
CHAPTER 5
The AND/EXOR LOGIC
Marek Perkowski and Sazzad Hossain

5.1. The AND/EXOR logic to synthesize quantum circuits on level of permutative gates
5.1.1. The choice of logic synthesis methods for quantum circuits
In chapter 4 we explained about the lowest level synthesis of quantum circuits in an existing technology. The questions appear –
1. “how to specify permutative circuits on the level of complex permutative gates in a way that is convenient to the oracle designer
2. how to convert this (higher level, more abstract) specification into an optimized circuit with these permutative gates.”
These are some of fundamental questions of our book.
All methods from next chapters that will optimize circuits on level of Toffoli, Peres, Feynman and Fredkin gates are good for arbitrary technology used to realize these gates. These methods can be thus used for any realization of Peres or Fredkin gates, including methods from the chapter 4. However, there are two ways of using an oracle. A classical oracle obtains all its inputs sequentially, this can be applied with the reversible circuit in any technology. A quantum oracle obtains from its input - the column of Hadamard gates, a superposition of all states in parallel. This means that superposed quantum states are transmitted to the gates inside the oracle. Thus, in case of quantum oracles, the gates of them must be able to process superposed states and this can be done only by quantum gates. In oracle only the quantum realizations of permutative (reversible) circuits (gates) are thus allowed.
From now on we will concentrate therefore only on NMR technology but we hope the reader understands that our circuit synthesis methods apply to all realizations of permutative circuits, however with different methods of calculating costs. Various methods have been proposed for permutative circuit synthesis and optimization, of which the historically first and so far the most advanced are methods of evolutionary algorithms, specifically Genetic Algorithms and Genetic Programming. It is well known that Genetic Algorithm (GA) [Goldberg89, Holland92] and Genetic Programming (GP) [Koza92, Koza94, Koza99] techniques provide means for applying the theory of Darwinian evolution within an artificial system. The GA is a system that evolves problem parameters directly; the GP evolves programs for problem solution. Through a process of emergent intelligence, the GA/GP formulates engineering solutions based on an accumulated knowledge of the problem and the merit of potential solutions. In recent years the Genetic Algorithm and Genetic Program, as the machine learning techniques, have been successfully applied to a wide range of engineering problems, These evolutionary algorithms were the main methods used by other research groups that work on quantum circuits design [Rubinstein01, Spector99, Willimans99]. They were used also by the PSU research group [Lukac02, Lukac02a, Lukac03, Lukac05, Khan03, Khan04, Giesecke07]. However, these methods brought only limited success to the design of circuits, as they use knowledge insufficiently. Past experience has shown that the GA application to logic minimization has serious limitations of size, computation time, and solution optimality [Dill97b, Dill01]. A question arises, if once the quantum computers are developed, will it be a good idea to use GA and GP on them? Or rather use quantum search methods? We cannot find anything in a quantum computer that would make such a computer to be principally superior to a standard computer with respect to realizing classical Darwinian evolutionary algorithms (of course quantum computers will have technological advantages such as speed and low power, but we mean here the fundamental algorithm complexity). We can, however, still make use of quantum computer general speed-up in Grover-like algorithms to adapt standard GA-like algorithm to quantum computers. We can still use the general metaphor of evolution through chromosomes, genotypes, phenotypes and survival of the fittest. Another method that can be tried is the exhaustive search – again, useful in the first phase of research and well-adaptable to more advanced Grover-like algorithms. Yet other methods are heuristic search methods which use knowledge – the so-called structured or informed search approaches. (Heuristic methods use some additional knowledge to make search more efficient – more explanation will come). Before we discuss our software algorithms and quantum algorithms for synthesis, we will systematically introduce the background. This time, not the technology level of circuits but the logic level of circuits will be discussed. Now that after reading previous chapters the reader is more familiar with the basic underlying technology we can be more specific than in Chapter 1 and we will try to motivate our use of gates, structures, circuit specifications and algorithms.
5.1.2. AND/EXOR Logic, Permutative Logic and Quantum Computing

Most of current CAD tools in classical computer design utilize AND-OR circuit implementations for both logic synthesis and minimization, both for two-level and multi-level design. These minimization tools are used, also because of historical reasons, in the development of standard digital systems and can be potentially adapted to quantum circuits. However, the fundamental permutative gates in quantum logic are CNOT (symbol CNOT is a short form of “Controlled NOT”) which uses EXOR gate, Toffoli (which uses double-controlled NOT or C = ab (c function), Fredkin, Peres and generalized Toffoli gate which realizes functions such as abcde…n (m. As discussed in previous chapters, these gates are internally build from Controlled-V (Controlled Square root of NOT) and its adjoint gate Controlled-V† [Yang05, Yang05a, Yang05b]. The basic classical logic components of quantum gates and quantum design are therefore not the AND and OR operators but the AND and EXOR operators, which means using the CV, CV+ gates on the lower level of description. Contemporary CAD tools are geared towards AND/OR/NOT Boolean logic and use many respective methods based on Boolean Algebra laws. These methods include concepts such as finding prime implicants, graph coloring to minimize the cover of minterms with prime implicants or unate/binate covering approaches for two or more –level circuits optimization. The algebra of EXOR and controlled circuits uses commutative operations like (a (c) and non-commutative operations like (a CONTROL c). The synthesis methods are not similar to those of AND/OR/NOT logic. In contrast to the classical CMOS logic where the realization of the EXOR operator is expensive, simple gates that use EXOR are the cheapest in quantum technologies (because of the similarity of this gate to the interaction of particles). Note also that the gates that use OR are expensive and unnecessarily large in quantum implementation, because they are ultimately realized based on the Boolean logic law
 a + b = a (b (ab.
5.1.3. The Ancilla Qubits

Ancilla qubits are extra qubits. They have always constants on their inputs. They are not variables, though they can be mapped onto an output. Ancilla qubits are useful to realize large gates, as well as on wires that lead to the output. In a large circuit, it is not always good or even possible to have every wire assigned to a variable input; the functions of the gates can be changed in useful ways if some of the wires are assigned to a constant. To explain the use of ancilla bits in gates, one must look no further than the Toffoli gate. In order for the Toffoli to be of use, in many cases the wire that goes to the EXOR must have a constant value (1 or 0) to change its uses and allow Toffoli to realize all functions of a universal classical gate. Those 1’s and 0’s are ancilla bits, since they are not input variables, and are constant. They can also be placed on wires leading to an output, whether it is because the ancilla bit was on the answer register of the final gate, or because it is simply more efficient to do so. Figure 5.1.4.4.1 illustrates how AND and NAND gates of classical logic can be built using the Toffoli gate with the lowest qubit being an ancilla bit. This bit is also used for the function output, AND or NAND respectively. As we see in this simple example, ancilla bit is absolutely necessary if we want to convert a non-reversible Boolean function (called also an irreversible function) like AND or OR into reversible (quantum) circuit.
[image: image221.wmf]3

3

2

1

0

1

1

0

2

2

0

0

0

3

2

1

0

)

(

)

(

)

(

1

c

ab

b

b

b

b

c

b

b

b

c

a

b

b

c

b

ab

b

b

a

b

b

a

b

b

a

b

Å

Å

Å

Å

Å

Å

Å

Å

×

=

Å

Å

Å

 [image: image2.emf]
 (a) AND (b) NAND
Figure 5.1.4.4.1: (a) Realization of AND gate using Toffoli gate with the ancilla qubit initialized to zero, (b) Realization of NAND gate using Toffoli gate with the ancilla qubit initialized to one.
5.2. WHY THE AND/EXOR LOGIC BASE?
5.2.1. Is the AND/EXOR base best for reversible and quantum logic?
In classical logic most of circuits utilize the AND/OR combination of gates. Specifically a well-known form is the Sum-of-Product logic (SOP logic, for short) where every function is realized as a (Boolean) sum of (Boolean) products of literals. ESOP stands for Exclusive-OR Sum-of-Products. It is an EXOR products of literals and the most general, unrestricted AND-EXOR logic circuit.

While not as widely utilized for classical integrated circuit design as the SOP circuits, the ESOP circuits compare favorably even in classical design [Sasao90c, Sasao91d, Sasao91e]. Functions realized by such circuits (ESOPs) can have fewer gates, fewer connections, and take up less area even in the VLSI (Very Large Scale Integration) and especially, FPGA (Field Programmable Gate Array) realizations. More importantly, in case of quantum arrays, the advantage of ESOP over SOP becomes dramatic, as will be illustrated in this book. (As a simple example one can take a Boolean function f = abc + cde + gfe + klm. Using Toffoli gates we need an ancilla bit for every product and one more ancilla bit for the sum. When we convert this function to ESOP expression, the circuit can be realized with a single ancilla bit and Toffoli gates. ESOP realization requires dramatically reduced number of ancilla bits). Here + stands for inclusive Boolean OR). AND-EXOR circuits are also easily testable [Reddy72, Sasao95g, Kalay99, Kalay99a]. It was shown, both theoretically and experimentally [Sarabi93, Sasao91c, Sasao91d, Sasao91e] that ESOPs have on average smaller numbers of product terms for both “worst case” and “average” Boolean functions. Additionally, it can be shown that reversible circuits based on two-level AND-EXOR realizations are also good for the combinational logic portions of finite state machines, as they have proven more testable and can yield less area than the two-level AND-OR implementations. The same is true for quantum state machines assuming that the classical memory is used in them and quantum circuit is used only to calculate the next state and the output state. (Measurement units are inserted on all outputs of this circuit Figure 5.2.1.1). Thus it can be concluded that the AND-EXOR implementation is in technologies with expensive qubits superior to the AND-OR logic, for both its testable and economical characteristics. In quantum circuits this type of logic remains practically the only logic of choice to design permutative circuits [Perkowski03]. Because in all contemporary quantum technologies qubits are very expensive (much more than gates) realization with AND/EXOR logic and particularly ESOP is the only one possible.

[image: image3.emf]Quantum Array

M

M

Binary memory

Figure 5.2.1.1: Realization of a Mealy Quantum State Machine with classical Binary memory. The Binary memory uses standard memory elements (flip-flops). The primary inputs and primary outputs are quantum. This design is based on a quantum array that may be designed and specified as in this and next chapters.
Observe that some authors do not emphasize AND/EXOR logic for reversible and quantum synthesis. For instance, Igor Markov, Vivek Shende, Alexis De Vos, Yvan von Retergem, Guowu Yang, William Hung, Xiaoyu Song and Marek Perkowski use the branch of mathematics called “Group Theory” to synthesize reversible and quantum circuits (Group Theory is not discussed in our book, the reader is referred to [ref,ref]). Their approach does not distinguish between AND/OR and AND/EXOR base. This is another possible line of research. But let us point out that the group-theoretical approaches are used so far only for small circuits, at most 4*4, while the AND/EXOR methods are applicable to circuits with about 14 bits. When applied to small functions, the Group Theory methods produce circuits from gates based on AND/EXOR logic which are similar to circuits realized with the presented methods. Some other authors such as Dmitri Maslov, Michael Miller and Gerhard Dueck use Fredkin gates but these gates are presented in the framework of AND/EXOR type multi-input CCNOT gates [ref. ref]. Concluding, from the point of existing theories of representation and their corresponding algorithms there are two groups of algorithms used with some (limited) success – the group theory-based and the AND/EXOR-based and this book follows the more common AND/EXOR approach.
Let us observe, based on literature, that the only competitor universal gates to the Toffoli gates are the Peres and Fredkin gates. The Peres Gate has many EXORs inside it in every known realization as it can be composed from Toffoli and CNOT or from direct CV/CV† realization shown previously. Therefore, this gate can be best handled with the methods developed in this book. Fredkin’s Gate internal realization in many quantum technologies is also based on the 3*3 Toffoli gate and two Feynman gates, so it is reducible to our methods.
Although we can handle Fredkin gates in terms of AND/EXOR logic, as in new variants of MMD [Miller03], it may be not the best way if one can realize this gate directly with electromagnetic pulses and the cost of such a realization would be smaller than its counterpart cost shown earlier. There are at least two interesting aspects related to Fredkin gates realization and cost:

1. In some technologies such as superconducting circuits, the Fredkin gate is built inexpensively from Square-root-of-Swap gates [Blais00]. This shows that not always AND/EXOR logic and ESOP-like structures are the best basic logic types and structures and EXOR may not necessarily be the best basic operator in quantum. We write about this fact just to show the possible interesting research direction, but we are not addressing the issue of Fredkin-based synthesis much, as it may require a totally new mathematical approach.
2. When realizing satisfiability (SAT) formulas in form of a product of sums of literals, there is no advantage or no possibility of converting them to ESOP, in this case the POS (product of sums) logic which is dual to SOP is still applicable, even as the price of many ancilla bits is paid.) These formulas may be better realized using Fredkin gates.

