
CHAPTER 4
Basic Quantum Gates and how to build simple quantum circuits from them.
Marek Perkowski, Sazzad Hossain and Sidharth Dhawan

4.1. Towards Computer Aided Design of Quantum Computers.
In the past few decades, integrated circuit technology has grown substantially, from that of realizing only a few logic gates on a single device to more currently constructing billions of logic gates, effectively creating a “computer on a chip”.  But, with this massive growth in technological capability, it becomes ever more difficult for future human invention to both maintain and surpass the capabilities of previous creations.  With larger and larger designs, a need for high testability, increasing design complexity, and more aggressive time-to-market schedules, higher demands are placed on the human design team.  Thus, new methods of invention become necessary, which combine both human expertises with that of the increased computational capabilities of computers.  As already discussed in previous chapters, one of the most promising technologies of the future is the quantum computer. Combinatorial optimization problems that find many applications in AI, robotics and Computer Aided Design should be developed for quantum computers as well as methods of efficient mapping of quantum algorithms to quantum hardware. Our synthesis will be mostly on a “permutative” level of gates such as Toffoli and Fredkin. Thus in this chapter we will present design details close to technologies. In sections 4.2 and 4.3 we will illustrate two respective ways of building such gates on top of the two types of lower level primitives.
2.2. Quantum gates and circuits on the level of pulses in Quantum technologies such as NMR and ion traps.
2.2.1. The quantum gates on the level of electromagnetic pulses. The fundaments.
Every quantum gate and circuit, from the smallest like Pauli rotation to the largest, like the Quantum Algorithm of Grover, can be represented by a unitary matrix of the Hilbert space. Hilbert space can be in general defined as vector space with infinitely many dimensions. Here our interest will be with finite-dimensional Hilbert spaces. We will deal with vectors of complex numbers. The dot product of two such vectors, u and v is defined  u · v = ( ui vi (or ( ui vi* for spaces on the complex numbers). The length of vector u is |u|2 is defined as u · u*, where a* is a complex conjugate (if x = a+jb then x* = a-jb. We will denote square root of -1 by symbols i or j. We will give precise description of Hilbert space and now we just need to understand the concept of unitary matrix. Given a matrix of complex numbers U, its transpose matrix is denoted by UT and transpose conjugate matrix by U†. Transpose conjugate matrix is a matrix in which every number is exchanged by its complex conjugate number. Matrix U is a unitary matrix if U * U† = U† * U = I, where I is an identity matrix. The transpose conjugate matrix U† is called the adjoint matrix of matrix U.
In this book we will be building large unitary quantum matrices of algorithms from small unitary quantum matrices of gates (pulses) that are realizable in some selected quantum technologies. Composing matrices from small to large is called analysis of a quantum circuit. Decomposing a large matrix to a composition of small matrices is called synthesis of quantum circuit. While analysis is relatively easy, synthesis is very difficult and not unique. The book will discuss both analysis and synthesis. Our goal will be to develop efficient algorithms for both.

In this chapter we will concentrate on realization of quantum circuits in two most advanced as of year 2010 quantum realization technologies: 
1. liquid state nuclear magnetic resonance (NMR) [Cory97, Gershenfeld97, Jones98, Jones98a],

2. ion traps [Leibfried03, Paul90, Steane97, Wineland98].
As we will see in next chapters, the designer designs a quantum algorithm on many levels; block level, circuit level and gate level. This design methodology requires the decomposing or composing of the gates’ Unitary matrices. Here we will start with standard elementary quantum gates for computation [Lee06].  In implementation, each gate is again converted to a sequence of physical operations that a given type of quantum computer technology can actually directly implement. In this book we abstract from the physical nature of the quantum bits. These qubits may be realized as spins of electrons or polarizations of photons. The physical realization of qubits is very important and is the subject of physical realization of quantum computers, our interest in this book is however only on the mathematical structure and properties of quantum circuits and algorithms. The physical realization of qubits is completely immaterial to the quantum mechanical abstract notations used in this book. 

The total calculation time of a quantum circuit depends approximately on the number of basic gates connected in series and the number of physical operations required for a quantum system to implement each gate.  We will create however more accurate models of timing and quantum cost. Most accurately by a series of physical operations we will consider a sequence of electromagnetic pulses. This is different from the series of basic gates, as some gates may be complex and may require very many pulses to realize them and some other gates may be very simple. For instance an inverter is an example of such simple gate. We will use thus two costs: an accurate pulse (quantum) cost and an approximate gate cost. All gates are built from quantum primitives that are 

physical operations which are either the time evolution of finite duration under the influence of an externally applied magnetic field (single qubit gates), or interactions between qubits (two-qubit gates). In quantum computation, the calculation time is a very precious resource due to the finite coherence time of a quantum system. Therefore, it is important that the designer of quantum circuits knows the quantum costs of the used by him/her gates. The costs of gates are important for the successful implementation of practical quantum algorithm, and thus for the design of  practical quantum computers. Once the pulse sequences for the single-qubit and two-qubit gates are obtained, the total pulse sequence for a circuit is given by replacing each elementary gate by the corresponding pulse sequence. The pulse sequence of more complicated circuits with larger numbers of input qubits can be obtained in the same way, that is, by finding the quantum circuits composed of simpler gates and replacing each gate by the corresponding pulse sequence. In paper [Lee06] the costs of gates were calculated in terms of numbers of basic pulses. The (approximate) software used there calculated the cost of each gate by reducing the number of pulses in the sequence using the commutation rules of the pulse operations using naïve greedy search algorithm. We demonstrate that these results can be further improved by using a new heuristic search algorithm presented  in this chapter. 
The optimized circuits presented in [Lee06] are not necessarily minimal, since the heuristic algorithm that found them has no way of knowing if the solutions found are local or global minima. Therefore, they may not be the true minimal costs of gates, and the authors claim only to provide the upper bounds as the worst case. To evaluate the quality of their heuristic algorithm we develop exhaustive search algorithm to allow cost comparison of exact and approximate solutions on small quantum circuits.

