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ABSTRACT

Typically, large-scale optimistic parallel simulations will
spend 90% or more of the total execution time forwar
processing events and very little time executing rollback
In fact, it was recently shown that a large-scale TCP mod
consisting of over 1 million nodes will execute without
generatingany rollbacks (i.e., perfect optimistic execution
is achieved). The major cost involved in forward executio
is the preparation for a rollback in the form of state-saving
Using a technique calledreverse computation, state-saving
overheads can be greatly reduced. Here, the rollback op
ation is realized by executing previously processed even
in reverse. However, events are retained until GVT swee
past. In this paper, we define a new algorithm for realizin
a continuum of reverse computation-based parallel simul
tion systems, which enables us to relax the computing
GVT and potentially further reduces the amount of memor
required to execute an optimistic simulation.

1 INTRODUCTION

As originally defined by Jefferson (1985), an optimistic
parallel simulation will allow logical processes (LPs) to
detect, rollback and cancel incorrectly processed and
scheduled events, and then resume normal forward eve
processing. Operationally, large-scale optimistic parall
simulations will spend 90% of execution time going forward
and very little time executing rollbacks. In fact it was
recently shown that a large-scale TCP model consisting
over 1 million nodes will execute without generatingany
rollbacks (Yaun et al. 2003).

Furthermore, most rollbacks tend to be short in dis
tance. Applying the principle of executing the common cas
fast, several rollback algorithms, such as Incremental Sta
Saving (Gomes 1996) and Infrequent State-Saving (Lin
and Preiss 1991; Lin et al. 1993) and Lookback (Che
and Szymanski 2003) have reduced either the preparat
.
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required for a rollback or relaxed the conditions under whic
a rollback may occur, thus realizing faster execution.

Forward execution has two significant overheads a
sociated with preparing for rollback. First, each logica
process (LP) must store substantial amounts of data to p
pare for a rollback, resulting in many RAM accesses. Thi
memory must be reclaimed during execution otherwise larg
simulations would require inordinate amounts of memory
Because optimistic protocols only reclaim the storage th
is no longer needed, Global Virtual Time (GVT) must be
computed, which is a lower bound on all unprocessed even
in the system. To maintain efficient execution (i.e., lowe
memory overheads), GVT is re-computed very often. GVT
is determined by the timestamp of the “slowest” LP. An
efficient algorithm, such as Mattern’s (1993), requires O(N
messages for N processors.

In the original Time Warp algorithm, every LP would
store its entire state before executing each message. Ot
techniques, such as Incremental State Saving (Gomes 199
Infrequent State Saving (Lin and Preiss 1991), Rollbac
Relaxation (Umamageswaran et al. 1998) and Lookbac
(Cheng and Szymanski 2003) are “state-based” approach
to reducing these costs.

In this article, we investigate an alternative computation
based technique calledreverse computation. Here, mod-
els are able to execute both forward and backward
simulated time. We divide reverse computation mode
into two classes:time-proportionate and perfect. Time-
proportionate reverse computation (TiPRC)(Frank 1999)
stores only the minimum set of control information gen
erated by the forward processing of an event. One ca
view this control information as the “entropy” produced by
the processing of an event. In TiPRC simulations, revers
execution is limited by how much garbage is produced
Once memory is exhausted, the garbage must be reclaim
before forward execution can resume, eliminating the po
sibility of reversing to the beginning. This technique is
used to support the “undo” operation in optimistic paral
lel simulation. TiPRC has been shown to reduce the sta
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memory requirements of optimistic simulations by a facto
of 100 and increased the overall speedup by a factor of
when compared to classic state-saving or logging techniqu
(Carothers, Perumalla and Fujimoto 1999).

Perfect reverse computation (PRC)is a radical exten-
sion of TiPRC that produces no effective “entropy” in the
forward or reverse processing of an event, thus allowing t
simulation to run arbitrarily long in a constant amount o
space. Our hypothesis is that under PRC, events in the o
mistic simulation can be immediately committed. Instead o
“rolling events back,” simulation objects shift from forward
processing to reverse processing. The immediate advant
of this methodology is that global virtual time (GVT) calcu-
lations and fossil collection (i.e., garbage collection) are n
longer needed. Thus, PRC, under certain conditions, ho
the promise of allowing large-scale network models to sca
to much larger processor configurations than TiPRC-bas
parallel simulation systems.

