scheduling before binding:
— Good for DSP application.

Binding before scheduling:
Iterative techniques.

Module selection problem

 Library of resources:

— More than one resource per type.
e Example:

— Ripple-carry adder.

— Carry look-ahead adder.
* Resource modeling:

— Resource subtypes with:
* (area, delay) parameters.

Module selection solution

e |[LP formulation:

— Decision variables:
 Select resource sub-type.
o Determine (area, delay).

e Heuristic algorithms:

— Determine minimum latency with fastest
resource subtypes.

— Recover area by using slower resources on non-
critical paths.

.,

Example of
Module
selection
solution

First multiplier

Second multiplier

o Multipliers with: | area
— (Area, delay) = (5 1) and (2,2)

» Latency bound of 5. Second ALU-

Second Example of " B
Module selection solution for

the same problem MC 12 5 a @
TIME 1 \(E ;) f

o [Latency bound of 4
(which is better!).

— Fast multipliers for {v, ,
V, , V3}.

— Slower multipliers can
be used elsewhere.

 Less sharing.

e Minimum-area design
uses fast multipliers

only. 2 multipliers
2 ALUs

summary

Resource sharing is reducible to coloring/cligue-
covering.

Simple for flat graphs.

Intractable, but still easy in practice, for other
graphs.

More complicated for non resource-dominated
circuits.

Extension: module selection.