We know that Quantum Computation relies on quantum mechanics which is a mathematical model that describes the evolution of quantum states computation and hence the operation of a quantum computer itself. Several philosophically different but physically equivalent formulations have been found for quantum mechanics [Styer02]. Among others, we use the Schrödinger notation [Schrödinger26] which describes the physical state of a quantum system by a temporally evolving vector 
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 in a complete complex inner product space - Hilbert space H. The time evolution under the influence of a single term of the Hamiltonian is a single physical operation. In this book we will be optimizing circuits at the level of such operations (pulses). (Hamiltonian is a physical state of a system which is observable corresponding to the total energy of the system. Hence it is bounded for finite dimensional spaces). More about Hamiltonians and Schrödinger  equations will be given below. 

The new approach in quantum circuits synthesis introduced in [Lee06] differed from the previous publications [Smolin96, Shende03, Miller02, Miller03] which optimized the quantum circuit at higher levels of abstraction. It is still rare to see papers in the literature that would optimize on the level of pulses, but this is approach is introduced systematically in this book. This is partially possible thanks to the developed by us software which is intended to perform hierarchical top-down synthesis from various levels of specification. In one synthesis variant, the software will modify the initial non-optimal design by shifting gates left and right in the circuit and applying quantum logic identities, analogously to [Lee06, Lomont03], but calculating the combined cost of the operations that are necessary to build arbitrary quantum circuits instead of the total gate cost (gate number). The approach from [Lee06] was next extended to larger circuits, but with a smaller number of transformations [Miller03], the so-called “template matching approach”. In next chapters we present software that operates on larger circuits and with a larger, user-defined numbers of operations. 
There are many other quantum primitive gates that are used in practical quantum computer and that have been introduced only theoretically. However, at least initially we will concentrate on the above set of gates as it is sufficiently rich and still simple. To understand these gates we need to explain their operation, give their unitary matrices and analyze their possible use. This is done below.

The binary states of classical Boolean logic are 0 and 1. Their equivalents in quantum logic are called basis states and denoted by 
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  and 
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 respectively. These symbols are so-called “ket notation” and are used in the so-called Dirac notation. We will use this powerful notation at every step of our explanation only as much as would really need.

Thus we have in quantum mechanics: 
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We have also that    
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where T is a matrix transpose operation. 

The vectors corresponding to basis states in ket notation on left are given in Heisenberg notation on right. Heisenberg notation uses vectors and matrices. We will have to switch often between Dirac, Heisenberg and standard logic notation in our examples below, so the reader should be proficient in using these notations.

Observe that quantum gates can be connected in series or in parallel. A quantum gate operating in parallel with another quantum gate will increase the dimensions of the quantum logic system represented in matrix form.  This is due to application of the Kronecker product operator, called also tensor product to two unitary matrices of gates. Kronecker Matrix Multiplication operator on matrices is responsible for the growth of qubit states such that N bits correspond to a superposition of rN states, whereas in other digital systems, N bits correspond to rN distinct states. The number r denotes the base (radix) of logic, being 2 for the binary and 3 for the ternary logic. In this book we will describe only binary quantum logic. The Kronecker Product of  matrices was already explained in Chapter 2: 
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                                                                                                              (Equation 4.2.1)
The multiplication operations in Equation 4.2.1 such as ax or dz are, in the most general case, multiplications of complex numbers. Kronecker product operators can be defined for matrices or vectors of arbitrary sizes and shapes.  
A quantum gate in series with another quantum gate will retain the dimensions of the quantum logic system. The resultant matrix is calculated by multiplying the operator matrices in a reverse order. Thus is gate A is followed by gate B from left to right, the unitary matrix of this quantum circuit S is created by multiplying matrices B * A = S. We use the same notation for gates and their unitary matrices – thus gate A is denoted by unitary matrix A, etc. Mathematically, quantum gate, quantum circuit, quantum system, quantum array – is the same thing.