The contribution of this paper is to define and propertie
for the PRC class as well as an algorithm for realizin
a continuum of PRC to TiPRC-based parallel simulatio
systems. In the next section, we describe more fully the
computation classes and their respective conditions.

2 REVERSE COMPUTATION CLASSES AND
CONDITIONS

2.1 TiPRC

To illustrate the TiPRC approach, we begin with a simpl
example. Consider a simple model of a non-preempti
ATM multiplexor, containing a buffer of size B. Suppose
we are interested in measuring the cell loss probability, a
the delay distributions on the queue (Perumalla, Cooper a
Fujimoto 1996).

The state of the system might be as shown in Figure 1 (
Theqlen variable is used to keep track of the current buffe
occupancy;sent and lost are variables that accumulate
statistics respectively of the total number of cells transferre
to the output link and the total number of cells droppe
because of a full buffer. The arraydelays measures the
number of cells experiencing a given amount of delay, whic
in combination with thesent counter gives the cell delay
distribution.

The cell arrival event handler processes newly arrivin
cells, as shown in Figure 1 (b). Upon a cell arrival, if the
queue has no more room, then the counterlost is incre-
mented representing that the cell has been dropped. O
erwise, the array elementdelay[qlen] is incremented
representing that one more cell experienced a delay ofqlen
emission time units followed by an increment toqlen which
represents that a cell has been added to the queue.

Now, to support TiPRC, we have also added a sing
bit variable to the state of the multiplexor. This variable
-

e

-

int qlen;
int sent;
int lost;
int delays[B];

bit b1;

if( qlen < B )
{
b1 = 1;
delays[qlen]++;
qlen++;
}

else
{
b1 = 0;
lost++;
}

if( b1 == 1 )
{
--qlen;
--delays[qlen];
}

else
{
--lost;
}

(a) State (b) Forward code (c) Reverse code

Figure 1: ATM Multiplexor Model with TiPRC

is used to note whether theif statement was executed or
not (i.e.,b1 = 1 if qlen < B and 0 otherwise).

If we look carefully at the cell arrival event, we can see
that the state of the original model is fully captured by the
bit variableb1 . In other words, the state-trajectory setS
of the variables{qlen, sent, lost, delays} has a one-to-one
correspondence with that of the setS′ = {b1}. The point
here is that the values of the variables inS can be easily
recovered based only on the value ofS′. To recover, we can
run the event computations backward, which will restore
the variables ofS to their before-computation values. More
abstractly, the bit variableb1 is used to make the original
model reversible. Indeed, it is easy to find the reverse cod
for each of the event handler of the modified model. Fo
example, the reverse code shown in Figure 1 (c) perform
a perfect undo of the operations of the cell arrival even
handler given in Figure 1 (b). Thus, it is sufficient to
maintain the history of the bitb1 , instead of the whole set
of state variablesS of the original model.

2.2 TiPRC Properties

We can make some observations to understand some of t
properties of of TiPRC models.

• Property 1: The majority of the operations that
modify the state variables are “constructive” in na-
ture. That is, the undo operation requires no history
Only the most current values of the variables are
required to undo the operation. For example, op
erators such as++, −−, + =, − =, ∗ = and
/ = belong to this category. The∗ = and / =
operators require special treatment in the case o
multiply or divide by zero, and overflow/underflow
conditions. More complex operations such ascir-
cular shift (swapbeing a special case), and random
number generation also belong here.

• Property 2: The complexity of the code is such
that the “control state” occupies less memory than
the “data state” of the variables. In cases where
the code is equally or more complex than the dat
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state, reverse computation will not pay-off relativ
to the previous mentioned state-based approach

• Property 3: The non-reversibility of the individual
steps that compose a computation do not necessa
imply that the computation, when taken as a whol
is not reversible.

• Property 4: Regardless of the reversibility of LP
state, messagesmustbe retained in order to suppor
reverse event processing.