[image: image4.emf]NOT

Hadamard

Classical Reversible Quantum

AND

OR

EXOR

C/CNOT

CV

CV

†

@

@

@

@

@ @

@

@

@

@

@

@

@

 Table 5.2.1.1: Tabular comparison of primitive operators used in classical, reversible and quantum gates.
Finally, Table 5.2.1.1 compares most often used operators in classical, reversible and quantum gates. As we see, NOT gate is used in all technologies and is very cheap. It should be then used as much as possible in reversible and quantum synthesis, this leads to concepts of polarity and mixed polarity forms (GRM, etc) and expressions [ref]. Next, the EXOR operator as such is cheap as a component of gates in all these technologies but especially in quantum. It should be used extensively in synthesis methods, which issue is not satisfactorily solved in the literature. CCNOT gates with many bits are used in reversible and quantum but they are more expensive. The methods should thus allow to realize circuit with affine gates (that use EXORs and NOTs in preprocessing to other gates) as much as possible, and multi-input CCNOT only when absolutely necessary. These CCNOTs are build from very many CV and CV† gates (see below) so they have very high quantum costs. The Hadamard gate is the only truly quantum gate that we need more to be able to realize most applications, for instance search algorithms.
5.2.2. Some types of Permutative Quantum Circuits. The Quantum circuit Synthesis problem
5.2.2.1. Forms for AND – EXOR Logic.
We cannot convert directly circuits from AND and OR gates to quantum circuits without introducing ancilla bits, AND and OR gates are not reversible [Toffoli80]. If we convert such circuits (netlists from AND and OR and similar gates) directly to reversible logic – many ancilla bits must be added in most cases, one ancilla bit for one gate in the worst case. These kind of methods should be as much as possible avoided. Several basic ideas to create automatic ways for design of efficient quantum circuits implementing Boolean functions have been proposed [Lee99, Iwama02, Younes03]. One approach to realize AND/EXOR based reversible and quantum circuits is to use Reed-Muller logic expansions [Almaini89]. The AND-EXOR form has been developed into a complete hierarchy of Reed-Muller (RM) expansions, using the Shannon, Positive Davio, and Negative Davio Expansions in works of many researchers [Sasao91c, Sasao91d, Sasao91e, Saso93e, Sasao95g, Perkowski91, Dill97b, Sarabi92]. This hierarchy is described with logic equations, forms, trees, and decision diagrams [Sasao93e]. We will present this hierarchy for completeness of this book and next we will add new items to the hierarchy, motivated by their practical applications in quantum NMR technology. In quantum interpretation the whole new extended hierarchy obtains a new meaning as a hierarchy of quantum array structure types that can be relatively easily mapped to the recently proposed Quantum Field Programmable Gate Arrays [Nielsen97] and other quantum realization technologies. Our interest is mainly in the dominating technology of NMR but also to the close to it Ion Trap technology. Ion Trap is predicted to have a great future although it is less developed as of year 2010. As components of the build by us oracles for quantum search algorithms we are particularly interested in (multi-output) Fixed Polarity Reed Muller (FPRM), Generalized Reed-Muller (GRM) forms and their affine generalizations. This is because of their relative simplicity and usefulness in design of quantum circuits, complete oracles and quantum evolvable hardware. Some of the forms from the hierarchy have been the focus of the logic synthesis and minimization researches for many years and were investigated by many authors. However, finding the exact solutions for small circuits or good quality approximate circuits is still very difficult for larger circuits such as for instance arithmetic comparators. These circuits are necessary for some practical oracles that use iterative arrays of simple blocks [ref].
The GRM logic is a canonical expression (exhibiting a regular structure) which is a subset of the Exclusive-Or Sum-Of-Products (ESOP) expression. As we remember from Chapter 1, in GRM for every subset of input variables there exists at most one term with arbitrary polarities of variables.
5.2.2.2. The Fixed-Polarity Reed-Muller Forms.

Any Boolean function f with n variables, f : {0, 1}n ({0, 1}, can be represented as a disjoint sum of products [Almaini89] as in equation 5.2.2.2.1:

[image: image5.wmf]å

-

=

-

+

=

1

2

0

1

0

)

,.....,

(

n

i

i

i

n

m

a

x

x

f

 Equation 5.2.2.2.1
where mi are the minterms and ai = 0 or 1 indicates the presence or absence of minterms respectively and the plus in front of the sigma means that the arguments are subject to Boolean operation inclusive-OR. In this expression the products are disjoint (means, every intersection of two products is empty, Pi * Pj = 0). This expression, Disjoint Sum of Products or DSOP, is both a SOP and an ESOP expression as Pi (Pj = Pi + Pj when Pi * Pj = 0, as results from basic Boolean identity Pi + Pj = Pi (Pj ((Pi * Pj). But usually DSOP is far from optimum as both SOP and ESOP, so it is used only as an intermediate expression.

From DSOP it is easy to find the Reed-Muller (RM) expression (a canonical form) as in Equation 5.2.2.2.2 from [Akers59]:

[image: image6.wmf]å

-

=

-

Å

=

1

2

0

1

0

)

ˆ

,.....,

ˆ

(

n

i

i

i

n

b

x

x

f

j

 Equation 5.2.2.2.2
where

[image: image7.wmf]Õ

-

=

=

1

0

ˆ

n

k

i

k

i

k

x

j

 Equation 5.2.2.2.3
where
[image: image8.wmf]k

k

x

x

=

ˆ

 and
[image: image9.wmf]}

1

,

0

{

,

Î

i

k

b

x

and ik represent the binary digit of k.

[image: image10.wmf]i

j

 are known as product terms and bi determine whether a product term is presented or not. Symbol
[image: image11.wmf]Å

 indicates the EXOR operation and multiplication is assumed to be the AND operation. Remember that if an expression is canonical, it is called a form. A non-canonical expression is just called expression. For instance, PPRM and FPRM are canonical forms and ESOP is just a non-canonical expression.
Consider the RM expansion shown in Equation 5.2.2.2.2, where
[image: image12.wmf]k

x

ˆ

 can be xk or
[image: image13.wmf]k

x

 exclusively. For n-variables expansions where each variable may be its true or complemented form, but not both, then there will be 2n possible expansions. These are known as the fixed polarity Reed-Muller (FPRM) expansions, mentioned already in Chapter 1. We can differentiate various FPRM expansions by polarity number, which is a number that represents the binary number calculated in the following way: if a variable appears in its true form, it will be represented by 1, and by 0 for a variable appearing its complemented form. For example, consider the function
[image: image14.wmf])

,

,

(

1

:

)

ˆ

,

ˆ

,

ˆ

(

2

1

0

2

1

0

x

x

x

f

where

a

abc

x

x

x

f

Å

Å

 has polarity 7 (111),
[image: image15.wmf])

,

,

(

2

1

0

x

x

x

f

 has the polarity 5 (101),
[image: image16.wmf])

,

,

(

2

1

0

x

x

x

f

 has polarity 2 (010), and
[image: image17.wmf])

,

,

(

2

1

0

x

x

x

f

 has polarity 0 (000), and so on.
Younes and Miller [Younes03] showed that changing the polarity will change the number of CNOT gates in the circuit; and its efficiency.
[image: image18.emf]
 Figure 5.2.2.2.1: Quantum Circuit f for Polarity Number 7 for function f = abc
[image: image19.wmf]Å

 a
[image: image20.wmf]Å

1 .
[image: image21.emf]
Figure 5.2.2.2.2: Quantum circuit f for Polarity Number 6 for function from Figure 5.2.2.2.1.
[image: image22.emf]
Figure 5.2.2.2.3: Quantum circuit f for Polarity Number 2
[image: image23.emf]
Figure 5.2.2.2.4: Quantum circuit f for Polarity Number 0
For FPRM expansions, the number of CNOT gates in the final quantum circuit can be calculated as in Equation 5.2.2.2.4:
S1 = m + 2K,
[image: image24.wmf];

2

0

n

m

£

£

[image: image25.wmf]n

K

£

£

0

 Equation 5.2.2.2.4
where S1 is the total number of CNOT gates, m is the number of product terms in the expansion, K is the number of variables in the complemented form and n is the number of inputs to the Boolean function; the term 2K represents the number of CNOT gates that will be added at the beginning and at the end of the circuit (complemented form) to negate the value of control qubit during the run of the circuit and to restore its original value, respectively.
5.2.2.3. Which forms and gates are best for quantum circuits?
Expansions and gates that are efficient for classical logic circuits are not necessarily so efficient for quantum circuits. Thus we find the research interest in our book to develop the search algorithms for optimizing FPRM, GRM and the newly invented affine expansions and corresponding expressions for quantum Boolean functions similar to those found for the classical digital circuit design.
In other words, each term in the GRM form (introduced formally in next chapter) is unique in both variable name and polarity. It is interesting to note that often the GRM forms may produce results with the number of terms very close to that of exact minimum ESOPs [Cohn62, Perkowski99b, Saul92, Wu96]. GRM forms are also even more easily testable than the general-purpose ESOPs [Sasao95g]. In case of the classical Binary logic, [Sasao95g] showed that the average number of products for GRMs is less than half of the respective PPRMs.