The matrix multiplication operation used above is a standard operation of multiplying two matrices, known from high school. Kronecker operator and multiplication operator on matrices are very important for us as they are the base of analyzing quantum circuits. Analysis is always the first step of synthesis, so one who wants to invent new synthesis methods must be able to analyze quantum circuits first. We see also that the dimension of unitary matrices increase very quickly with the number of qubits. For small number of qubits we can use Matlab, for more qubits, up to 45 qubits,  specialized advanced simulators are used such as QUIDPRO and QMDD. Simulation of large quantum circuits is still an open research problem.
In Figure 4.2.1 we show the notation and the unitary matrix of a very important quantum gate – the Hadamard gate.  This is a “truly quantum” gate that cannot be realized in a “binary reversible” or “permutative” circuit. This is in contrast to the permutative gates (described by permutative matrices) that can be realized by standard reversible logic circuits. This realization is however only in logic/mathematic sense and the reversible gates do not allow superposition and entanglement.
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Figure 4.2.1:   Hadamard gate notation and its unitary matrix.
When gate H is applied to a basis quantum state |0( we calculate the output quantum state by multiplying its matrix by the vector of the input state:
|output( = H * |input( = 
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The output is therefore a superposition of basis states.

An example of a unitary and permutative matrix is the Feynman gate, Figure 4.2.2.  A permutative matrix has exactly one ‘1’ in every row and exactly one ‘1’ in every column. It specifies therefore some permutation of binary numbers corresponding to columns and rows.
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Figure 4.2.2: Feynman gate notation and its unitary (in this case also permutative) matrix. The columns from left to right correspond to input combinations 00, 01, 10, 11. The rows from top to bottom correspond to output combinations 00, 01, 10, 11. Observe thus that we use here natural binary order and not Gray code as in Karnaugh maps and that a  permutative matrix of some  is completely equivalent to a truth table.
By V we denote the “square root of NOT” gate. This strange name comes from the fact that when we take two such gates in series they are equivalent to the NOT gate. From now on, we can talk about a V gate. This is a very important gate to our synthesis methods. 

When V gate is applied to a basis state then it creates a superposition state on its output, similarly to gate H. But this time, it is a different superposition, as will be illustrated below. 
As we remember, the conjugate transpose of a unitary matrix U is called the adjoint of matrix U and denoted by U†. By V† we denote a gate that has a unitary matrix which is an adjoint of V. We will call it the V† gate. Therefore, the adjoint of V is called “square root of NOT adjoint” and has the unitary matrix UV† of gate V†. Design of many permutative gates is based on (controlled) cascading of V and V† gates. Cascading two square-root-of-NOT gates acts as a basic inverter gate (see Figure 4.2.3a). The operation of the circuit from Figure 4.2.3a can be explained by the matrix multiplication. Multiplying the unitary matrix UV by the input state |0( we obtain the vector ½ [(1+j) (1-j)] T = V0. This vector denotes the quantum state V0.  By multiplying V by this vector we obtain the vector V * V0 = [0 1] T = 
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.  So, we are back to binary.
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Figure: 4.2.3 (a) Cascading V gates creates an inverter. Measurement of intermediate state would give  
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 and 
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 with equal probabilities, composition of these gates acts as a classical inverter (b) Controlled-V gate and its unitary matrix,(c) Controlled-V† gate and its unitary matrix.
Controlled-Square-Root-of-Not is also denoted by Controlled-V. Figure 4.2.3b presents on left the gate notation of a controlled-V gate (CV) and its unitary matrix at the right. Controlled-Square-Root-of-Not-adjoint gate is also denoted by Controlled- V†. Figure 4.2.3b presents on left the gate notation of a controlled-V†  gate (CV†) and its unitary matrix at the right. Permutative gates will be build by composing in parallel and in series the CV, CV†, CNOT and NOT gates. The gate from Figure 4.2.3b operates as follows. Control signal a goes through the gate unaffected, i.e. P = a.  If the control signal has value 0 then the qubit b goes through the controlled part unaffected, i.e. Q = b. If a = 1 then the unitary operation that is inside the box is applied to the input signal b, it means Q = V (b) in our case. This operation is general for all binary controlled gates, for instance the Controlled-V-adjoint (Controlled-Square-root-of-Not-adjoint, denoted also by CV†)  - Figure 4.2.3c. When the control qubit is |1( the lower qubit operates as V†. CV and CV† together create three-qubit permutative gates such as Toffoli, based on these facts: VV† = V†V = I, V†V† = VV = NOT.
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Figure 4.2.4: Basic “rotation gates” from left to right and top to bottom: NOT gate (or Pauli X rotation gate), Pauli Y rotation gate, Pauli Z rotation gate, Hadamard gate, Square Root-of-NOT or V gate, Phase Gate or S gate that changes only a phase.

We will be using the single qubit gates that are commonly used in papers on quantum synthesis. They are: NOT (Pauli  rotation X, denoted also in literature by (x), Hadamard, Phase, and T. Figure 4.2.4 shows examples of circuit notations for single-qubit gates with their corresponding unitary matrices. Some gates are also listed in Table 4.2.1. We use Pauli rotations X, Y and  Z or arbitrary angle rotations with respect to axes X, Y and  Z of the Bloch sphere and some their special cases  for fixed angles which are multiples of 45o .
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 X, Y, and Z  phase rotations. I denotes a 2*2 identity matrix. X, Y and Z are the unitary matrices of Pauli rotations. Note a  difference between the Pauli rotation X and the  general Phase Rotation X((). Gate T rotates by angle ∏ /4.
A general notation for single-qubit gates is given in Table 4.2.1. In Table 4.2.1 symbols X, Y, and Z are the Pauli spin matrices defined in Figure 4.2.4. Symbols P((),  X((), Y((), and Z(() are the corresponding  2*2 matrices of arbitrary parameterized angle rotations by angle (. The rotations X((), Y((), and Z(()   can be explained as rotations with respect to angles X, Y and  Z, respectively, as illustrated  on the Bloch sphere [Nielsen00]. P is a phase rotation by (/2. This notation comes from [Lomont03]. It is useful in software that automatically simplifies gates.  
Figure 4.2.5 shows how one can calculate unitary matrices from general matrix formulas in Table 4.2.1. Observe that we execute here the matrix addition operation on complex matrices. The total calculus of unitary matrices includes thus matrix multiplication, Kronecker multiplication and matrix addition.