If property 1 is not satisfied in the model because
the presence of non-constructive operations such as p
assignment or modulo computation, the reverse com
tation method can in fact degenerate to the conventio
state-saving operations. We call such non-constructive
erationsdestructive assignments. A straightforward method
to reverse a destructive assignment is to save the old cont
of the left-hand-side as a record of the “control informa
tion” for that assignment statement, which degenerates
state-saving.

If property 2 is not satisfied because the code is “to
complex” (i.e., the amount of control state exceeds the d
state), we can use traditional state-saving techniques.

Queuing network models are an excellent example
the domain of models in which the preceding two properti
are satisfied to a large extent. Consequently, we have sh
that TiPRC is well suited for the optimistic simulation o
large-scale network models. We believe the same will
true of PRC.

Property 3 suggests that even if the individual steps
of a computation are not efficiently reversible (i.e., either
property 1 or 2 is violated), then one should look to a
higher-level to see if the computation is not reversible. As
example, L’Ecuyer’s Combined Linear Congruential RN
(L’Ecuyer and Andres 1997) is perfectly reversible withou
resorting to any state-saving despite making use of individ
operations such as integer division that result in bit lo
(Carothers, Perumalla and Fujimoto 1999)

Property 4 limits how far a parallel simulation can b
reversed under TiPRC. In particular, a complete set of eve
must be retained in order to undo event processing. Th
as time moves forward, the amount of space thatmustbe
retrained grows. Because space in practice cannot g
without bounds, the messages are what makes this clas
reverse computation only time-proportionate. So then,
it possible to relax that requirement and ultimately suppo
PRC? As we will show in the next section, it is possible
certain properties within the model hold.

2.3 Perfectly Reversible Computation

As previously discussed, PRC is an extension of TiPR
which generates no entropy in the form of information los
Recall, that TiPRC generates entropy in the form of cont
information (i.e., records which branch was taken or ho
.
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many times through a loop plus incrementally state-sav
any destructive assignments). This control information wa
stored in a bit field. PRC has no such bit field. PRC i
able to execute forward or backward based solely on t
current state of the system.

To support PRC in general, a program cannot pro
duce any information loss. This means PRC should allo
arbitrarily-long reversible computations through simulate
time consumingonly a constant memory. This is the funda-
mental difference between PRC and TiPRC. TiPRC creat
garbage in the form of control bits and message data, th
limiting reverse execution over a range of simulated time
Once the garbage bits are collected, TiPRC cannot reve
beyond that point in the computation. This constant amou
of memory requirement leads to two additional propertie
that must hold for PRC to be supported:

• Property 5: a set of independent “source” LPs
must be defined which generate or push messag
into the network of LPs. These messages a
generated based on some stochastic distributio
This set of source LPs must never receive even
from other LPs. They strictly schedule events to
other LPs.

• Property 6: once a message leaves a source L
the path it takes to the final destination or consume
LP should not contain a cycle.

Property 5 is required because this set of LPs is capab
of fully producing the input state use by all other LPs. That i
to say, should an LP need to rollback further than its histo
window allows, it can request past messages be re-sent
this source set of LPs. Because those LPs are independ
they are completely reversible because the random num
generator is perfectly reversible as described in property

Property 6 suggests that the path a message takes du
its processing is well defined within the model and does n
result in LPs being re-visited. We can relax this constrain
by providing a full-storage LP (i.e., stores all message
and state) within the cycle. While this relaxation shifts th
system back to a TiPRC execution model, we believe th
in practice this is a small memory overhead.

3 TiPRC/PRC ALGORITHM

In this section, we describe the details of our TiPRC/PR
algorithm. The algorithm is broken down into series o
functions which are shown in Figures 2–8. We begin wit
our terms and definitions.