There are several speculations [Weiss01, Hollenberg04], however, that reversible logics similar to those presented here will become practical when the technological limits of sub-micron technologies are reached. Also, there are both technological reasons (for technologies such as Josephson Junction or resonant tunneling diodes) and mathematical reasons why some new logic operators or design structures may become preferable. However, this book is constrained only to quantum technology because this technology is the most mature, most interesting and most promising. It is the quantum technology that proposes an entirely new prospect for computing and not only speeds-up the current computing model. One of the reasons that we discussed mapping of permutative gates to cellular automata is that according to Ed Fredkin, cellular automata may allow to create in the future a unified view of the world in which the same mathematics will be used for the quantum world and the macro-world of standard physics. (Although it was not shown by anybody how to map efficiently non-permutative circuits to reversible cellular automata, it still may be possible, but we are not concerned with this issue here). We believe thus that based on the previous research reviewed in this book we can formulate the statement – “every universal model of permutative computing (binary and multiple-valued – described by any permutative unitary matrices) is realizable at the level of quantum phenomena”.
What may be nonsensically complex in contemporary CMOS-based circuits, may be the best choice in quantum technologies. The best example is the Hadamard transform. One-bit Hadamard transform requires only two Pauli Rotations internally so it is the cheapest “quantum gate” after the inverter in quantum design (inverter requires only one Pauli rotation). In classical logic design the Hadamard transform used one multi-bit subtracter and one multi-bit adder being thus a big and complex block of many AND/OR level gates (see Chapter 11). Although for other quantum gates the differences are not that dramatic as for the Hadamard gate, the problem is very characteristic when comparing quantum and classical circuit design: “what is cheap in classical logic may be very expensive in quantum logic (like OR of many terms) and what is expensive in classical logic may be very inexpensive in quantum logic (like Hadamard)”. This is an important observation that explains why the entire design with quantum gates should be deeply re-thinked and methods may be adapted from classical design only with an extreme care.
Concluding, we motivated above the AND-EXOR forms for quantum design based on their strong links to NMR gates, their high testability and the possibility of using mathematics to develop structures and algorithms. It is obvious that, like in standard CAD, our algorithms have to use some kind of search. But there are many methods to execute search, evolutionary algorithms or simulated annealing are just two well-known search approaches. We have therefore now to discuss in more detail the advantages and disadvantages of known search methods and relate them to circuit structures. Although choice of AND-EXOR logic seems obvious, the choices of its forms are less obvious. We will discuss them now.
 5.2.3. The problem of good structure selection.
 5.2.3.1. Polarized forms.
 Let us continue our background material overview with the crucial observation: it is

 not only important to optimize certain type of circuit, but we must be able to select a

 good circuit type (structure) for the given problem and the given technology. For

 instance the minimized ESOP oracle for function
[image: image26.wmf]-

-

-

-

-

-

Å

=

+

=

abc

abc

abc

abc

f

 is shown in

Figure 5.2.3.1.1. It has only two product terms. Although it theoretically looks like an optimal solution as it has the exact minimum number of terms, its realization in Figure 5.2.3.1.3 with more realistic gate model shows that the quantum cost of this ESOP circuit is high. On the other hand the factorized GRM form of f (Figure 5.2.3.1.4) has 3 product terms but has a smaller quantum cost. The GRM circuit that is shown in Figure 5.2.3.1.5 is also cheaper than the ESOP circuit but the PPRM circuit (Figure 5.2.3.1.6) is even more expensive for any type of cost function.
[image: image27.emf]
Figure 5.2.3.1.1: Quantum Oracle for function
[image: image28.wmf]c

b

a

abc

Å

 build as ESOP type expression realized with 4 * 4 Toffoli gates (non-existent technologically). These gates are decomposed to 2*2 controlled gates or 3*3 Toffoli macros which causes this solution to have a high quantum cost.
[image: image29.emf]
Figure 5.2.3.1.2: Quantum Oracle for function from Figure 5.2.3.1.1 using realistic 3 * 3 Toffoli gates and one additional ancilla bit for the ESOP circuit from Figure 5.2.3.1.1.
Each 3 * 3 Toffoli gate from Figure 5.2.3.1.2 can be realized as in Figure 5.2.3.1.3. This type of design allows for more realistic cost function estimation, but it is still far from the optimum. Observe in Figure 5.2.3.1.2 the NOT gates added at the end to return the original values of input variables, the condition is necessary in oracles, but is not necessary in blocks used only as parts of oracles.

[image: image30.emf]ab

00

01

11

10

0 1

1

c

1

c

b

c a

ab

0

0

[image: image31.wmf]ab

c

b

c

a

f

Å

Å

=

Figure 5.2.3.1.3: KMap for the GRM realization of the function realized as ESOP in Figure 5.2.3.1.1.
Here we get a nice example which is ESOP realizing the function
[image: image32.wmf]c

b

a

abc

f

Å

=

 in Figure 5.2.3.1.1, both two terms in ESOP here is the subset of {a,b,c}, which is allowed for ESOP. But for GRM, every term should be a different subset of variables. Hence: the GRM will be
[image: image33.wmf]ab

c

b

c

a

f

Å

Å

=

 in Figure 5.2.3.1.3, which is using subsets {a,c}, {b,c} and {a,b}. This is not an FPRM circuit. ESOP uses more quantum primitives, thus it is expensive. In FPRM each variable is positive or negative, not both. GRM is different. GRM is mixed. In GRM, for every subset of variables, we have only one term. If the same subset of variables appears more than once, then it is not a GRM, perhaps ESOP. In Figure 5.2.3.1.1 to Figure 5.2.3.1.5, we nicely show the difference between ESOP based Quantum circuits and GRM based Quantum circuits visually.
We will discuss now how the better solution is found. The GRM for the function is done by EXOR-ing the three overlapping groups from Figure 5.2.3.1.3. After factorization, this leads to the realization of GRM as a quantum cascade from Figure 5.2.3.1.4. Without factorization, the GRM will lead to the oracle from Figure 5.2.3.1.2. Finally, the PPRM is shown in Figure 5.2.3.1.6. Obviously the PPRM is very expensive not only using quantum cost but also counting the gate number. Even better solutions for this kind of problems will be showed in the chapter 4 where we will introduce one of the main concepts of this book – the affine gates. Solutions with affine gates are always better than the classical AND/EXOR solutions, provided that the sufficient search was executed to find these affine solutions.
[image: image34.emf]
[image: image35.wmf]ab

c

b

a

Å

Å

)

(

Figure 5.2.3.1.4: Realization of quantum cascade (oracle) for factorized GRM
[image: image36.wmf]ab

c

b

c

a

f

Å

Å

=

 (its KMap illustrated in Figure 5.2.3.1.3).

[image: image37.emf]
Figure 5.2.3.1.5: Quantum Oracle for direct (non-factorized) realization of GRM.
[image: image38.emf]
Figure 5.2.3.1.6 The quantum circuit (being also an oracle since inputs are replicated to output) for the PPRM form of function from Figure 5.2.3.1.1.
The PPRM circuit from Figure 5.2.3.1.6 is nonsensically non-optimum but demonstrates how important is a good selection of circuit model and polarity in practical quantum design. In case of a circuit with many inputs and outputs the quantum cost differences may be truly dramatic.
[image: image39.emf]
Figure 5.2.3.1.7: A general view of quantum oracle realizing an FPRM form. The circuit is a result of its polarity (NOT gates in front and in back) and its general gate/circuit type (PPRM realized with Toffoli gates in this and previous figures).
Finally, Figure 5.2.3.1.7 presents the general view of an FPRM circuit realized as a quantum array – it is a PPRM of some other polarity function surrounded by NOT gates. In this particular example the NOT gates are realized for qubits x1 and x3. This view is used in all synthesis algorithms introduced in this book. The reader should appreciate from these examples, that changing the polarity influences very substantially the cost and especially the quantum cost of the solution. However, Figure 5.2.3.1.7 shows that the polarity is a global concept, the NOT gates affect the function inside the box PPRM in Figure 5.2.3.1.7. But these additional NOT gates cost very little, since in every quantum technology of implementation the cost of the NOT gate is practically negligible. Thus the circuit inside the box can be realized using any AND/EXOR method or affine gate based method to further decrease the entire realization cost.
As we see, every AND/EXOR synthesis method from this sub-area has thus two components:
(1) The polarity,

(2) The basic gate/circuit model of the circuit inside the box. In particular these can be Toffoli gates or affine gates of any type.
We are adding hereby the third component of “affine design” to the set of concepts in this book.
5.2.4. ESOP expressions
A question may arise: “why to use the concept of polarity at all?” May be removing this restriction one can create better circuits? Yes, in classical logic removing all polarity restrictions leads to the so-called ESOP or Exclusive-Or-Sum-Of-Products (non-canonical) circuits which have smaller number of terms. However, synthesis of such circuits, especially to minimize not only the number of terms but also the number of literals is extremely difficult. Also their testability is lower then that of the canonical forms. As we will see in future chapters, the ESOPs may be also worse for quantum realizations, especially for large functions with many don’t cares. Thus in this book we are not optimizing ESOP structures. In any case, one has to be familiar with them as we use them in few of our illustrative oracles in chapters 8 -15.
[image: image40.png]10

11

01

00

W/

cd
ab

00

10

Figure 5.2.4.1: KMap with groups selected for ESOP expression for function F2. Overlap of even number of groups creates a “0”.
[image: image1.emf]
Figure 5.2.4.1 shows KMap of realization of function F2 =
using ESOP expression. The principle of creating value zero in the overlap of groups is again illustrated. All next methods in this book will use this principle. The quantum array for the formula above is shown in Figure 5.2.4.2. Please observe that many inverters are added, but they do not contribute much to the cost in any quantum realization technology known to us. F2 expression above is also a GRM, but this example better than the example from section 5.2.3.1 illustrates the synthesis approach and the repeated inverter characteristic to realization of ESOPs in quantum arrays.
[image: image41.emf]
Figure 5.2.4.2: Quantum Array for function F2 from Figure 5.2.4.1 used as an oracle. This explains why two NOTs are added in qubits
[image: image42.wmf]b

 and
[image: image43.wmf]d

- this is because we want to return original inputs at the output of every quantum oracle.
5.2. Motivating Example: Building a quantum array for a very simple oracle.

Now that we know how to realize permutative quantum circuits, we can show, ahead of order, a single example of building an oracle, just to show our book direction and explain many ideas of the book to which we refer in early chapters, before the oracles will be formally introduced in chapter 15.
The problem is this. We want to color nodes of the graph from Figure 5.3.1 below with as few colors as possible so that any two nodes linked by an edge have different colors. Assuming that we have no any knowledge of the graph that we color other than that it has five nodes, we have to assume pessimistically that in the worst case it needs as many colors as there are nodes, which means five. Five numbers need at least 3 bits to encode them, it would be too bad to have this kind of a problem for a graph with 10,000,000 nodes which would be colorable with 2 colors, but let us make important point again that we have absolutely no information about the data in this variant. However, if we would know that the graph is planar, one can use the famous “Four Color Theorem” to know that only four colors are sufficient and thus encode the colors with only two qubits.

[image: image44.emf]1 2

5

4

3

red

red

blue

blue yellow

Figure 5.3.1: Graph for coloring with five nodes. It is colored with red, blue and yellow colors in such a way that every two neighbor nodes have different colors. The chromatic number of this graph is 3.
Assuming no knowledge of the chromatic number of the graph the encoding requires three bits for each color and is shown as in Table from Figure 5.3.2 below. One particular example of encoding another simpler graph is shown in Figure 5.3.5.
	Color
	Bit

	red
	a1, a2, a3

	blue
	b1, b2, b3

	blue
	c1, c2, c3

	yellow
	d1, d2, d3

	red
	e1, e2, e3

Figure 5.3.2: Assignment of bits to encoded colors of nodes for the graph from Figure 5.3.1.

An inequality comparator circuit is used to compare two nodes of the graph, as shown in Figure 5.3.3 for nodes a and b. Such comparator is connected to encoding bits of any two nodes that are linked by an edge in the graph. If the colors of nodes a and b are the same then the output of the comparator will be zero. If the codes are different (which is good) then the output will be 1. Therefore, if oracle has such a comparator for every two nodes of the graph linked by an edge and if a global AND gate of outputs of comparators is created, the output of this AND gate will be one for a good coloring and will be a zero even only in one pair of neighbor nodes of the graph the proper coloring will be violated, see Figure 5.3.6 for the classical oracle.