A quantum circuit can be easily analyzed. Parallel connection of gates X and Y is putting gate X on top of gate Y in the quantum array.  A parallel connection of gates corresponds to the Kronecker Product (the Tensor Product) of unitary matrices of respective gates. The serial connection of gates corresponds to the serial multiplication (in reverse order) of the matrices of these gates. One can check that the equivalence transformations from Figure 4.2.5b, c, d, e are correct. All verifications of quantum equivalence transformations can be done by executing matrix multiplication, Kronecker multiplication on matrices and comparing the respective matrices of the left and the right side.  
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(a) 
[image: image22.emf]           [image: image23.emf]
(b) (c)        
[image: image24.emf]        [image: image25.emf]
(d)                                                              (e)            
Figure 4.2.5:  (a) Example how to calculate unitary matrices of generalized rotations from general matrix formulas in Table 4.2.1. (b) Equivalent transformation of Z gate, (c) equivalent  transformation of CNOT and Hadamard gates, (d) CNOT and NOT transformation, (e) CNOTs and Pauli Y transformation.
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Figure 4.2.6: From left to right: Pseudo-Hadamard and inverse pseudo-Hadamard gates.

We will use also two new gates;  pseudo-Hadamard h and its adjoint pseudo-Hadamard gate h-1 , Figure 4.2.6, because they are used  to build many quantum gates, both permutative (pseudo-binary) and general-purpose-quantum gates (called also truly quantum gates) that are most useful in synthesis [Biamonte04, Jones98, Jones98a]. These gates are called pseudo-Hadamard because they replace Hadamard gate primitives in some complex gates. They matrices are similar to Hadamard matrix – the locations of  -1 are just different.             
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(a) [image: image28.emf]     (b)[image: image29.emf]          (c)[image: image30.emf]
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   (e)[image: image32.emf]                                            (f)[image: image33.emf] 
Figure 4.2.7: Controlled gates. (a) Controlled Hadamard gate, (b) Controlled Rotation gate with respect to angle (. (c) symbol of Pauli rotation gate where the subscript i = X,Y,Z, (d) controlled arbitrary phase gate and its unitary matrix, (e) Controlled Z gate and its unitary matrix, (f) controlled phase gate and its unitary matrix.
Figure 4.2.7 shows symbols of some controlled gates. Controlled Hadamard (Fig. 4.2.7a) works like Hadamard when the control qubit is |1(, otherwise it passes the lower qubit unchanged (works as identity). Controlled Rotation gate with respect to angle ( is shown in Figure 4.2.7b. The symbol R applies to any angle, particularly X, Y and Z. Additional symbol is used to denote the angle (. Figure 4.2.7d has one notation of a controlled arbitrary phase gate and its unitary matrix Φ. Angle ( can be changed, creating various gates. All these gates change however only the phase. When ( = π we obtain gate CZ (Figure 4.2.7e). When ( = π/2 we obtain gate CS (Figure 4.2.7f). 
(a)   [image: image34.emf]
(b)   [image: image35.emf]
(c)   [image: image36.emf]
 (d)  [image: image37.emf]
Figure 4.2.8: (a) CNOT gate realized with controlled-Z and pseudo-hadamard gates. Symbol h stands for pseudo-hadamard gate and symbol h-1 for inverse pseudo-hadamard gate. (b) CV gate realized with Controlled-S and Hadamard gates, (c) CV† gate realized with controlled-S-1 and Hadamard gates, (d) CV† gate realized with controlled-S-1 and pseudo-hadamard gates. Observe that this realization requires less pulses than its equivalent circuit from Figure 4.2.8c.
Interesting identities useful to design complex quantum from simple quantum gate primitives are presented in Figure 4.2.8. The role of Hadamard and pseudo-Hadamard is shown. Remember that the cost of pseudo-Hadamard gates (one pulse) have half cost of Hadamard gates (two pulse), which explains why pseudo-Hadamards are used, especially for complex gates realized on many qubits.
(a) [image: image38.emf]
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Figure 4.2.9: (a) Controlled-Z gate realized with controlled-phi gate surrounded by pseudo-Hadamard gates, (b) Calculation of unitary matrix for lower qubit of  this gate, (c) Various gates realized by (  for angles 0 o, 90 o, -90 o and 180o in X  rotations. The ( gate realizes identity, Square-root-of-NOT gate, its adjoint gate and Inverter gate, (d) gates realized by Y rotations. 

