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OutlineOutline

• Resource-dominated circuits.
– Flat and hierarchical graphs.
– Functional and memory resources.

•  ExtensionsExtensions.
– Non resource-dominated circuits.
– Concurrent scheduling and binding.
– Module selection.



Allocation and bindingAllocation and binding
• Allocation:

– Number of resources is available. Which resource for
which operation.

•  Binding:
– Binding is a relation between operations and resources.

•  Sharing:
– Many-to-one relation. Several operations share one

resurce
•  Optimum binding/sharing:

– Minimize the resource usage.



BindingBinding

• Limiting cases of binding:
– Dedicated resources:

•  One resource per operation.
•  No sharing.

– One multi-task resource:
•  ALU.

– One resource per type.



Optimum sharing problemOptimum sharing problem

• We start from scheduled sequencing
graphs.
– Operation concurrency is well defined.

• We consider operation types
independently.
– Problem decomposition.
– Perform analysis for each resource type.



Compatibility graphs and conflict graphsCompatibility graphs and conflict graphs

•• Operation compatibility:Operation compatibility:
– Same type.
– Non concurrent.

•  Compatibility graph:
– Vertices: operations.
– Edges: compatibility relation.

•  Conflict graph:
– Complement of compatibility graph.

These are the same compatibility and incompatibility
graps as we discussed already many times



Multiplier         ALU

Examples ofExamples of
Compatibility graphsCompatibility graphs
and conflict graphsand conflict graphs

Compatibility graphs

Observe that 1 and 2 are not compatible since
they are executed concurrently

Compatibility graph isCompatibility graph is
a complement of aa complement of a

conflict graphconflict graph

We start from scheduled



Algorithmic solution toAlgorithmic solution to
the optimum binding problemthe optimum binding problem

• Compatibility graph.
– Partition the graph into a minimum number of cliques.
– Find clique cover number κκκκκκκκ(G(G++ ). ).

•  Conflict graph.
– Color the vertices by a minimum number of colors.
– Find chromatic number γγγγγγγγ(G(G--))

• NP-complete problems - Heuristic algorithms.



Examples of using conflict andExamples of using conflict and
compatibility graphs for bindingcompatibility graphs for binding

•

resources

x, s, z

y,t

We start from scheduled



Perfect graphsPerfect graphs
• Comparability graph:

– Graph G(V, E) has an orientation G(V, F) with the
transitive property.

– (v i , v j ) ∈∈∈∈  F ∧∧∧∧  (v j , v k ) ∈∈∈∈  F )  =>  (v i ; v k ) ∈∈∈∈  F.
•  Interval graph:

– Vertices correspond to intervals.
– Edges correspond to interval intersection.
– Interval graphs are a subset of chordal graphs:

•  Every loop with more than three edges has a chord.

What is a What is a PerfectPerfect graph? graph?



Data-flow graphsData-flow graphs
( at sequencing graphs)( at sequencing graphs)

• The compatibility/conflict graphs have special
properties.
– Compatibility:

•  Comparability graph.

– Conflict:
•  Interval graph.

•  Polynomial time solutions:
– Golumbic's algorithm.
– Left-edge algorithm.



•We start from scheduled

This graph shows both scheduling
order and compatibility

This graph is a comparability graph

Example ofExample of
compatibility graphcompatibility graph
being a comparabilitybeing a comparability
graphgraph

Solution
Latency = 4
Multipliers = 2
ALU = 2

Solution
Latency = 4
Multipliers = 2
ALU = 2

1,3,7 = Multiplier

6,8 = Multiplier

10,11,4,9 = ALU

5 = ALU

Solution is not
unique, 4,10,11,5



•

We start from scheduled Example of using conflictExample of using conflict
graph which  is angraph which  is an

interval graphinterval graph

{1,2,10}

{3,6,11}

{4,7,8}

{5,9}

As we see,
1,2,3,6,7,8 can
have the same
color grey

Solution
Latency = 4
Multipliers = 2
ALU = 2

{1,3,7}=multiplier

{2,6,8}=multiplier

{4,5,10,11}=ALU

{9}=ALU



Left-edge algorithm for coloring intervalLeft-edge algorithm for coloring interval
graphgraph

• Input:
– Set of intervals with left and right edge.

•  Rationale:
– Sort intervals by left edge.
– Assign non overlapping intervals to first color using

the sorted list.
– When possible intervals are exhausted increase color

counter and repeat.



Left-edge algorithmLeft-edge algorithm
LEFT_EDGE(I) {
               Sort elements of I in a list L in ascending order of li ;
              c = 0;
              while (some interval has not been colored ) do {
                            S =φφφφ ;
                            r = 0;
                            while (∃∃∃∃ s ∈∈∈∈  L such that l s > r) do {{
                                    s = First element in the list L with l s > r ;
                                   S = S ∪∪∪∪  { s } ;
                                    r = rs ;
                                   Delete s from L;
                                     }}
                          c = c +1;
                          Label elements of S with color c;
                   }
}



Example ofExample of
Left-edgeLeft-edge
algorithmalgorithm

Interval graph

Coloring of interval graph

Last slide
for today



ILP formulation of bindingILP formulation of binding
• Boolean variables b  irir

– Operation i i bound to resource r r.
•  Boolean variables x  i li l

– Operation i i scheduled to start at step l l.



Hierarchical sequencing graphsHierarchical sequencing graphs

• Hierarchical conflict/compatibility graphs.
– Hierarchical graphs are easy to compute.
– Hierarchical graphs prevent sharing across

hierarchy.
•  Flatten hierarchy.

– Flattening the hierarchy produces bigger graphs.
– It also destroys nice properties.