[image: image45.emf]1

3 3

a b

≠

(a ≠ b)

Figure 5.3.3: The inequality comparator used in Map Coloring and Graph Coloring problems. Here it compares node a with node b. Observe that the size of this comparator depends very much on the possible maximum number of colors. The comparator produces “1” at its output if the arguments a and b are different binary vectors of width 3. The binary signal (a ≠ b) is also called a predicate.
[image: image182.wmf]ac

b

a

d

c

Å

Å

[image: image183.wmf]ú

û

ù

ê

ë

é

+

-

-

+

Ä

ú

û

ù

ê

ë

é

-

i

i

i

i

1

1

1

1

2

1

1

1

1

1

2

1

 (a)
[image: image46.emf]

 (b) [image: image47.emf]
Figure 5.3.4: (a)The inequality comparator from Figure 5.3.3 applied assuming five or more (≤ 8) colors in the graph. This is a Classical schematic for the inequality operator circuit, but next we convert it to a quantum reversible circuit. (b) The quantum array for the comparator from Figure 5.3.4a. This is an oracle so three CNOT gates are added at right to restore inputs.
The classical schematics of the comparator using EXOR, NOT and AND gates is shown in Figure 5.3.4a. It is rewritten to the quantum array shown in Figure 5.3.4b.
	red
	000
	n1

	blue
	001
	n2

	yellow
	010
	n3

[image: image48.emf]red blue

yellow

1 2

3

Figure 5.3.5: Encoding of colors for the graph coloring oracle of another graph having 3 nodes. This graph is used in Matlab simulation.

[image: image49.emf]≠

≠

≠

a

1

a

2

a

3

b

1

b

2

b

3

c

1

c

2

c

3

Figure 5.3.6: Principle of graph coloring applied to a simple graph from Figure 5.3.5. This is a classical oracle. In this and previous graph coloring problem we are not checking for a minimal solution. We look here only for a coloring that satisfies the constraint of correct coloring. Thus every proper coloring that uses any 3 of 5 colors is good. (this example is trivial, but we wanted to have a simple circuit for the example).
The final quantum oracle for Grover algorithm for the graph from Figure 5.3.5 is shown in Figure 5.3.7. It is preceded with Hadamard gates that create superposition of all input states corresponding to all possible colorings of the graph. The oracle is the part of the so-called Grover loop quantum circuit which includes some other output-processing circuit and is repeated many times in the full Grover algorithm (Figure 5.3.8), which will be discussed in full detail in Chapter 10. At this point our only goal was to explain the concept of a quantum oracle and its design using quantum gates. Remember that using reversible non-quantum gates is not possible in the oracle for Grover algorithm, because they would not produce and process the superpositions of quantum states which are fundamental to the Grover algorithm. In this example the oracle is very simple and can be designed by hand. In general, the oracle is very complex, its design will require automation and the book produces software (classical) and hardware/software (quantum) tools for this automation.
We believe that in future high level languages will be developed that will automatically design, adapt and reconfigure oracles thus the user will program in them without realizing the complexity of created circuits, as it is now in case of VHDL programming for ASIC or FPGAs.
[image: image50.emf]
Figure 5.3.7: Quantum array realized for the classical oracle from Figure 5.3.6. Observe three additional ancilla bits. There is 4 ancilla qubits here and this is not taking into account additional ancilla qubits necessary for realization of the four 4×4 Toffoli gates.
Figure 5.3.7 illustrates three quantum comparators (a ≠ b), (b ≠ c), (a ≠ c) quantumly ANDed to give the minimum solution of its classical counterpart in Figure 5.3.6. Mirror gates are added to preserve the original values in qubits b1, b2, b3, c1, c2 and c3. This oracle requires four ancilla bits but the lower bound is only one ancilla bit. The circuit with one ancilla bit would be however very expensive.

[image: image51.emf]G =

Grover

Oracle from

Figure 3.3.7

a

1

a

2

c

3

|1>

|1>

|1>

|0>

G

-1

.

.

.

.

.

.

a

1

a

2

c

3

|1>

|1>

|1>

H Z H

.

.

Complete Grover Oracle

 Grover Loop

Figure 5.3.8: Complete Grover Loop for the simple graph coloring problem. Change inside figure to” Figure 5.3.7.”
5.4. Selected Basic Concepts and Formalisms for Classical, Reversible

and Quantum Circuits Analysis and Synthesis.
In this section we present briefly selected notions that will be used in the next chapters.
5.4.1. Tensor products.

To explain better quantum simulation used in calculating all fitness functions for quantum circuits, we have to go deeper to the analysis of quantum circuits.
[image: image52.emf]
Figure 5.4.1.1: Parallel connection of gates H and V.
Let us calculate for instance the unitary matrix of the circuit from Figure 5.4.1.1 above. We use Kronecker operation as follows:
[image: image184.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

Ä

ú

û

ù

ê

ë

é

22

21

12

11

22

22

21

12

11

21

22

21

12

11

12

22

21

12

11

11

22

21

12

11

22

21

12

11

b

b

b

b

a

b

b

b

b

a

b

b

b

b

a

b

b

b

b

a

b

b

b

b

a

a

a

a

It is also called the Tensor Product. It can be illustrated on symbolic values as in Equation 5.4.1.1 below:
[image: image185.wmf]I

m

Ä

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

Ä

ú

û

ù

ê

ë

é

-

=

1

1

1

1

2

1

1

0

0

1

1

1

1

1

2

1

4

(Equation 5.4.1.1)
[image: image186.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

Ä

=

2

1

0

2

1

0

0

2

1

0

2

1

2

1

0

2

1

0

0

2

1

0

2

1

2

1

2

1

2

1

2

1

2

1

4

I

I

I

I

m

m

m

[image: image53.emf]H

m

1

m

3

m

2

m

4

m

5

0

0

Figure 5.4.1.2: Decomposition of the famous Einstein-Podolsky-Rosen (EPR) circuit (that produces entanglement) to parallel and serial blocks in order to calculate its unitary matrix.
The decomposition of the entire circuit for EPR entanglement is shown in Figure 5.4.1.2. The formula for final unitary matrix is given in Equation 5.4.1.4 below:
[image: image54.png]=y
m @m,)
my - (7

my

Figure 5.4.1.3: Symbolic Decomposition of the EPR circuit to matrix operations corresponding to the parallel and serial blocks.
The calculations are performed step-by-step as in Equations 5.4.1.2 - 5.4.1.4 below:
[image: image187.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

=

0

2

1

0

2

1

2

1

0

2

1

0

2

1

0

2

1

0

0

2

1

0

2

1

2

1

0

2

1

0

0

2

1

0

2

1

2

1

0

2

1

0

0

2

1

0

2

1

*

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1

*

4

3

5

m

m

m

 (Equation 5.4.1.2)
[image: image188.wmf]00

0

0

=

Ä

 (Equation 5.4.1.3)
[image: image189.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

û

ù

ê

ë

é

Ä

ú

û

ù

ê

ë

é

0

0

0

1

0

1

0

1

 (Equation 5.4.1.4)
Now we can introduce in a simple way the Dirac and Heisenberg notations and their mutual links:
[image: image190.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

*

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

1

0

0

1

2

1

0

0

0

1

0

1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

2

1

Dirac Notation for the initial state:

[image: image191.wmf]1

1

2

1

0

0

2

1

1

1

2

1

0

1

0

1

0

0

0

0

2

1

1

0

0

1

2

1

+

=

+

+

+

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

Corresponding to it Heisenberg Notation:

We calculate the final output state for the input state
[image: image55.wmf]00

. This is shown in Equation 5.4.1.5 below:
[image: image192.wmf](

)

)

,

,

,

(

)

,

,

,

(

)

,

,

,

(

)

,

,

,

(

)

,

,

,

(

,

,

,

)

,

,

,

(

1

0

1

0

1

0

d

c

b

a

F

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

a

Å

=

+

×

=

×

+

×

=

=

=

 (Equation 5.4.1.5)
[image: image193.wmf]d

c

a

bcd

c

a

b

a

F

+

+

+

=

Observe that both Dirac and Heisenberg notations are useful and we have to be able to go from one of them to another one. The above type of calculations is done in any circuit analysis, for instance in every quantum simulator and while calculating fitness functions in genetic and similar algorithms for quantum circuit synthesis. Here we illustrate the Matlab simulation 5.4.1 of EPR Circuit’s (Figure 5.4.1.2) output which verified our above mathematical analysis as well. Which clearly shows the counterintuitive and revolutionary property of the EPR circuit’s Entanglement.

[image: image56.emf]m5_00 =

 0.7071

 0

 0

 0.7071

m5_01 =

 0

 0.7071

 0.7071

 0

m5_10 =

 0.7071

 0

 0

-0.7071

m5_11 =

 0

 0.7071

-0.7071

 0

Simulation 5.4.1: Matlab simulation for Figure 5.4.1.2.

5.4.2. Permutative notation for permutative circuits.

Algorithms such as MMD [Maslov05, Maslov05a, Maslov05b, Maslov06] use simple permutative notation to represent permutative circuits. This notation can be used in both the group-theory based algorithms and in the enumerative or evolutionary algorithms. This notation cannot be used for quantum circuits represented by unitary but non-permutative matrices. The example of permutative notation is shown below:
[0, 3, 1, 2, 4, 6, 5, 7]

Its corresponding truth table is shown in Table 5.4.2.1
[image: image57.png]O |l or-rr0c0co~~—
[an] O—0O—0O o -
< cooco~ -
8] O—0O—0O o -
Qo OO~ r—0O — -

a

o oo

o

Table 5.4.2.1: Truth table for reversible function [0, 3, 1, 2, 4, 6, 5, 7]. It shows that index 0 (000) is mapped to value 0 (000), index 1(001) is mapped to value 3(011) and so on.
5.4.3. Recursive use of Shannon Expansions to create trees.
5.4.3.1. Shannon expansions.
Some new quantum circuit synthesis methods that we created are based on expansions. All expansions historically started from the famous Shannon expansion, illustrated by Equation 5.4.3.1.1 below:
Example 5.4.3.1.1:
[image: image194.wmf]d

c

bcd

b

d

c

bcd

c

b

d

c

bcd

c

b

d

c

b

a

F

F

c

bcd

c

d

c

bcd

c

b

d

c

b

a

F

F

a

a

a

a

+

+

=

+

+

×

+

=

×

+

+

×

+

×

=

=

=

+

=

×

+

+

×

+

×

=

=

=

=

0

1

1

1

)

,

,

,

(

0

0

0

)

,

,

,

(

1

0

 (Equation 5.4.3.1.1)
To illustrate a practical expansion for a function, let us assume:
[image: image195.wmf]d

c

b

a

acd

abc

d

c

b

a

G

+

+

+

=

)

,

,

,

(

We will calculate Shannon expansions step by step:
[image: image196.wmf]d

c

cd

bc

d

c

b

cd

bc

G

d

c

b

d

c

b

cd

bc

G

a

a

+

+

=

+

×

+

×

+

×

=

+

=

+

×

+

×

+

×

=

0

1

1

1

0

0

Shanon Expansion in classical logic is implemented with a standard Multiplexer. This expansion can be also used in Reversible and Quantum Logic and is the base of Davio expansions and new expansions introduced in chapter 6 and [ref].
5.4.3.2. Shannon Expansion using Multiplexer
Shannon Expansion can be illustrated using a classical multiplexer, as shown in Figure 5.4.3.2.1 below. The input to data input 0 is the negative cofactor with respect to the (control) variable a, and the input to data input 1 of the mutiplexer is the positive cofactor of function F with respect to its input variable a. The special easy case of this expansion is illustrated in Figure 5.4.3.2.2.
[image: image58.png]F-(b,c,d)

F(a,b,c.d)
F,(b,c,d)

Figure 5.4.3.2.1: General representation of Shannon Expansion of Boolean function F(a,b,c,d) using a classical multiplexer. The data inputs show the cofactors with respect to the control variable a.
 [image: image59.png]F:5g+ah