Figure 4.2.9a presents the controlled general phase gate used together with a pair of the pseudo-Hadamard and its inverse gate.  Figure 4.2.9b has the symbolic unitary matrix when the control signal is
[image: image41.wmf]1

. By substituting various values of angles, 0o, 90 o , -90 o , 180 o the unitary matrices are created which are next combined with the pseudo-Hadamard matrices, as in Figure 4.2.9b. This leads to the table from Figure 4.2.9c that demonstrates that by changing the angle the gate from Figure 4.2.9a can work as a 2-qubit identity, controlled-V, controlled-V† and CNOT. Actually this gate can be used as a controlled root of various degrees. Figure 4.2.9d illustrates unitary matrices for various angles of Y. This figure demonstrates therefore the usefulness of Y and Z rotations to create inexpensive gates. 
Let us now try to find, by matrix/vector multiplication, all possible states that can be created by applying all possible serial combinations of gates V and V† to states
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 and all states created from these basis states (Figure 4.2.10).  A qubit 
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, given to a “square root of NOT” gate (Figure 4.2.10a) gives a state denoted by 
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V

. After measurement this state gives 
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 with equal probabilities ½.   Similarly all other possible cases are calculated in Figure 4.2.10b – h.  As we see, after obtaining states
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 the system is closed, which means that no more states can be generated. Therefore the subset of (complex, continuous) quantum space of states is restricted with these gates to a set of states that can be described by a four-valued algebra with values {
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}. These properties will be also used by us to synthesize complex quantum gates.
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Figure 4.2.10: Calculating all possible superposition states that can be obtained from basis states 
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 and 
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 using V and V †gates.

2.2.2. Models of Basic Gates
The component particles of the quantum system should have at least two well-defined quantum states to be used as qubits, and should interact with each other.  There must be a way for external devices to perform single-qubit operations and read the qubit states. When we write “particles” here it may be any quantum entities: electrons, protons, other particles, photons, ions, nuclei atoms etc. We define a model quantum computer for both NMR and ion trap technologies as a system that meets the following specifications. In future chapters we will introduce Schrödinger equation that describes quantum dynamics and evolution of quantum systems, a Hamiltonian is a matrix that will exist in this equation. However now it is sufficient to define a specific Hamiltonian of a quantum system.
The Hamiltonian of the system is given by,
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                                                              Equation 4.2.2.1
where α = x, y or z and symbol σ represent one of the Pauli operators. This is the most familiar form of the “spin Hamiltonian” where spins are interacting with each other in an external magnetic field.  However, this Hamiltonian is not particular to spin systems but is general, as similar forms are relevant for any quantum computer. It is common to refer to the first term of the Hamiltonian in Equation 4.2.2.1 as the Zeeman term. The second term as of Equation 4.2.2.2 is known as  the interaction term. 

[image: image60.wmf],

ii

i

a

aa

a

s

å

                                                                     Equation 4.2.2.2 – Zeeman term
The Zeeman term is necessary to produce all the single qubit gates.  As its name implies the second part of the Hamiltonian defines interactions between qubits, such as those that are essential to make a CNOT gate.  In the standard form, the so-called Ising model [Lee06] is characterized by the interaction of only Z-components of spins.  The interaction form should not necessarily be of the Ising type, although it is advantageous because the Ising type interaction can generate the indispensable CNOT gate, while it is not quite clear if general interactions can do the same.  OPEN PROBLEM.
Using the Hamiltonian from Equation 4.2.2.1 we can generate the following physical pulses:
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                                                                          Equation 4.2.2.3
These pulses are minimal units of physical phenomena used to synthesize quantum computers. They cannot be decomposed to smaller units. Only some of them can exist in some quantum technologies. Of course, each of them is described by some unitary matrix – a 2*2 matrix in case of rotations and a 3*4 matrix in case of interactions.

We define the cost of a gate as the number of pulses corresponding to the minimal pulse-level implementation of this gate.  The algorithm first introduced by Soonchill Lee [Lee06] and also our improved algorithm (to be yet implemented) perform reduction (full or partial). They use the commutation rules on the sequence of pulses that represent the gates from the quantum circuit.  
2.2.3. Circuit Identities and Optimizing Transformations
The quantum circuit reduction uses, among others, the well-known rule [Nielsen97]: [A, B] = AB – BA, AB-BA = 0 → AB = BA. Here A and B are arbitrary unitary matrices.
This reduction rule is illustrated in the quantum circuit from Figure 4.2.3.1. This means, that one can shift left or right pulses or gates for which the above rule holds. If gates (circuits) are not affecting one another, we can change their order in a parallel connection. If the output of gate A would control gate B, we would be not able to execute this transformation.
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Figure 4.2.3.1: Graphical illustration of the rule [A, B] = 0. ERROR
In our reduction algorithm the following commutation rules are used (Equations 4.2.3.1 – 4.2.3.4):
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                                            Equation 4.2.3.1
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                         Equation 4.2.3.2

	and the relations generated by the cyclic permutation of x ( y ( z.
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                                                            Equation 4.2.3.4