3.1 Terms and Definitions

We introduce the concept of reverse-processing a messa
Suppose processing a messageM takes the LP from stateS to
stateS′, producing messagesP1...Pn. Reverse-processing
messageM will take the LP from stateS′ to stateS,
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// inserts message M into an already sorted list,
// B. MAX_DECREASE is the maximum number of
// messages deleted at any one time.
enqueue( message_buffer B, message M)

{
insert M into B, maintaining sorted order;
for( i = 0; i < MAX_DECREASE; i++)

{
if( (timestamp of M) -

(timestamp of 2nd smallest message of B)
<= lookback)

pop smallest message from B;
else

break;
}

}

Figure 2: Lookback Algorithm

producing messagesPn...P1. It is only allowable to reverse-
process messageM from stateS′, any other state would
result in an incorrect execution.

When in a large rollback (also called a ’reversal’), a
LP will pass around large amounts of messages, in t
form of multi-messages. A multi-message is a linked li
of messages, all with the same source and destination
and organized by decreasing timestamp, with the larg
timestamp at the head of the list. These properties allow
to take a set of multi-messages and create a total list fo
destination LP in timestamp order by performing a merg
which consumesO(N) time to sortN messages, assuming
relatively few chains compared to the number of messag

The maximum offset of a message is the largest possi
difference between the timestamp of an incoming messa
and the timestamp of the outgoing message it generates.
normal (Gaussian) distributions, this is twice the mean. F
other distributions, this may be infinity a with very smal
probability. For these cases, treat the maximum offset as
largest offset with reasonable probability. The maximu
offset of an LP is the largest maximum offset of all th
message types it handles.

The time of a rollback is the "rollback window". So,
if an LP is at time T1 and has to rollback to time T0
the rollback window is {T1 to T0}. When we perform a
large rollback, we require that some LPs have stored,
can recreate, messages back to GVT. These are called
storage LPs’, and the number of LPs between them is
frequency of full storage LPs.

In reversing, we must send instructions between L
and Processor Elements (PEs). Instructions are similar
messages, except they are stored in a separate place,
read separately in the scheduler (see Figure 3).

3.2 Lookback

Each LP stores messages locally to execute a small rollba
The window of this storage is called the ’lookback’. Pleas
note, this formulation of lookback similar to the Lookbac
protocol described in (Chen and Szymanski 2003). The
lookback is used as a relaxation condition for determinin
e
t
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scheduler()
{
retrieve, sort and execute PE instructions,

ordered as follows;
switch( current PE instruction type)

{
case Reversal_Starting:

increment counter
for number of LPs reversing;

case Reversal_Finishing:
decrement the number of LPs

on this PE that are reversing;
if( no LPs are still reversing )

for( each LP on this PE)
finish_reversal( LP );

}
retrieve, sort and execute reversal instructions;
resend_messages(L, T);
retrieve resent messages, and

insert in destination LP’s queue;
if( Destination LP L received a resend

for each request it sent)
{
if( L is the originator of the large rollback)

execute_large_rollback(L);
else

rev_process(L);
}

if( any LP on this PE is still reversing)
go to top of scheduler;

if( another large reversal is pending)
execute it;

retrieve all other normal pending event messages;
check each message for cancellation
execute messages, checking for rollbacks;
if( rollback occurs)

start_rollback(LP, time);
}

Figure 3: Modified Optimistic Simulation Engine Even
Scheduler

when an LP should rollback. Here, it is used as a stora
window which is defined as a certain number of messag
or it can be all messages over a certain amount of simulat
time. The latter is preferable, because rollback likeliho
is related to the simulation time and not the number
messages.

The actual size of the lookback will vary dependin
on the physical specifications of the system, but it must
larger than the maximum offset of a message, otherw
one message can clear the memory. If the simulation us
distribution with an infinite maximum offset, then receiving
message at the maximum offset will clear the queue, mak
a large rollback very likely. Similarly, if a simulation uses
distribution with a very large, but very rare, maximum offse
it may be desirable to make the lookback shorter than
maximum offset, resulting in the same problem. To preven
single message clearing the queue, set the maximum num
of messages discarded (MAX_DECREASE) relatively lo
If the message at the maximum offset is not rolled back, ea
of the subsequent messages will also free multiple messa
and soon the message buffer will be the appropriate s
Other degenerations arise when a message buffer is v
small (fewer than 3 messages). By imposing a very sm
minimum number of messages, we can avoid these.
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Observe here, we do not require GVT to free memor
Instead, we can just shorten the lookback on some LPs
free memory. Good candidates would be the LPs that a
farthest back, because they are unlikely to roll back,
those LPs that have an LP with full storage as a source,
their full rollback will be the least expensive. Occasionally
we should calculate GVT to free messages from the LP
with full storage, but because we are storing fewer tot
messages, this calculation will be less frequent.