Figure 5.4.3.2.2: The multiplexer and the formula from its Shannon Expansion for simple function F =
[image: image60.wmf]ah

g

a

ah

g

a

Å

=

+

 .
[image: image61.emf]
Figure 5.4.3.2.3: The quantum array for the multiplexer of Shannon Expansion from Figure 5.4.3.2.2. Functions g and h on outputs can be either reused in next stages of the quantum array or they will become garbage.
5.4.3.3. Recursive Shannon Expansions create a Tree of Multiplexers
Given is function G
[image: image197.wmf])

,

(

1

0

1

1

)

,

(

0

d

c

I

d

c

d

c

F

d

d

c

F

d

c

H

d

c

J

d

c

d

c

H

b

b

b

b

=

+

=

+

×

=

=

+

×

=

=

+

=

=

=

+

=

We will calculate recursively expansions of function G in some order of variables a, b, c, d and next we will draw the tree of these expansions. We select a as the first expansion variable and we calculate negative cofactor
[image: image62.wmf]a

G

 and positive cofactor
[image: image63.wmf]a

G

 for this variable:
[image: image198.wmf]1

1

0

0

0

1

=

+

=

=

+

=

=

×

=

=

×

=

d

I

d

d

I

d

J

d

d

J

c

c

c

c

Then expanding new functions H (b, c, d) and F (b, c, d) for variable b we get the following sub-functions.
[image: image199.wmf](

)

}

1

,

0

{

1

)

1

(

1

)

1

(

)

1

(

)

1

(

)

1

(

)

1

)(

1

(

7

6

5

4

3

2

1

0

Î

×

Å

×

Å

×

Å

×

Å

×

Å

×

Å

×

Å

×

=

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

i

c

abc

c

ab

c

ac

c

a

c

bc

c

b

c

c

c

c

PPRM

abc

b

ac

c

abc

ab

abc

bc

ab

b

abc

bc

ac

c

c

ab

b

ac

c

a

c

ab

b

a

c

ab

c

b

a

c

b

a

c

ab

c

b

a

c

b

a

Then expanding new functions J(c, d) and I(c, d) for variable c we get the following expansions.
[image: image200.wmf])

(

)

(

)

(b

)

(

)

1

(

)

(

)

1

(

)

(

)

1

)(

1

(

)

(

)

1

(

)

(

)

1

(

)

1

(

)

1

(

)

(

)

1

(

)

1

)(

1

(

)

1

(

)

1

)(

1

)(

1

(

6

4

2

0

3

2

1

0

7

6

6

5

5

4

4

3

3

2

2

2

1

1

1

0

0

All

abc

abc

b

b

b

b

ab

ab

b

b

b

bc

bc

abc

b

abc

ab

b

c

ab

b

ac

abc

b

c

b

a

b

abc

ac

ab

a

b

c

b

a

b

bc

abc

b

bc

a

b

abc

cb

ab

b

b

b

ac

c

a

b

c

b

a

b

abc

bc

ac

c

b

c

ab

b

a

b

c

b

a

b

abc

bc

ac

ab

c

b

a

b

c

b

a

b

Å

Å

Å

Å

Å

Å

Å

®

Å

Å

®

Å

Å

Å

Å

®

Å

Å

Å

®

Å

Å

Å

Å

®

Å

Å

Å

®

Å

Å

Å

Å

Å

®

Å

Å

Å

®

Å

Å

Å

Å

Å

Å

Å

Å

Å

®

Å

Å

Å

Based on recursion of the above expansions we can draw now the classical tree of multiplexers, Figure 5.4.3.3.1.
[image: image64.png]G(a,b,c,d)

a_|
G;:b+;rl G, =bc+cd+cd
,b 1
H, =cd H, =1 Fy=exd
F.=d
b
c—1
J;:d J, =0 I;:d I, =1
T[I 1

Figure 5.4.3.3.1: Multiplexer based realization of a classical circuit for function G (a, b, c, d).
[image: image65.emf]
Figure 5.4.3.3.2: Quantum array for the classical circuit from Figure 5.4.3.3.1.
Finally the quantum array corresponding to the tree of multiplexers is shown in Figure 5.4.3.3.2. Please observe many ancilla qubits. Our methods will attempt at reducing the number of these ancilla qubits. This way, the expansions and classical multiplexers can be used in quantum arrays of oracles. The concept of classical multiplexer will be next transformed to the new concept of a quantum multiplexer that plays a critical role in quantum circuits.
5.4.4. Generalized control Quantum gates with other than AND controlling functions.
Toffoli is the most important quantum gate, but we can observe that similar gates can be created with the same or even lower costs. The importance of Toffoli gate is perhaps only historical and didactical, not technical. While the Toffoli gate realizes a function of AND of its controls, other controlling functions can be realized. Figure 5.4.4.1 presents a reversible function which uses control OR of inputs a, b instead of control AND of inputs a, b. Can we realize this function in quantum? At what realization cost?

[image: image66.emf]+

a + b

ab

c

PQ

R

Figure 5.4.4.1: Quantum gate controlled by a + b. We have P = a, Q = b, R = (a+b)
[image: image67.wmf]Å

 c.
Using KMap-based synthesis methods outlined in this chapter one can find the realization of function (a+b)
[image: image68.wmf]Å

c from Figure 5.4.4.2.
[image: image69.emf]
Figure 5.4.4.2: A non-optimal realization of (a+b)
[image: image70.wmf]Å

 c. It uses a complete Toffoli gate as its part.
We can realize this gate much cheaper using the CV/CV† approach originated by Barenco and much extended in chapter 6 of this book. The quantum circuit that realizes the function realized by the symbol-level circuit from Figure 5.4.4.1 is presented in Figure 5.4.4.3.

[image: image71.emf]
Figure 5.4.4.3: The circuit with CV and CNOT gates that realizes inexpensively the same function as the circuit from Figure 5.4.4.1.
Larger circuits using CV/CV† gates can be also built using the exhaustive reachability method developed by Hung, Song, Yang and Perkowski [Hung04, Hung06]. For instance the circuit from Figure 5.4.4.4 realizes function F = majority(a, b, c) EXOR d. This circuit was not invented in [Hung04, Hung06]. Observe that this circuit uses only truly quantum gates (2×2 primitives) and not some abstract macros with more than 2 inputs. This and similar circuits can be analyzed based on the quantum transformation rules from Figure 5.4.4.5a. Symbolic analysis of this circuit is shown in Figure 5.4.4.5b. If realized only from Toffoli macros, the circuit would be much more expensive, as shown in Figure 5.4.4.6.
[image: image72.emf]
Figure 5.4.4.4: A circuit that uses only 2*2 truly quantum gates to realize an otherwise complex function maj (a, b, c)
[image: image73.wmf]Å

d if realized with Toffoli gates.

[image: image74.emf]





















i

i

i

i

V

1

1

1

1

2

1

 

NOT NOT

NOT NOT V V

NOT V

 

 



2

V.V

†

= V

†

.V = I ; V

†

. V

†

= NOT

 Figure 5.4.4.5a: Basic quantum algebra rules for CV and CV† gates.

[image: image75.emf]

V

c

0 1

00

ab

01

11

10

VVV

V

VV V

VV

VV

c

0 1

00

ab

01

11

10

V

+

0

c

0 1

00

ab

01

11

10

0

1

0

0

1

1

1

V

+

V

+

V

+

ac bc ab

  

Figure 5.4.4.5b: Symbolic graphical analysis of the circuit from Figure 5.4.4.4. The graphical method of composing Quantum KMaps (QMaps) shown here is the base of our methods presented in chapter 6. Symbol
[image: image76.emf].

 stands for composing symbolic QMaps.
[image: image77.emf]
Figure 5.4.4.6: A non-optimal structure for the circuit from Figure 5.4.4.4. As we see this circuit is much more expensive than the circuit using CV/CV† gates (from Figure 5.4.4.4) because it uses the non-directly –quantum-realizable 3×3 Toffoli gates of high quantum realization cost each.
[image: image78.emf] [image: image79.emf]
Figure 5.4.4.7: 000. Realization of function
[image: image80.wmf]c

b

a

c

Å

+

=

)

(

 using only 2-qubit quantum primitives.
[image: image81.emf] [image: image82.emf]
Figure 5.4.4.8: 001. Realization of standard Toffoli gate.
Figures 5.4.4.1 and Figure 5.4.4.4 presented thus two powerful generalizations of CV/CV† based Toffoli gate. They were not known to Barenco [Barenco95] and Smolin [Smolin96]. How far can we go in using the quantum primitives CV and CV† to create powerful permutative macros? This is answered in Figures 5.4.4.7 – 5.4.4.15.
[image: image83.emf] [image: image84.emf]
Figure 5.4.4.9: 010 Realization of function
[image: image85.wmf]c

b

a

c

Å

=

 using only 2-qubit quantum primitives.
[image: image86.emf][image: image87.emf]
Figure 5.4.4.10: 011 Realization of function
[image: image88.wmf]c

b

a

c

Å

=

 using only 2-qubit quantum primitives.
[image: image89.emf][image: image90.emf]
Figure 5.4.4.11: 100 Another realization of function
[image: image91.wmf]c

b

a

c

Å

=

 using only 2-qubit quantum primitives.
[image: image92.emf][image: image93.emf]
Figure 5.4.4.12: 101 Another realization of function
[image: image94.wmf]c

b

a

c

Å

=

 using only 2-qubit quantum primitives.
[image: image95.emf][image: image96.emf]
Figure 5.4.4.13: 110 Another realization of standard Toffoli gate.
[image: image97.emf][image: image98.emf]
Figure 5.4.4.14: 111 Another realization of function
[image: image99.wmf]c

b

a

c

Å

+

=

)

(

 using only 2-qubit quantum primitives.
[image: image201.wmf]3

3

2

1

0

1

1

0

2

2

0

0

0

3

2

1

0

)

(

)

(

)

(

1

c

ab

b

b

b

b

c

b

b

b

c

a

b

b

c

b

ab

b

b

a

b

b

a

b

b

a

b

Å

Å

Å

Å

Å

Å

Å

Å

×

=

Å

Å

Å

[image: image202.wmf]ac

b

a

d

c

Å

Å

[image: image203.wmf])

(

)

(

)

(b

)

(

)

1

(

)

(

)

1

(

)

(

)

1

)(

1

(

)

(

)

1

(

)

(

)

1

(

)

1

(

)

1

(

)

(

)

1

(

)

1

)(

1

(

)

1

(

)

1

)(

1

)(

1

(

6

4

2

0

3

2

1

0

7

6

6

5

5

4

4

3

3

2

2

2

1

1

1

0

0

All

abc

abc

b

b

b

b

ab

ab

b

b

b

bc

bc

abc

b

abc

ab

b

c

ab

b

ac

abc

b

c

b

a

b

abc

ac

ab

a

b

c

b

a

b

bc

abc

b

bc

a

b

abc

cb

ab

b

b

b

ac

c

a

b

c

b

a

b

abc

bc

ac

c

b

c

ab

b

a

b

c

b

a

b

abc

bc

ac

ab

c

b

a

b

c

b

a

b

Å

Å

Å

Å

Å

Å

Å

®

Å

Å

®

Å

Å

Å

Å

®

Å

Å

Å

®

Å

Å

Å

Å

®

Å

Å

Å

®

Å

Å

Å

Å

Å

®

Å

Å

Å

®

Å

Å

Å

Å

Å

Å

Å

Å

Å

®

Å

Å

Å

[image: image204.wmf]ú

û

ù

ê

ë

é

+

-

-

+

Ä

ú

û

ù

ê

ë

é

-

i

i

i

i

1

1

1

1

2

1

1

1

1

1

2

1

[image: image100.emf]

[image: image101.wmf]c

b

a

Å

+

)

(

[image: image102.wmf]c

b

a

Å

+

)

(

 d c

Figure 5.4.4.15: Example of cascading new gates from Figure 5.4.4.7 – 5.4.4.14.
Observe that by permutating CV and CV† gates, one can create many useful gates as shown in Figures 5.4.4.7 – 5.4.4.14. Though we find repeating gates of the same functionality with different circuits like Figure 5.4.4.9 and Figure 5.4.4.12. Also Figure 5.4.4.10 and Figure 5.4.4.11. However, this repetition does not lead to any disadvantage, besides, we can use this as well. It is representations-two ways to realize the same functionality. The mirror gates can be used (Figure 5.4.4.15) to restore original values of input variables a, b, c, d while creating larger gates from these primitives (as useful in oracles). Also, by removing the right most CNOT gate new variants of Peres gates are created. Thus creating Peres families that are larger than Toffoli families because in Peres families many linear functions are returned in all upper bits instead of only the original inputs. Our methods from chapter 6 and [ref] will extend these ideas.
5.4.5. Controlled-root-of-NOT gates.