Graphically, they are represented as in Figure 4.2.3.2.  If necessary, more rules can be added to the program, and/or we can make some rules usable only in one direction (only from left to right or from right to left).
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Figure 4.2.3.2: Graphical illustration of some commutation rules for quantum algebra that are used in  our  tree search-based pulse-level circuit minimization algorithm.
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Figure 4.2.3.3 : (a) The Controlled-NOT gate realized by controlled-Z gate surrounded by Hadamard gates, (b) two serially connected Hadamard gate are together equal to a quantum wire and (c) for controlled Z  we can interchange the control qubit and the target qubit in the control-Z gate.
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Figure 4.2.3.4 : Identities for Feynman gate surrounded by Hadamard gate and construction of CV and CV†  from  Hadamard gate , Phase gate(S) and its inverse(S-1).
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a)
    [image: image82.emf]
b)
 c)          [image: image83.emf]
 d)       [image: image84.emf]
Figure 4.2.3.5: (a) Example of transformation for Feynman gate  surrounded by Hadamard gates, (b)Hadamard gate used as serial connection creates Z gate, (c)Y  gate surrounded by Hadamard creates Y gate, (d) Z gate surrounded by Hadamard gates creates NOT gate. These rules can be used to prove the correctness of the Grover Algorithm.
4.2.4. Single Qubit Gates
The most frequently used single qubit gates in quantum algorithms are the NOT(N) (also known as Pauli-X, or X [Nielsen97]), Hadamard(H), and phase(P) (also known as S [Nielsen00]) gates in the vector space spanned by basis vectors in both Dirac and Heisenberg notations from Equation 4.2.4.1:
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                                                                     Equation 4.2.4.1
These gates are the special cases of the single qubit rotation operations and are implemented by the rotation pulses as shown in Figure 4.2.4.1
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Figure 4.2.4.1: (a) Calculation of matrix for Pauli X rotation, (b) calculation of matrix for Hadamard gate, (c) Calculation of matrix for S gate.
Therefore, the costs of Gates N and P are said to be 1, and that of H is 2, from the definition of our model quantum computer (see Figure 4.2.4.2).  It is worthwhile to note that gates with the same number of input qubits can have and usually have very different costs in practice. The pulse sequence of a gate is not unique in general.  It is also worthwhile to note the fact that the N, H and P gates are implemented up to overall phase. We illustrate an example of this fact for the N gate below in Figure 4.2.4.3.
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Figure 4.2.4.2: Quantum gates realized on the pulse level, they are decomposed to rotations with respect to axes x, y and z. 
Let us denote a NOT gate such that it is correct to overall phase, doing so we have the equations from Figure 4.2.4.3.
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Figure 4.2.4.3: Calculation of unitary matrix for inverter. Illustrates accuracy with phase and relates to the Table 4.2.2. The value of (-i) = (- 
[image: image94.wmf]1
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) is the phase that is lost in every quantum measurement.
The concepts of rotations and phase can be illustrated using the Bloch sphere, [Nielsen00]. WE SHOULD ADD BLOCH SPHERE TO THE CHAPTER.
4.2.5. Two-Qubit Gates
The most frequently used two-qubit gates are the CNOT and SWAP gates.  A possible pulse sequences for the CNOT gate is given in Equation 4.2.5.1.
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Equation 4.2.5.1: Pulse sequence for CNOT gate (accurate to phase, where we is the target bit).
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Figure 4.2.5.1: Representation of the CNOT Gate with EXOR up.
Most equations were verified using Matlab [MATLAB] and simulation results are presented for the most important circuits in his thesis [Sazzad]. Some circuits we simulated also in QuiddPro [QuIDDPro].

Matlab simulation of Figure 4.2.5.1 

CNOT  =

                 0.7071 - 0.7071i        0                              0                  0          

                                 0                    0                             0             0.7071 - 0.7071i

                                0                    0               0.7071 - 0.7071i        0          

                                0             0.7071 - 0.7071i          0                  0          

Simulation 4.2.5.1
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[image: image98.emf]
Figure 4.2.5.2: CNOT gate with EXOR down.
Step by step Matlab simulation of Figure 4.2.5.2
R1 =
   0.7071 - 0.7071i             0                        0                        0          

        0                    0.7071 - 0.7071i            0                        0          

       0                               0               0.7071 + 0.7071i         0          

      0                               0                         0              0.7071 + 0.7071i

R2 =
       0.7071          0 - 0.7071i        0                0          

     0 - 0.7071i      0.7071               0                0          

          0                  0             0.7071        0 - 0.7071i

         0                  0              0 - 0.7071i      0.7071          

R3 =
    0.7071   -0.7071         0          0

    0.7071    0.7071         0           0

         0          0         0.7071    -0.7071

        0          0         0.7071     0.7071

R4 =
   0.7071 + 0.7071i         0                          0                         0          

                0              0.7071 - 0.7071i         0                         0          

               0                     0                  0.7071 - 0.7071i          0          

              0                     0                       0                0.7071 + 0.7071i

R5 =
    0.7071    0.7071         0          0

   -0.7071    0.7071         0          0

         0         0          0.7071    0.7071

        0        0          -0.7071    0.7071

CNOT =

   0.7071 - 0.7071i     0 + 0.0000i             0                          0          

   0.0000                  .7071 - 0.7071i          0                          0          

        0                            0                  0.0000 - 0.0000i   0.7071 - 0.7071i

        0                            0                  0.7071 - 0.7071i        0 + 0.0000i