3.3 Large Rollback

We assume message latency to be low, and the time
process any single message to also be low, which is typic
of network models. We also assume that the layout of th
simulation is known from the start, that is, we know th
possible sources of every LP, and they do not change dur
the simulation.

A rollback begins in the scheduler (see Figure 3), whe
an LP R receives a message with timestamp T smaller th
the current time of R. This callsstart_rollback(R,
T) shown in Figure 4. If R has messages stored local
back to T, it will rollback normally, as in ROSS (Carothers
Bauer and Pearce, 2002). Otherwise, it initiates a lar
rollback, as shown in Figure 5.

As shown by the algorithm in Figure 5, a large rollbac
occurs when local storage is insufficient to handle a rollbac
It requires that we recreate the messages back toT . For
describing this algorithm, assume a simple network mod
with sources, layers of routers in sequence and sinks, w
no loops. The routers are organized in layers, so there is
router which is both upstream and downstream of any oth
router. This is a simplified model, but it easily extends t
more complex systems. In a loop in the message sequen
we require that one LP be full storage in the loop.

R has already checked that it cannot handle the ro
back locally. It now sends out instructions to resend me
sages back to timeT . These instructions go to each of
its sources that have sent it a message within the rollba
window. The scheduler loop catches the instructions, a
calls resend_messages(S, T) shown in Figure 6 on
each sourceS.

If those sourcesS have full storage, they will be able
to fulfill the request. In this case, they call an application
specific function to recreate the messages, or recall the
from storage, and forward them as a multi-message. T
multi-message contains every message fromS to R back to
time T , along with the message immediately before tim
T, as a confirmation that there is nothing missing from
the chain. Reaching a full storage LP is the terminatio
condition for requesting resends, and every chain of sourc
must terminate in a full storage LP.

Any of those sourcesS that do not have full storage
will request messages from their sources. In order to e
o
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// invoked on a primary or 2ndary rollback
start_rollback(lp L, timestamp T)

{
if( L has storage to rollback before T}

rollback locally;
else

{
send PE message ‘‘Reveral_Starting’’;
store the state of L;
for each (source S of L)

if(S sen t L a message with
timestamp >= T )
send a reversal instruction to S;

}
}

Figure 4: Start Rollback Routine

execute_large_rollback(lp L)
{
// invoked when LP L is reversing
// and has all ‘‘resend’’ messages.
// L has multi-messages from it source LPs
// in a local heap sorted by timestamp.
remove messages with timestamp >= current time of L;
for each( message M sent to L )

{
call application-specific function

to reverse-process M;
send returned messages as anti-messages;
if( the multi-message from that source

is exhausted )
{
if( L has rolled back far enough )

{
for each PE

send PE instruction of
type ‘‘Reversal_Finishing’’;

}
else

send a reversal instruction of type
‘‘Resend_More’’ to the exhausted source;

}
}

Figure 5: Routine for Processing Large or Long Rollbac

sure correct ordering of messages, we must process e
messages. The window of the extra messages must e
the maximum offset of the LP, so the request must be
time T − M, whereM is the maximum offset. This is
handled in the same way as the initial request fromR. This
repeats, with an additional offset at each repetition, un
every request reaches an LP with full storage.