G gate is the square root of square root of NOT. Obviously the tautological transformations from Figure 5.4.5.1 below apply to this gate.

[image: image103.emf]=

=

Figure 5.4.5.1: Realization of Controlled-NOT and Controlled-V gate from Controlled-G gates.
Similar transformations can be created for arbitrary root-gates-of NOT gates; NOT1/k , k = 4, 5, 6……

Using a combination of new methods from the book all circuits derived by Barenco using V and G in his famous paper [Barenco95] can be created as just few special cases.
5.4.6. Controlling V gates based on arbitrary controls.
Figure 5.4.6.1 presents a circuit in which the Controlled-V gate is controlled by an arbitrary function. This circuit concept generalizes the standard Controlled-V gate.

[image: image104.emf]0

00

01

11

10

00

01

11

10

1

0 0

0

0

0 0

0 1

1

1

1

1

1

1

0

1

0

1

NOT NOT

b

a

c

d

[image: image105.emf]NOT CONTROL c b a b a c] [ 



NOT CONTROL cb a b] [

Figure 5.4.6.1: Controlled- V gates with arbitary controlling functions.

The analysis of the circuit from Figure 5.4.6.1 is shown in Quantum Kmap from Figure 5.4.6.2.

[image: image106.emf]

V

c

0 1

00

ab

01

11

10

0

V

V

V V

0

0

V

c

0 1

00

ab

01

11

10

0

V V

0 0

0

0

NOT

c

0 1

00

ab

01

11

10

I

NOT

V

(d)

V

(d)

I

V

(d)

V

(d)

Figure 5.4.6.2: QMap Analysis of the circuit using Controlled-V(Controlled-
[image: image107.wmf]NOT

) gates with arbitary controlling functions from Figure 5.4.6.1. Operator
[image: image108.emf]

 means composition. I is the identity transformation.
[image: image109.emf]
Figure 5.4.6.3: Quantum circuit using Controlled-V(Controlled-
[image: image110.wmf]NOT

) gates with arbitary controlling functions from Figure 5.4.6.2.
The (non-optimized) realization of the circuit from Figure 5.4.6.1 using quantum array is shown in Figure 5.4.6.3.
(a)
[image: image111.emf]I

c

0 1

00

ab

01

11

10

I

V

I

V

I

V

V

V

c

0 1

00

ab

01

11

10

I

NOT

I

V

V

NOT

V

V.V+

c

0 1

00

ab

01

11

10

I

NOT.V.

V+

V.V+

I

NOT

NOT

NOT

V

c

0 1

00

ab

01

11

10

I

NOT.V

V

V

V.V

NOT

V

T1 T2 T3

T1

T4

(b)
[image: image112.emf]

T1 T2 T3 T4

(c)[image: image113.emf]
Figure 5.4.6.4: Another example of Controlled- V gates with arbitrary controlling functions (linear in this case). (a) Quantum QMap analysis of the circuit from Figure 5.4.6.4b.(b) Quantum Circuit analyzed from left to right in Figure 5.4.6.4a., (c) Quantum circuit as in Figure 5.4.6.4b without analysis stages Ti , i = 1, …4. Inputs b, c are not restored.
Another circuit of this type is shown in Figure 5.4.6.4. In addition, the analysis of this circuit using quantum truth table is shown in Figure 5.4.6.5. The quantum states are shown for the lowest (output) qubit in points T1, T2, T3 and T4 from the quantum array from Figure 5.4.6.4, respectively.

[image: image114.emf]
Figure 5.4.6.5: Analysis of several functions from cascade (Figure 5.4.6.4) with a single truth table. This method of analysis is more convenient in some cases than the analysis method based on many Quantum QMaps.

[image: image115.emf]V

a

V

b

b a



V

a

V

b

=

V

a

.

b

b a

=

a

.

b

V

+

 (a) (b)

Figure 5.4.6.6: Graphical Illustration of the general algebra rules for controlling quantum gates by Boolean variables.
We invented a set of general graphical transformations, which we can use as general algebra of controlled quantum gates. Say we have the control like in Figure 5.4.6.6 (a), where binary qubits a and b are controlling V gates . It is equivalent to qubit a
[image: image116.wmf]Å

 b controlling V, and composed with qubit a • b (AND (a, b)) controlling the NOT gate (CNOT). This is a very useful identity, which we can use in synthesis later on. From Figure 5.4.6.6(a) we can derive Figure 5.4.6.6(b). This is very useful, this is a better way of explaining controlled circuits in the form of a new algebra. We can say that this kind of transformations is related to analysis of circuits, which is next very useful in our synthesis methods for Quantum Circuits.

[image: image117.emf]a

b

0 1

0

1

V

V V V

a

b

0 1

0

1 V V V

V

=>

V

.

V = NOT

Figure 5.4.6.7: QKMap based analysis of Figure 5.4.6.6a.
QMap interpretation of the rule from Figure 6.4.6.6a is given in Figure 5.4.6.7. Similarly, the QMap interpretation of the rule from Figure 5.5.6.6b is presented in Figure 5.4.6.8.

[image: image118.emf]a

b

0 1

0

1 NOT

=

. .

a

b

0 1

0

1 V V

a

b

0 1

0

1 V

V

a

b

0 1

0

1

V

+

a

b

0 1

0

1 V.V I

=

V

+

I

Figure 5.4.6.8: Presents QKMap analysis of Figure 5.4.6.6b.
[image: image119.emf]
Figure 5.4.6.9: The minimization that can be applied on the gate level. Here two NOT gates can be cancelled. More optimizing transformations can be next extended.
The Figure 5.4.6.1 can be transformed to the circuit from Figure 5.4.6.9. Template matching transformations [Miller03] can be next used iteratively on this circuit to simplify it.
5.4.7. Universal 3 qubit circuits.
A new approach to realize arbitrary 3-qubit circuits is shown in Figure 5.4.7.1. Analyzing every possible combination of control signals a and b we can verify that the schematics on the left and on the right of Figure 5.4.7.1 are equivalent in the sense of having their unitary matrices equal.

[image: image120.emf]X

ZX

0

1

a

b

ZYX

YX

2

3

c

F

X Y Z

a

b

c

 =

X(c)

for ab = 00

ZX(c)

for ab = 01

YX(c)

for ab = 10

ZYX(c)

for ab = 11

Figure 5.4.7.1: Quantum Circuit from controlled gates versus equivalent to it Quantum Multiplexer Circuit.

The transformation at the right side of Figure 5.4.7.1 shows that the Quantum multiplexer implemented using operators X, ZX, YX, ZYX as data is equivalent to the circuit from controlled gates at the left. This can be verified by multiplying corresponding symbolic unitary matrices. Several similar transformations exist.
5.5. Search and Optimization.
5.5.1. Evolutionary, Search and Quantum Search approaches to Synthesize Quantum Circuits from the above-introduced gates and circuits

Much of research presented in this book was to develop a general-purpose algorithmic approaches that would automatically design application specific quantum algorithms for few selected classes of binary logic synthesis and minimization problems. They are included in chapter 6 of this book and in [ref]. However, in order to understand these approaches, sufficient background on classes of functions and design methods for them will be first necessary. Why we believe these algorithms will be better than the approaches used so far?
When we learned about the concepts of evolvable hardware and machine learning, we wanted to make our methods for quantum synthesis to be very general and applicable to logic synthesis, minimization, Data Mining, Knowledge Discovery, and Evolvable Hardware.

Several other new approaches were created in the past at PSU and elsewhere to utilize search and evolutionary techniques for both logic synthesis and circuit minimization of AND/EXOR circuits. Initially developed by Karen Dill [Dill97, Dill97a, Dill97b, Dill97c, Dill98, Dill01] for a single purpose, rather than broadly applicable to binary logic design and minimization problems some algorithms were viewed as initial trials for the biology inspired methodologies. The results of Karen Dill, Martin Lukac and Normen Giesecke as well as other researchers (about evolutionary, Particle Swarm Optimization (PSO), Bacteria Foraging (BF) methods and cultural, social memetic algorithms) have been critically analyzed by us and new approaches have been thus developed in this book and proved to be better by the experimental software results.

The first design in our research involved the application of various approaches for the minimization of Generalized Reed-Muller (GRM) logic forms. As may be recalled, the GRM equation type is a general, canonical expression of the Exclusive-Or Sum-of-Products (ESOP) type, in which for every subset of input variables there exists not more than one term with arbitrary polarities of all variables. This AND-EXOR implementation has been demonstrated to be economical, generally requiring fewer gates and connections than that of other variants of AND-EXOR logic such as particularly PPRM and FPRM. GRM logic is also highly testable, making it desirable for quantum designs. Research from [Dill97] used standard Darwinian and Lamarckian evolution [Dill01] as a model from which logic minimization algorithms are determined. To date, the few developed exact minimization algorithms have required nearly exhaustive searches on standard computers and are quite time consuming. We found this model insufficient and thus the ideas of search and quantum search were added and combined with the evolutionary methods. The goal of using our new approaches for AND/EXOR logic in this book was to create non-exact heuristic minimization techniques that would constitute an improvement in the quality for the optimizations produced by the heuristic (rule-based) methods known from the literature. Moreover, the minimization methods developed in this book are applicable to both single-output and multiple-output permutative quantum circuits.