Simulation 4.2.5.2: Where R1, R2, R3, R4 and R5 are the Pauli Matrices from Figure 4.2.5.5 and CNOT results from the Equation 4.2.5.1.
In Figure 4.2.5.2 the upper qubit is the control and lower qubit is target respectively.  As shown by Equation 4.2.5.1, the cost of a CNOT gate is 5. The circuit corresponding to the equation 4.2.5.3 is shown in Figure 4.2.5.2. Another frequently used controlled gate is the controlled-V where V2 is equivalent to a NOT gate. The cost of this gate is also 5 because it can be implemented by Equation 4.2.5.3.
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Equation 4.2.5.3:  Pulse sequence for Controlled – V gate (accurate to phase, where we is the target bit).
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Figure 4.2.5.3: Controlled-V gate realized with 5 pulses.
Once the pulse sequences of the CNOT, controlled-V, and single qubit gates are known, the pulse sequence for the other multi-qubit gates can be obtained if the gate is decomposed to a series of these basic gates. 
[image: image101.emf]
Figure 1.2.5.4: SWAP Gate comprised of 3 CNOT gates. The cost of the SWAP should be then 3×5 = 15 but it is lower thanks to local optimizations based on quantum algebra.
The SWAP gate is decomposed of three CNOT gates as shown in Figure 4.2.5.4. The pulse sequence of the SWAP gate obtained by replacing each CNOT gate (EXOR up) by the sequence in Equation 4.2.5.1 and EXOR down CNOT with sequence from Figure 4.2.5.2 is given in Equation 4.2.5.4. It has cost 15.
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	Equation 4.2.5.4
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Using the algorithm from [Lee06] it can be shown that Equation 4.2.5.4 can be reduced to Equation 4.2.5.5 and from Equation 4.2.5.5, the cost of the SWAP gate is 11.  The circuit corresponding to Equation 4.2.5.5 is shown in Figure 4.2.5.5.
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	Equation 4.2.5.5
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Figure 4.2.5.5: Swap Gate with 11 Pulses.
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	Figure 4.2.5.6: Two-Qubit Rotation Operations.  


The Rotations matrices for two-qubit gates are given in Figure 4.2.5.6. They can be easily used to verify some of the calculations from the book.
2.2.6. Three-Qubit Gates
The most frequently used three qubit gates are Toffoli and Fredkin gates, the Miller gate [Miller02] and Peres gate [Peres85] are also used. The circuit diagrams of these four gates are shown in Figure 4.2.6.1. The Peres gate is the cheapest found among those familiar in the universal set of reversible logic gates.  It is just like a Toffoli gate but without the last CNOT gate, as shown in Figure 4.2.6.1 (a).
[image: image115.emf]                                             [image: image116.emf]
(a)                                                                     (b)                                                                    

 [image: image117.emf]                      [image: image118.emf]                                
(c)                                                                     (d)

Figure 4.2.6.1: (a) The Peres Gate, (b) The Toffoli Gate, (c)The Fredkin Gate,                         (d) The Miller Gate

The pulse sequence of the Toffoli gate reduced from the circuit in Figure 4.2.6.1b is composed of 15 pulses and contains 5 interaction terms. However, the equivalent sequence of this gate analyzed by the geometric algebra method presented in [Cory97] is composed of 13 pulses and contains 6 interaction terms.  The sequence we listed in Table 4.2.1 for the Toffoli gate is the one with the lower cost.  This case indicates that there is at least one quantum circuit for the Toffoli gate more efficient than shown in Figure 4.2.6.1b, a possibility also exists that the sequences listed in the table can be reduced further.  Although the cost of the Toffoli gate given in Table 4.2.1 is lower than the gate shown in Figure 4.2.6.1b, the gate from Figure 4.2.6.1b is practically cheaper than using the method explained in [Lee06].  It is also possible that equivalent sequences can have a different number of interaction terms because 
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is equal to the identity operation. The minimized Peres gate on the level of pulses is shown in Figure 4.2.6.2.
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Figure 4.2.6.2:  Peres Gate with 12 pulses

The circuit diagram for the “pulse-level” realization of 3 * 3 Toffoli gate is shown in Figure 4.2.6.3. This is perhaps the exact minimum pulse-level realization. This fact has been confirmed by our exhaustive search software. If the search will be completed we will be the first team to prove the cheapest universal gate for quantum computing (most likely Peres gate) and to find the cheapest realization of the Fundamental Toffoli gate.
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Figure 4.2.6.3: The Toffoli gates with 13 pulses.
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Figure 4.2.6.4: The Fredkin Gate with 19 pulses.
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Figure 4.2.6.5: The Miller Gate with 24 pulses

The circuit for the minimized “pulse-level” Fredkin gate is given in Fig.2.2.6.4. and the circuit for the minimized Miller gate is given in Figure 4.2.6.5. 
To explain the fundament of our exhaustive search we will analyze and visualize the Miller gate’s pulse level optimization from the Following Equation 4.2.6.1 through Equation 4.2.6.11. 

Example 4.2.6.1: Specifically the mathematical analysis is shown in the Equations from 4.2.6.8 through 4.2.6.11.
· NMR Hamiltonian
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                                                                                                          Equation 4.2.6.1

· Preferred operations

               Single –qubit operations

1. Rotation of qubit k by 90o and 180o about the x axis.
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                      Equation 4.2.6.3

2.    Rotation of qubit k by 90o and 180o about the y axis.
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                   Equation 4.2.6.5

3.     Rotation of qubit k by θ about the z axis.
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                     Two-qubit operations

1. Rotations of the states of two qubit j and k by θ  through the evolution by the coupling term 
[image: image132.wmf]kz

jk

I

I

2

.