When an LP L other thanR has received as many
resend multi-messages as it sent requests, the sched
calls rev_process(L) shown in Figure 7.L reverse-
processes each message, in order of decreasing timest
The output messages are stored in a windowed queue, so
by timestamp. We use a windowed queue because m
messages have a random offset, that is, they are schedul
a random time in the future, and we need to ensure corr
ordering of output messages. For example, assume we h
two messages, one at time 10 and one at time 9. We wo
first reverse-process the event at time 10, which might
an offset of 2, scheduling an event at time 12. Then w
would reverse-process the event at time 9, which might
a larger offset of 5, scheduling an event at time 14. If w
naively sent each message along, the message at 12 c
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resend_messages(lp L, timestamp T)
{
// called when L receives a
// ‘‘resend’’ instruction
if( L is full storage)

{
if(has storage to request time)

send stored message upto
request time;

else
call app-specific function to
recreate messages;

}
else

{
for each (source S of L)

if((S sen t L a message with timestamp) >=
(T - maximum offset of L))
send a reversal instruction to S;

}
}

Figure 6: Resend Messages Routine

rev_process( lp L )
{
// invoked when L recieves all the resend messages.
// LP L has multi-messages from it source LPs
// stored in a local heap sorted by timestamp.
remove messages with timestamp >=

current time of L;
for each( message M sent to L )

{
call app-specific function to

reverse-process M;
push returned messages onto windowed queue

to ensure correct ordering;
as the window moves, popped messages

are placed in multi-messages sorted by
destination LP;

}
//window is equal to the maximum offset of L
if( the multi-message from that source

is exhausted )
{
record the exhausted source, return;
}

send the multi-message chains created
from the windowed queue;

}

Figure 7: Reverse Process Routine

be processed before the message at 14. Furthermore
we did not get around to processing the message at 9,
message at 14 would be dropped entirely!

To avoid this problematic behavior, the queue has
window the size of the maximum offset. Messages ar
processed in decreasing timestamp order, so messagei has
timestamp larger than messagei + 1. At worst, message
i could get the maximum offset, and messagei + 1 could
get no offset. But the difference between the two outpu
messages is still less than the maximum offset, and t
window on the buffer is the size of the maximum offset
guaranteeing ordering (remember, the queue is also sor
by timestamp). When a message is inserted in the queue
moves the window up, pushing other messages off the en

As each message comes off the queue, they are sor
by destination LP, giving us a set of chains, ordered b
decreasing timestamp and sorted by destination LP.When
if
e

d
it
.
d

e

finish_reversal(lp L)
{
delete extra messages generated in rollback;
if(L has stored state)

restore L to the saved state;
}

Figure 8: Routine for Completing a Reversal Rollback

messages from one source are exhausted, we send all of
processed multi-messages. We cannot continue process
when one incoming chain is exhausted because we can
longer guarantee the correctness of ordering of the messag
The exhausted source is recorded, in case the process
messages are insufficient and we need to request mo
messages to reverse-process farther back.

When R has received as many resend multi-
messages as it sent requests, the scheduler will ca
execute_large_rollback(R) (see Figure 5). The
rollback is executed just likerev_process , except that
rather than producing normal messages to resend, it pr
duces anti-messages. If the messages run out before R
rolled back far enough, it requests more messages fro
whichever source’s chain was exhausted. Secondary ro
backs are handled in the same way as the primary rollbac
if they can be handled locally, they are, otherwise we reque
resends.

Once the rollback is completed,R sends out PE instruc-
tions indicating that the rollback is finished. The schedule
calls finish_reversal on every LP on the PE (Fig-
ure 8). Those LPs that assisted in the rollback by recreatin
messages, but did not rollback themselves, restore their sta
to the state that was saved immediately before the rollbac
and all LPs free resent messages. If another rollback is wa
ing for execution, it is handled now, otherwise we resum
forward execution.

3.4 Complexity

Assume that processing a message takesO(1). For a local
rollback ofN messages, it takesO(N) time. Also assume
the application-specific function to reproduce or recall the
messages takesO(N) for N messages.

Resent messages can be organized in trees and prior
queues, so all operations areO(log(N)) for N messages.
Sorting is done in two places, when the message is fir
produced, and when we combine the resend multi-messag
from all the sources. The sorting when the message
produced is limited to the window of the buffer, which is
the size of the maximum offset. This is small compared
to the total number of messages we will process, so w
can treat an insertion asO(1), meaning that processing
N messages isO(N). Combining the multi-messages is
done as the last stage of merge sort: given a set of chain
we remove the smallest item from the top, process tha
and repeat. The number of chains is equal to the numb
of sources, which is much less than the total number o
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messages being processed, so again, we can treat this w
operation asO(N).