For completely specified data, the GRM equation form has been proven difficult to minimize, as no exact minimization method (other than a nearly exhaustive search) has been devised. For instance, Miller and Thomson [Miller94a] give an exhaustive search algorithm for the FPRM form [Miller94b, Drechsler99]. Exhaustive search methods on classical computers are time consuming, making an effective, and high-quality, approximate minimization method very attractive. On the other hand, the exhaustive methods are of interest in Grover-like quantum computing where the efficiency is not a problem to be practically considered, since such computers simply do not exist. The new concept with its mathematical proof is however theoretically interesting. Thus we created such quantum algorithms in [chapter 15??].
Several variants of Genetic Algorithms and Genetic Programming were used at PSU to minimize FPRM circuits [Dill97a, Dill97b, Dill97c] and various types of reversible circuits with general structures [Giesecke06, Giesecke07, Lukac02, Lukac04, Lukac05, Khan03, Khan05a, Khan05b]. For instance, several attempts were made to develop a purely evolutionary (i.e., GA with no human-designed heuristics) approach to the minimization of GRM forms. As no application-specific knowledge was incorporated to these methods [Dill97b, Dill98, Dill01], the results were remarkable as they compared favorably with that of the heuristic algorithms designed by human experts [Debnath95, Debnath96]. On the other hand, for some functions, Sasao and Debnath [Debnath98] found better solutions using heuristic knowledge-based algorithm, which showed that the evolutionary approach should be possibly equipped with more human-like knowledge and/or human intervention in the automatic solution process. The first approach to minimize incompletely specified functions has been also developed by the PSU team [Zheng95, Dill97b, Dill98, Dill01]; the GRMin software was created. But this was only done for small, single-output functions. Although Debnath and Sasao [Debnath96, Debnath98] developed a successful heuristic for GRM minimization, capable of handling functions with a large number of variables and multi-outputs, their software (not available in public domain) was applicable only to completely specified functions. Finally, we develop in this book the ECPS software culminating the efforts of the PSU team that have started many years ago. We proved experimentally on many benchmarks that the older variant of this software was better than all previous software. The tests must be done for the new version of this software.
Few authors [Green91, Mckenzie93, Varma91, Riege92, Zilic02] have considered the problem of Positive-polarity Reed-Muller (PPRM) form minimization for single-output incompletely specified functions. However, with the exception of work by Zilic and Vranesic [Zilic02], the algorithms are very inefficient for functions that have a large number of don’t cares, as the algorithm complexity increases with the amount of unspecified data. Moreover, all these algorithms cannot be adapted to the GRM form, which is quite different from that of the PPRM form.

The minimization of incompletely specified functions is well known to be more difficult than the minimization of the completely specified functions. This problem is important also because of its possible applications in Data Mining and Machine Learning. For instance, Chang and Falkowski [Falkowski97] developed a FPRM minimization algorithm for a small percentage of don’t cares. On the other hand, Zakrevskij [Zakrevskij95] developed a FPRM minimization algorithm for FPRMs that is efficient only for a very high percentage of don’t cares. Similarly, it is most difficult to minimize ESOPs for the incompletely specified functions that have 5 – 95 % don’t cares. It can thus be predicted, for GRMs also, that the minimization of few (<5%) or very many (>95%) don’t cares is easier than the case of a medium amount of don’t cares. The iGRMMIN minimization algorithm [Dill97a, Dill97b] performed well for all categories. The software developed by us [ref new – not done yet] performs even better.

As may be recalled, while more restrictive than the Exclusive-Or Sum-of-Products (ESOP) expression, the GRM equation form incorporates the Fixed-Polarity Reed-Muller (FPRM) and Positive-Polarity Reed-Muller (PPRM) forms as its special cases. The GRM is a canonical expression that allows complete freedom as to the polarity selection of each term, but there is at most one product term for every subset of variables.

The new GRM minimizing software is the second application of the GRM form to the synthesis and minimization of incompletely specified data. A multi-strategic approach was taken. Human expertise was combined with the genetic search mechanism, for the development of an efficient problem-solving expert system. The goal of using the Genetic Algorithm for GRM minimization was simply to aid the solution search process for the human-designed logic minimization heuristic.
The results of various algorithms developed in this book are compared with those from [Dill01, Sasao90a, Sasao93, Stankovic97, Lukac07]. The numerical results presented in [REF NEW PAPER TO COME] supersede the previous results from other authors. These results were obtained also for a more general family of structures than GRM. The conceptual and software approaches from this book are also applicable to PPRM forms, FPRM forms, and other canonical forms, as well as to ESOPs, factorized circuits, and circuits with linear preprocessor and affine circuits thus allowing to compare uniformly many variant designs of a circuit in quantum technologies.

5.5.2. Formalism for Expansions.
Example 5.5.2.1: A GF-PPRM, in GF(2), is generated by the application of the Positive Davio Expansion, (i.e. all literals,
[image: image121.wmf]i

x

s have positive polarity). For binary logic using three variables, an example is given.

f(x1, x2, x3) = a0 (a1x1 (a2x2 (a3x3 (a4x1x2 (a5x1x3 (a6x2x3 (a7x1x2x3

Example 5.5.2.2: A GF-GRM, in GF(2), has both positive and negative polarities. For binary logic using three variables, an example is given.

f(x1, x2, x3) = a0 (a1X 1 (a2X 2 (a3X 3 (a4X 1X 2 (a5X 1X 3 (a6X 2X 3 (a7X 1X 2X 3

Where,

X= x or
[image: image122.wmf]x

In addition to being the standard Reed-Muller forms, the expressions in Examples 5.5.2.1 and 5.5.2.2 are actually polynomial forms in GF(2) for three variables.

With this background, the Galois Fields from chapter 9 can now be fully related to the Reed-Muller Logic. Most central to the development of Reed-Muller logic forms, the classical Shannon Expansion utilizes a variable polarity separation technique to represent a function. The Shannon Expansion for a variable x is obtained by splitting the variable into two different polarities, x and
[image: image123.wmf]x

. The relation between these polarities can be represented as x = 1 (
[image: image124.wmf]x

. For a binary function f(x1, x2, … , xn) the Shannon Expansion, originally developed by Boole [Boole54, Brown90] is:

f(x1,…,xn) =
[image: image125.wmf]1

x

f(x1=0,x2,x3,…,xn) (x1f(x1=1,x2, x3,…,xn)

f(x1,…,xn) =
[image: image126.wmf]x

f0 (xf1
Equation 5.5.2.1: f(x) =
[image: image127.wmf]x

f0 (xf1

(Shannon Expansion)

Relating the Shannon Expansion to a KMap, another perspective can be gained about its application. This gives a visual depiction of how the components “fit” together to make the total function. In Figure 5.5.2.1, a simple KMap is given, with binary values represented by variables, with subscripts labeled for their location.

[image: image128.wmf]f

00

f

01

f

10

f

11

x

y

0

0

1

1

Figure 5.5.2.1: Representation of binary cofactors in the Karnaugh map.

In Equation 5.5.2.1 for the Shannon Expansion, f0 and f1 are simply rows of the KMap, where x = 0 and 1, respectively. These are given in Figure 5.5.2.2 below.

[image: image129.wmf]f

0

 = f

x=0

 =

f

00

f

01

f

1

 = f

x=1

 =

f

10

f

11

Figure 5.5.2.2: Graphical representation of Shannon expansion for the Karnaugh map from Figure 5.5.2.1.

Starting with the Shannon Expansion, then, the KMap is related as follows in Figure 5.5.2.3.

f(x)
=
[image: image130.wmf]x

f0 (xf1

Shannon Expansion, GF(2)

[image: image131.wmf]f

00

f

01

0

1

1

0

x

f

10

f

11

f

0

f

1

x

[image: image132.wmf]0

f

00

0

f

01

f

10

0

f

11

0

[image: image133.wmf]f

10

f

00

f

11

f

01

Figure 5.5.2.3: Step-by-step calculation of Shannon expansion with KMap visualization.
The Shannon Expansion shown in algebraic form can also be represented as a decision tree. This is shown in Figure 5.5.2.4.

[image: image134.wmf]f

S

S

S

f

00

f

01

f

10

f

11

1

x

=

x

0

x

=

1

y

=

y

0

y

=

1

y

=

y

0

y

=

l

k

x

y

y

Figure 5.5.1.4: Shannon Tree for binary logic of two variables. Two notations are used for negations, this is useful in mv generalizations of such trees.

[image: image135.emf]
Figure 5.5.2.5: The Quantum array with ancilla bits for nodes l, k, and f drawn directly from the decision diagram from Figure 5.5.2.4.
The Davio Expansions in binary logic are well known and derived from the Shannon Expansion by considering either the positive polarity (x) or negative polarity (
[image: image136.wmf]x

) of the variable x. (Alternatively, starting from either the Positive Davio or Negative Davio, the Shannon Expansion may be derived). These derivations are shown in Equations 5.5.2.2 and 5.5.2.3 below. The Shannon, Positive Davio, and Negative Davio Expansions may be utilized to derive all possible expansions, to obtain all logic family forms, trees, and decision diagrams.

Derivation of Positive Davio Expansion:

Shannon
f(x)
=
[image: image137.wmf]x

f0 (xf1

By substituting
[image: image138.wmf]x

 = x (1

f(x)
= (x (1)f0 (xf1

f(x)
= xf0 (f0 (xf1

f(x)
= x(f0 (f1) (f0

Positive Davio:
f(x)
= x(f0 (f1) (f0
We derive here Davio expansions because they are a fundament of more complex expansions that we will introduce in the sequel.

Equation 5.5.2.2: The Positive Davio Expansion for binary (GF(2)) logic is the following:

f(x) = x(f0 (f1) (f0
[image: image139.emf]
Figure 5.5.2.6: Part of a quantum array to realize the positive Davio expansion, where f0 and (f0 (f1) are functions of remaining variables, which may require ancilla bits.
Example 5.5.2.3:

Let
[image: image140.wmf]ab

b

a

x

ab

bx

ax

f

Å

Å

=

Å

Å

=

)

(

. Thus the cofactors with respect to variable x are the following:

 f
[image: image141.wmf]x

 = f |x = 0 = ab
 f x = f |x = 1 = a (b (ab = (a + b)

The Boolean difference is

 f0 (f1 = f
[image: image142.wmf]x

(fx = ab ((a (b (ab) = a (b

From this we can draw the quantum array from Figure 5.5.2.7. Observe the mirror circuit to restore variable b.
[image: image143.emf]
Figure 5.5.2.7: Graphical representation of Positive Davio expansion for function
[image: image144.wmf]ab

b

a

x

ab

bx

ax

f

Å

Å

=

Å

Å

=

)

(

.
Derivation of Negative Davio Expansion:
Shannon
f(x)
=
[image: image145.wmf]x

 f0 (xf1

By substituting x =
[image: image146.wmf]x

 (1

f(x)
=
[image: image147.wmf]x

f0 ((
[image: image148.wmf]x

 (1)f1

f(x)
=
[image: image149.wmf]x

f0 (
[image: image150.wmf]x

f1 (f1

f(x)
=
[image: image151.wmf]x

 (f0 (f1) (f1

Negative Davio:
f(x)
=
[image: image152.wmf]x

 (f0 (f1) (f1
Equation 5.5.2.4: The Negative Davio Expansion for binary (GF(2)) logic

f(x) =
[image: image153.wmf]x

 (f0 (f1) (f1
The realization of Negative Davio Expansion in quantum array is represented in Figure 5.5.2.8. As the cost of NOT is negligible in all quantum technologies, the negative and positive Davio expansions should be used on equal terms in all synthesis algorithms leading to improved results with respect to the approaches that use only the Positive Davio. This is analogical to the superiority of FPRM over PPRM.

[image: image154.emf]
Figure 5.5.2.8: Realization of Negative Davio Expansion.

Expansion trees provide a graphical representation of functional components. As a diagram of cofactors and multipliers (constants), they provide a visual depiction of decision trees, which are a useful tool in deriving the forms of an algebraic family and find also applications in Data Mining.

