The Fourier Transform

Fourier Transform: Overview

* Why FT is useful
e 1D FT, DFT, 2D DFT
« FT properties

 Linear Filters

Why Fourier Transform ?

e FT helps to analyze
— Sampling artifacts
— Linear Filters
» Some interesting image transformation

« Nice properties for pattern matching or
classification

FT maps a function to its
frequencies
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FT decomposes a function into a weighted
sum of sinusoidal functions
=> We can reconstruct the original function:

p(t) = ;TIOFp(a))e‘”"da)




Representing FT

* FT is complex

« Representation:
— Real / Imaginary
— Magnitude / Phase

Maghitude

Phase

Discreet Sampling

Sampling at low

Sampling at high
frequency

frequency

1-D Discreet Fourier Transform

* Assumptions:

— Sampling criterion satisfied
— Sampled function replicates to infinity
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Sampling a rotating wheel

« Oversampled rotating wheel:
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e Same wheel, undersampled:

CRRROOOO @

SUFFICIENT SAMPLING RATE

SAMPLING ARTIFACTS




INSUFFICIENT SAMPLING
RATE

NYQUIST THEOREM

* The sample frequency must be at least
twice the highest frequency present for a
signal to be reconstructed from a sampled
version.

2-D Discrete Fourier Transform

Decomposition into sinusoidal

functions
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Bracewell, chap. 11
HORIZONTAL AND VERTICAL
2D Pulse FT

Square Pulse 2D sinc function

STUCTURES

2 pixel wide stripes:
¢ Vertical structures
« Half the max freq.

Horizontal text:
¢ Horizontal structures
« Line spacing




PHASE AND MAGNITUDE

Magnitude of the transform

Phase of the transform

PHASE AND MAGNITUDE

Magnitude of the transform

Phase of the transform

SWITCHING
PHASE AND MAGNITUDE

) §

e Zebra phase « Cheetah bhase
» Cheetah magnitude » Zebra magnitude

FT is Shift Invariant

' _ After shifting:
‘, ? + Magnitude
i/ stay constant
' A « Phase

changes

Rotation

* FTofa
rotated image
also rotates

« Image
replication do
not replicate
for every
angle.

Spectral Analysis

The magnitude of the DFT captures the
main orientations in the image.




Frequency Scaling

3

 Spacial
compression
* Frequency

FT Interpolation

Crigral curve
Interpolated curve |

increase ]
aal | 1. Compute DFT
2. Add zeros at both
0t ; ends
04 3. Inverse DFT
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Superposition Removing Noise

Flp, + p,]=Flp, ]+ Flp,]

http:/local.wasp.uwa.edu.au/~pbourke/other/imagefilter/index.html

Frequency Cut

Reconstruction




Multiplication In Fourier Domain

Multiplication in Fourier Domain can
suppress unwanted frequencies.

Removing high freq = smoothing

Fast Fourier Transform
{87,6,54,321}={8,06,04,,2,0}+{0,7,050301}

{8642} —>{AB,C,D}
{8.0,6,0,4,0,2,0}—{A B,C, D, A B,C, D} (Stretchirg Theorem)

{7531 —{P,Q,R,S}
{7,05,03,010} > {P,Q,R,S,P,Q,R, S} (Stretchirg Theorem)
07,050,301} — {P,WQW?RW?S,W*P,W*QW°RW'S}
withW = exp(-2i/8) (ShiftTheorem)

Bracewell, Chﬂ). 11

Fast Fourier Transform (FFT)
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where=F,,., and F,, are DFTs over N/2 points from0to M -1.

Fast Fourier Transform

Since wy = wy and myy, =—,, We can write
F (0 % 2 (Fua)+ 0 P 1)

F (M) (R ()= 0 P (00)

We can compute an A~point DFT by:
computing Feer and Fous for u from 0..M-1,
Adding them to obtain F for m from 0..N-1.

- Total number of required multiplications is

T(n)=2T(n-1)+2"Y =20V og,(2") =1/ 2N log,(N)
with N=2"

C CODE FOR THE 1D CASE
DFT VS FFT

Computational Complexity in
the 1D Case

F () =3 e 0

Ordinary Fourier Transform:
— O(N?) complexity

Fast Fourier Transform :

— O(N log, (N)) complexity




2-D FFT Complexity
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We can compute a two-dimensional FT by
performing a one-dimensional FFT for each column of Ax,)),

performing a one-dimensional FFT for each row on the
resulting values.

This requires a total of 2 &/ one dimensional transforms

— O(N?log, (N)) complexity

Filters

« A black box transforming an image

Linear Filters: Definition

« Does not depend on image location
o F(+J)=F()+F(J)
o F(kl) =kF(1)
* How to define such a Filter ?
— With the impulse response.
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Convolution

Convolution Kernel * Weighted pixel

sum within a

neighborhood
Computed * Convolution
Pixel operator: I**H
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Original Image | Mask Pulse Response

Smoothing by Averaging

Constant Kernel

1 u=i+k v=j+k

Rij = o 2 Iuv
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Transfer Function

Convolution and Fourier Transform

» A convolution in spatial domain is a multiplication
in Fourier domain

1-D Convolution: p, (t)*p,(t) = .E; p.(z)p,(t—7)dr
Flp,()*p.®]= ﬁo(fw p.(0)p,(t 7r)dr)e‘"”‘dt -
=[ ([ patt=0e=atp.()dr =] Fo,(0)p,()e™dr

=Fp,(@)[ pi(r)e™dr =Fp,(@)Fpy(w)

Gaussian Smoothing

9,(x,y) = exp(—(x* +y?)/ 20?)

27o?

A Gaussian FT is a Gaussian

63x63 Gaussian Kernel Its Fourier Transform

Gaussian Blur VS Averaging

Convolution & Fourier

« FT can compute a convolution:

* |t is easier to understand a convolution
kernel in frequency domain
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SAMPLING WITHOUT
SUBSAMPLING ARTIFACTS SMOOTHING
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\ « Particularly e
noticeable in R

high frequency
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A # areas, such as

on the hair.
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Images sampled at every other pixel

Magnitude spectra of these images

SMOOTHING AS
LOW-PASS FILTERING

Problem:
« High frequencies lead to trouble with sampling.

Solution:
* Suppress high frequencies before sampling by

1. multiplying DFT of the signal with something
that suppresses high frequencies

2. convolving with a low-pass filter

SAMPLING USING A GAUSSIAN
OF VARIANCE 2 TO SMOOTH

256x256  128x128 64x64 32x32 l6x16

Images sampled at every other pixel

Magnitude spectra of these images




LOSS OF DETAILS
BUT NOT ARTIFACTS

details are lost as
high frequencies
are progressively
removed.

{ _ éNoaIiasing but
]

Fourier Transform in Short

« Computation:
— With Fast Fourier Transform

— Complexity: O(N?log,(N))

» Applications:
— Convolution computation
— Linear Filters design
— Correlation: template matching
— Texture Classification

Exercises: Which is which ?

Convolution
-1 01
Consider the followingmask:M=-1 0 1
-1 01

* What would give convolving M with...
— A constant white image (1) ?
— An image with only horizontal lines ?
— A black image (0), except a single white pixel (1) ?
— An black image (0), except a 5 by 5 white square (1) ?

More Exercises...

* You can try in ImageJ:
— Load an image
— Duplicate it
— Process/Filter/Gaussian Blur
— Process/FFT/FFT or Inverse FFT
— Compare original and blured FT

10