The number of messages is related to how many lay
are between the present LPL and the reversing LPR. R
will have to processN messages, as in a local rollback
The first layer back, assuming it is not full storage, wi
have to handleR +M messages, whereM is the average
number of messages in the span of the maximum offs
At each layer, we add anotherM messages to each LP
Additionally, we have the number of sources per LP
consider: ifR hasS sources, then each of them will have
to processR + M messages, giving us a total workload
for the layer ofS(R +M). Fortunately, if an LP receives
resend requests from multiple LPs, it can handle all t
requests simultaneously, so the S term does not multip
beyond the size of a layer of sources.

The total complexity isO(SLR+∑L
l=1 SM ∗ l), where

S is the size of a layer of sources,L is the total number of
layers of the rollback, andM andR are as defined above.

4 RELATED WORK

Reverse computation has been previously studied in va
ous contexts. Research intoreversible computingis aimed
at realizing reversible versions of conventional comput
tions in order to reduce power consumption (Bennet 198
Frank 1999). TheR language is a high-level language with
special constructs to enforce reversibility so that program
written in that language can be translated to machine co
of reversible computers (Frank 1999). Another interestin
application of reversible computation is in garbage colle
tion. ThePsi-Lisp language (Baker 1992) uses reversib
constructs to efficiently implement garbage collection.

Other applications for reversible execution are in th
areas of database transaction support, debugging sup
and checkpointing for high-availability software (Leeman
1986; Sosic, 1994; Biswas and Mall, 1999). More rece
work is concerned with source to source translation of po
ular high-level languages, such asC, to realize reversible
programs. However, almost all of the solutions suggest
in these application areas translate either to constrai
on language semantics to disallow irreversible compu
tions, or to techniques analogous to state-saving techniq
(specifically, copy-on-write techniques) of optimistic para
lel simulations. Some of them operate at a coarse level
virtual memory pages. The optimizations are roughly ana
ogous to those used in incremental state-saving approac
in parallel simulations. Moreover, since these solutions a
not specifically geared toward parallel simulations, they a
not optimized for minimizing the state size, and do no
adequately exploit the semantics of constructive operatio

Reversible computing has also been suggested a
method for testing failures in real-time systems (Bisho
1997). An initial attempt at automatically generating sym
ole
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bolic inverses ofreversiblefunctions is made in Eppstein
(1985), but it relies on heuristics for correctness. A mo
theoretical approach is taken in Chen and Udding (1990
by using inversion of invariants to prove the correctne
of inverse programs. A debugging system is described
Biswas and Mall (1999) that executesC programs in inter-
preted mode in forward and reverse directions. Althoug
their approach using interpretation is well suited for de
bugging systems, the performance characteristics of th
techniques are unclear when applied to high-performan
simulations. An interesting use of reversible computing
in its application to the automatic differentiation of func
tions expressed in a high-level computer language, such
C/CPP (Griewant et al. 1996; Grimm et al. 1996). Fo
this, reverse execution of certain intermediate computatio
is necessary, which is achieved via operator-overloadi
techniques ofCPP.

Finally, in the context of optimistic parallel simulation,
time-proportionate reverse computation has been applied
circuit models (Perumalla and Fujimoto 2002), and larg
scale Internet models (Yaun et al. 2003).

5 CONCLUSIONS AND FUTURE WORK

We present an algorithm to allow both TiPRC and PRC
based optimistic parallel simulation. Using this, we ca
reduce memory overheads, and GVT calculations. T
result ideally will be faster forward execution at the cos
of the very rare large rollback. With the basic theor
complete, we are implementing the algorithm in a re
optimistic simulation system. One of the challenges of th
implementation is ensure we get the “end cases” correct w
respect to all the lists as well as ensuring the properti
of the test model hold true. At this time, validation o
model properties can only be done via visual inspectio
We are currently investigating ways to automate the rever
code generation and property validation of TiPRC and PR
classes. The target applications for this algorithm are larg
scale network models where the primary focus is the co
network which allows traffic sources to remain relativel
independent.
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