Example of Example of HierarchicalHierarchical
conflict/compatibility graphsconflict/compatibility graphs

•

Conflict graph
Compatibility graphHierarchical

sequencing
graphs



•

Example of Example of HierarchicalHierarchical
conflict/compatibility graphsconflict/compatibility graphs

Conflict
graph

Compatibility
graph

Hierarchical sequencing graphs

c and d are not compatible
because executed in parallel

a and b are not compatible



Register binding problemRegister binding problem
• Given a schedule:

– Lifetime intervals for variables.
– Lifetime overlaps.

•  Conflict graph (interval graph).
– Vertices <--> variables.
– Edges <--> overlaps.
– Interval graph.

•  Compatibility graph (comparability grapcomparability graphh).
– Complement of conflict graph.



Register sharing data-flow graphsRegister sharing data-flow graphs

• Given:
– Variable lifetime conflict graph.

•  Find:
– Minimum number of registers storing all the

variables.
•  Key point:

–  Interval graph:
•  Left-edge algorithm. (Polynomial-time).



Example of Register sharing data-flowExample of Register sharing data-flow
graphsgraphs

•

Compatibility
graphConflict

graphHierarchical sequencing graphs

We need 3registers



Register sharingRegister sharing
general casegeneral case

• Iterative constructs:
– Preserve values across iterations.
– Circular-arc conflict graph:

•  Coloring is intractable.

•  Hierarchical graphs:
– General conflict graphs:

•  Coloring is intractable.

•  Heuristic algorithms.



•

Hierarchical sequencing graphs

Example of Example of Register sharingRegister sharing
general casegeneral case Conflict

graph

This leads to circular conflict graph



Example continuedExample continued
Variable-lifetimes and circular-arcVariable-lifetimes and circular-arc

conflict graphconflict graph

•

circular-arc
conflict graph

Compatibility  graph



MultiportMultiport-memory binding-memory binding
• Find minimum number of ports to access the required

number of variables.
•  Variables use the same port:

– Port compatibility/conflict.
– Similar to resource binding.

•  Variables can use any port:
– Decision variable x il is TRUE when variable i is accessed at

step l.

–– Optimum:Optimum:



MultiportMultiport-memory binding-memory binding

• Find maximum number of variables to
be stored through a fixed number of ports
aa.
– Boolean variables {b i , i = 1, 2,…, n var}:

•  Variable i is stored in array.



Example formulation forExample formulation for Multiport Multiport-memory binding-memory binding

•



Example  solutionExample  solution
• One port a = 1:

– {b 2 , b 4 , b 8 } non-zero.
– 3 variables stored: v 2 , v 4 , v 8 .

•  Two ports a = 2:
– 6 variables stored: v 2 , v 4 , v 5 , v 10 , v 12 , v 14

•  Three ports a = 3:
– 9 variables stored: v 1 , v 2 , v 4 , v 6 , v 8 , v 10 , v 12 ,

v 13 , v 14

Example solution forExample solution for Multiport Multiport-memory binding-memory binding



Bus sharing and bindingBus sharing and binding

• Find the minimum number of busses to
accommodate all data transfer.

•  Find the maximum number of data transfers for
a fixed number of busses.

•  Similar to memory binding problem.
•  ILP formulation or heuristic algorithms.



•  One bus:
– 3 variables can be transferred.

•  Two busses:
– All variables can be transferred.

Example ofExample of
Bus sharingBus sharing
and bindingand binding



Scheduling and bindingScheduling and binding
Resource dominated circuitsResource dominated circuits

• Area and delay of resources dominate.
•  Strategy:

– Scheduling under area constraints:
•  Minimize latency.

– Binding.
•  Share resource within bounds.

•  Decoupling between scheduling and binding.



Scheduling and bindingScheduling and binding
General circuitsGeneral circuits

• Area and delay influenced by:
– Sparse logic,
– wiring,
– registers and control circuit.

•  Binding affects the cycle-time:
– It may invalidate a schedule.

•  Scheduling after binding:
– Binding under restrictive assumptions.
– Time-frame of operations not yet known.



Scheduling and bindingScheduling and binding
approachesapproaches

• Concurrent scheduling and binding.
–  ILP model- exact.
–  Some heuristic algorithms.

•  Scheduling before binding:
–  Good for DSP application.

•  Binding before scheduling:
•  Iterative techniques.



Module selection problemModule selection problem

• Library of resources:
– More than one resource per type.

•  Example:
– Ripple-carry adder.
– Carry look-ahead adder.

•  Resource modeling:
– Resource subtypes with:

• (area, delay) parameters.



Module selection solutionModule selection solution

• ILP formulation:
– Decision variables:

•  Select resource sub-type.
•  Determine (area, delay).

•  Heuristic algorithms:
– Determine minimum latency with fastest

resource subtypes.
– Recover area by using slower resources on non-

critical paths.



Example ofExample of
ModuleModule
selectionselection
solutionsolution

• Multipliers with:
–  (Area, delay) = (5,1) and (2,2)

•  Latency bound of 5.

First multiplier

Second multiplier

Second ALU

First ALU

area



Example (2)Example (2)

•  Latency bound of 4
(which is better!).
– Fast multipliers for {v1 ,

v2 , v3}.
– Slower multipliers can

be used elsewhere.
•  Less sharing.

•  Minimum-area design
uses fast multipliers
only.

Second Example ofSecond Example of
Module selection solution forModule selection solution for
the same problemthe same problem

2 multipliers

2 ALUs



SummarySummary
• Resource sharing is reducible to coloring/clique-

covering.
•  Simple for flat graphs.
•  Intractable, but still easy in practice, for other

graphs.
•  More complicated for non resource-dominated

circuits.
•  Extension: module selection.