                    
[image: image133.wmf]).

2

exp(

)

(

kz

jk

jk

I

I

i

J

q

q

-

º

    Equation 4.2.6.7

· Any single-qubit rotation can be accomplished in three steps, known as Euler rotations. The Euler rotations are composed of two z-rotations and one y-rotation. We prefer 90o or 180o y-rotations and the y-rotations in arbitrary angles can be decomposed into two 90o x-rotations and z-rotation.

The original Miller’s gate is specified as in Equation 4.2.6.8.
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                                                                                                                             Equation  4.2.6.8
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                                                                                                                              Equation 4.2.6.9
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                                                                                             Equation 4.2.6.10
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                                                                                                                            Equation 4.2.6.11

The subsequent equations show one branch of the search tree which leads to the supposedly minimal solution that we dispose at this point. 

Example 4.2.6.5.2:

Now, we graphically visualize the Miller gate’s pulse level optimization from the following Figure 4.2.6.6 through Equation 4.2.6.8 as below:
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Figure 4.2.6.6: Miller Gate realized with 45 pulses from Equation 4.2.6.8.
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Figure 4.2.6.7:  Miller Gate realized with 30 pulses from Equation 4.2.6.10.


[image: image165.emf])

2

(





Ry

)

2

( 31



J

)

2

(





Ry

)

2

( 23



J

)

2

(



Ry

)

4

(23



 J

)

2

(



 Rx

)

2

(



 Rx

)

4

( 31



 J

)

4

(





Rz

)

2

(



 Ry

)

2

( 12



J

)

2

(



 Rx

)

4

5

(



 Rz

)

2

(



Rx

)

4

7

(



 Rz )

2

(



Ry

)

4

( 23



J

)

2

( 31



J

)

4

5

(



 Rz )

2

(



 Rx

)

2

(



Rx

)

2

(



Ry

)

2

( 12



J


Figure 4.2.6.8: Optimal Miller Gate Realized with 24 pulses from Equation 4.2.6.11.
These figures can be compared with the macro-level specification of the Miller gate using 2×2 quantum gates from Figure 4.2.6.1d.
Concluding, the most important result from [Lee06] is a table of realizations of useful gates and their costs, given in Table 4.2.1. The first column gives a name of a gate. The second column gives its sequence of quantum pulses (notation explained below) and the third column gives the quantum cost (accurate) of this gate.
	Table 4.2.1 – Quantum Cost of quantum gate primitives

	Gate
	Pulse Sequence
	Cost

	NOT
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	Phase
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	Hadamard
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	CNOT
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	SWAP
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	Toffoli
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The basic quantum gates that are used in quantum circuits and explained in full detail in our book are the following:

1. Inverter (NOT, Pauli X rotation), 
2. Hadamard gate, 
3. Toffoli gate, 
4. Feynman gate, 
5. CV (controlled square root of NOT gate),   
6. CV† (controlled square root of NOT Adjoint gate). 

These gates are truly quantum and universal. The subset {NOT, CV, CV†} of these gates allows to create an arbitrary permutative binary quantum gate (circuit) by  their   compositions.
4.2.7. Large gates and gates for the “neighbor-only” technology 
Example 4.2.7.1:
In some technologies such as “Linear ion trap” every qubit can communicate only with its neighbors above and below; this increases the cost of gates. If we have a wire that is “going through” the Feynman gate (Figure 4.2.7.1b), what should we do? We have to create a sequence of Feynman gates realizing SWAPs (Figure 4.2.7.1). The realization of Toffoli gate itself in the “neighbor-only” technology is shown in Figure 4.2.7.2. Again the SWAP gates should be transformed as in Figure 4.2.7.1a.
   (a)    [image: image176.emf]
    (b)       [image: image177.emf]
Figure 4.2.7.1: Transforming a 3*3 Toffoli gate with qubit X1 going through. (a) the SWAP gate, (b) the transformation of the Toffoli gate by surrounding it with two SWAP gates. Each of these SWAP gates is next transformed as in Figure 4.2.7.1a.
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Example 4.2.7.2:
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Figure 4.2.7.2: Realization of Toffoli gate in the technology that allows interactions only   between neighbor qubits.  
Example 4.2.8.3:
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Figure 4.2.7.3:  Transformation of “big CNOT” gate in the “neighbors only” quantum Technology. This is a Feynman gate with two qubit wires “going through” it.      
A CNOT gate with many qubit wires “going through” can be realized as shown in       Figure 4.2.7.3. Please note the Boolean equations used in the verification process. As we see from these simple examples, the “neighbor-only” technologies increase very substantially the costs of gates and circuits satisfying their linearity constraint. These effects were entirely not taken into account by the previous researchers thus the claimed by them “minimal circuits” are in fact very far from the minimum when one calculates their costs on “pulse level” rather than “abstract mathematical gate level”    (like n-input Toffoli). This is why we create affine gates and similar concepts in next chapters, and why in some variants we take the “neighbor only” constraint of linear Ion-Trap.
4.4. Conclusion on Technologies.

All gates that will be used in next chapters are based on quantum gates from this chapter. The quantum costs that we developed and illustrated in this chapter will be used in the entire book.
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