Expansions such as the Shannon, Positive and Negative Davio expansions can be applied to functions, as a variable separation technique, creating an expansion tree diagram. In expansion tree diagrams, several expansion nodes may be combined, such that each node on a level, corresponding to an expansion variable, has one of the defined expansions. The total function (over the entire tree), in its new form, can then be re-constructed by combining the cofactors and multipliers for each of the branches with the EXOR operation. These methods were used to derive circuits and algorithms from this and next chapters of our book.
5.6. Butterfly diagrams for FPRM Forms

This section contains preliminary background discussion on the theory of butterfly diagrams for FPRM forms. Butterfly diagrams are used in transformations and optimizations of AND/EXOR spectral logic [Falkowski97, Falkowski98, Falkowski03] and in our oracles in chapter 15 and next.
A switching function is commonly described in a sum-of-minterms form that is canonic and which in the binary case represents a collection of conjunctive terms joined by a disjunctive operator. As an example, all binary functions of three variables may be expressed in the form

[image: image155.wmf]0123112321233123

4123512361237123

Fmxxxmxxxmxxxmxxx

mxxxmxxxmxxxmxxx

=+++

++++

where mi({0,1} are commonly referred to as the minterms of the function f. It can be easily proved that every OR operator in this formula can be replaced with EXOR operator because all the minterms are pairwise disjoint. Alternatively, such functions may also be represented as a Reed-Muller expansion of a given polarity using a collection of conjunctive terms joined by the modulo-additive operator as

[image: image156.wmf]3

2

1

123

3

2

23

3

1

13

2

1

12

3

3

2

2

1

1

0

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

1

x

x

x

a

x

x

a

x

x

a

x

x

a

x

a

x

a

x

a

a

Å

Å

Å

Å

Å

Å

Å

where ai({0,1} are the FPRM spectral coefficients and
[image: image157.wmf]i

x

ˆ

represents a literal in either complemented or uncomplemented form consistent for all values of i. The particular assignment of polarities of the dependent variables
[image: image158.wmf]i

x

ˆ

 leads to the polarity number. For example
[image: image159.wmf]3

,

4

,

7

3

2

1

3

2

1

3

2

1

®

®

®

x

x

x

x

x

x

x

x

x

, etc.

The problem of interest in several classical, reversible and quantum logic synthesis problems is to find the polarity number
[image: image160.wmf]PT

£

 such that a Reed-Muller expansion can be formed where at least T spectral coefficients are zero-valued. The solution of this problem allows for the realization of a FPRM expansion that utilizes no more than T conjunctive operations and is a problem of interest for the logic synthesis and verification community. We discuss here the FPRM case, but similar techniques are used for other canonical AND/EXOR forms such as GRM, GPMPRM [Zeng95] and other group-based forms (Linearly Independent logic expressions) [ref].

The two expressions shown previously are both canonical forms (they may be affine functions in a special case) that are related by a linear transformation. This transformation is well-known and is commonly characterized by a linear transformation matrix as the fixed-polarity Reed-Muller transform [Perkowski97, Perkowski97a, Perkowski97c]. The structure of this transformation matrix can be expressed as a Kronecker (or tensor) matrix product where each dependent variable is represented by a matrix representing a given polarity. As an example, the transformation matrix for the PPRM transformation is given as

[image: image161.wmf]1.

1

10

11

n

PPnPi

i

MMM

=

éù

==Ä

êú

ëû

 EMBED Equation.DSMT4 [image: image162.wmf]
For an FPRM, the negative polarity matrix used in forming the transformation matrix
[image: image163.wmf]1

N

M

 is used to represent complemented variables and that of
[image: image164.wmf]1

P

M

 is used for positive-polarity variables. As an example the transformation matrix for an FPRM of polarity 5 is formed as

[image: image165.wmf]111

111011

.

011101

NPN

MMM

ÄÄ

éùéùéù

=ÄÄ

êúêúêú

ëûëûëû

Due to the Kronecker product decomposition of an FPRM transformation matrix, the techniques first attributed to [Lee86, Li06] may be used to represent the transformation in the so-called “butterfly” signal flow-graph (also known as a “fast transform”) where edges represent multiplicative weights (in this case all weights are unity) and vertices represent additions modulo-2, shown in Figure 5.6.1. Here we also add more details about the butterfly structure with Exor Map and the mapping of coefficient of polarity in KMap for better explaining of our method.

[image: image166.png]

Figure 5.6.1: Coefficients of cells of 2-variable KMap for symbolic transformation.

The symbolic transformation for coefficients from Figure 6.6.1 given as follows:
[image: image205.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

Ä

ú

û

ù

ê

ë

é

22

21

12

11

22

22

21

12

11

21

22

21

12

11

12

22

21

12

11

11

22

21

12

11

22

21

12

11

b

b

b

b

a

b

b

b

b

a

b

b

b

b

a

b

b

b

b

a

b

b

b

b

a

a

a

a

From above symbolic transformation we can get the butterfly circuit for this transformation, as shown in Figure 5.6.2 below.

[image: image167.emf]b

0

b

1

b

2

b

3

c

1

c

0

c

2

c

3

10

0

1

11

0

1

11

1

0

Figure 5.6.2: Butterfly structure for transforming minterms bi of a Kmap to spectral coefficients ci of the corresponding PPRM form for two variables.

From the outputs of the butterfly in Figure 5.6.2 we get the symbolic transformation as below:

[image: image168.wmf]c

c

a

c

b

c

ab

a

b

ab

a

b

0

2

1

3

1

1

1

0

1

Å

Å

Å

=

Å

·

Å

·

Å

·

=

Å

Å

Now, Figure 5.6.3 explains the symbolic transformation of butterfly structure in Exor Map for positive polarity (a = 1, b = 1) and the mapping of polarity coefficients in the KMap.

[image: image169.emf]a

b

0 1 0

1

0 1

0 1

a

b

0

1

0 1

a

b

0 1 b

1

0 1

a ab

a

b

0 1 1

1

0 1

1 0

 (a) (b) (c) (d)

Figure 5.6.3: Conversion of PPRM. a) The KMap of the function being realized, every cell represents the minterm of the function (b) The K-map with the groups selected to realize the function from Figure 5.6.3a, (c) Mapping of variables in product terms of PPRM in Exor Map for positive polarity, (d)Every cell in this positive polarity Exor Map is now not a minterm but a Exor Map coefficient on ci from the butterfly structure in Figure 5.6.2. Thus
[image: image170.wmf]ab

b

a

b

a

b

a

Å

=

Å

=

Å

Å

1

as in Figure 5.6.3a.
We will show and explain an Example for FPRM in butterfly structure and its Exor Map for certain fixed polarity of 3 variables (Figure 5.6.4 and Figure 5.6.5).

[image: image171.emf]RM Basis

functions

x

3

0

1

0

1

1

0

1

1

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

1

0

1

1

0

0

1

1

1

x

2

x

1

Polarity 111

1

x

1

x

2

x

1

x

2

x

3

x

3

x

1

x

3

x

2

x

1

x

2

x

3

[image: image172.emf]x

3

x

2

x

1

00

01

11

10

0 1

0

0 1

0 0

1

1

0

x

3

x

2

x

1

00

01

11

10

0 1

0

1 1

0 1

1

1

0

 (a) (b) (c)

Figure 5.6.4: Conversion from minterms to FPRM with polarity 111 (PPRM). (a) A Butterfly signal flow-graph for the polarity 111 of function F represented by minterms at the left, (b) Karnaugh Map of the minterms, (c) Coefficient mapping in the Exor Map for polarity 111.

[image: image173.emf]x

3

0

1

1

1

1

0

1

0

0

0

0

0

0

1

1

1

1

1

0

1

0

0

1

1

1

1

0

1

1

1

1

0

x

2

x

1

Polarity 110

x

1

x

3

RM

 basis

functions

1

x

1

x

2

x

1

x

2

x

3

1

x

3

x

2

x

2

x

3

[image: image174.emf]x

3

x

2

x

1

00

01

11

10

0 1

0

0 1

0 0

1

1

0

x

3

x

2

x

1

00

01

11

10

0 1

1

0 1

1 1

0

1

1

 (a) (b) (c)

Figure 5.6.5: Conversion from minterms to FPRM with polarity 110. (a)Butterfly signal flow-graph for the polarity 110 of function F, (b) Karnaugh Map of the minterms and (c) Coefficient mapping in the Exor Map for polarity 110.
Figure 5.6.4 describes the Butterfly transformation equivalent to:

[image: image175.wmf]3

2

1

3

2

3

1

2

1

3

2

2

1

2

3

2

1

3

1

2

1

1

3

2

1

3

1

3

1

2

3

2

3

2

1

3

2

1

1

2

3

2

3

1

)

1

(

1

(

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Å

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

As is described in detail in Chapter 14 the butterfly diagrams may be created for any given polarity number for the FPRM expansion. Unfortunately, finding the “best” polarity number and its corresponding maximal number of zero-valued FPRM coefficients resulting in the “best” butterfly structure is very challenging. In Chapter 14 of this book we show how the use of quantum logic circuits can give an optimal polarity number more efficiently than any existing or even any possible algorithm for a standard computer.

5.6.1. Transformation from disjoint SOP to PPRM

[image: image176.png]

[image: image177.emf]ab

c

00

01

11

10

0 1

b

0

b

1

b

3

b

2

b

6

b

7

b

4

b

5

[image: image178.emf]ab

c

00

01

11

10

0 1

1 c

bc b

ab abc

a ac

 (a) (b) (c)
Figure 5.6.1.1: PPRM transform for 3 variables (a) KMap to calculate the PPRM, (b)SOP minterm Coefficients of Kmap cells for transformation of three variables calculated below in Figure 5.6.1.2, (c)the products of variables (base functions) for PPRM that correspond to the cells of the KMap and their respective coefficients from Figure 5.6.1.1b. The KMap from Figure 5.6.1.1c is related to EXOR Maps that will be introduced in chapter 8.????
Based on coefficients and product terms from Figure 5.6.1.1b, c, we show the method to calculate the PPRM for the function from Figure 5.6.1.1(a). This is illustrated in Figure 5.6.1.2. The Figures explain several useful formalisms used to calculate the PPRM
[image: image179.wmf]abc

b

ac

c

Å

Å

Å

 of the initial function
[image: image180.wmf]c

ab

c

b

a

c

b

a

Å

Å

 from Figure 5.6.1.1a. Figure 5.6.1.3 shows the relation between the minterms and the bi coefficients in a canonical SOP formula for minterms.

[image: image206.wmf]I

m

Ä

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

Ä

ú

û

ù

ê

ë

é

-

=

1

1

1

1

2

1

1

0

0

1

1

1

1

1

2

1

4

[image: image207.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

Ä

=

2

1

0

2

1

0

0

2

1

0

2

1

2

1

0

2

1

0

0

2

1

0

2

1

2

1

2

1

2

1

2

1

2

1

4

I

I

I

I

m

m

m

Figure 5.6.1.2: Calculation of coefficients for the PPRM Circuit for function from Figure 5.6.1.1(a).
5.7. Conclusions to chapter 5.
Above we presented a unified description of basic ideas that we will use in the next chapters of the book. We gave also some examples discussing the importance of structure selection, transformation and analysis. Concluding, a successful method should take into account both the structure and the search algorithm for this structure. The next chapter will review some known structures and will introduce some new structures.

Based on this chapter we hope that we gave sufficient arguments for AND/EXOR logic as a base of algorithms for permutative quantum circuits synthesis and that we demonstrated also that the evolutionary programming approaches popular in the research literature on quantum synthesis are not sufficient. Our goal from now on will be to create efficient methods for AND/EXOR synthesis, for single-output and multiple-output function, that will allow for more efficient knowledge-based algorithms than those used so far and based on exhaustive group theory or evolutionary algorithms.

[image: image181.emf]Quantum graph

coloring oracle

Block = quantum

inequality

comparator

Composition

of blocks

PPRM

FPRM

polarities

examples

Many-qubit

gates

Universal

quantum

circuits

Quantum

realization of

circuits

permutative

Non-permutative

Toffoli

Gate

Fredkin

Gate

Peres

Gate

2-qubit

gates

2-qubit

Interaction

Gate

CV,

CV+

Single-

qubit gate

Pauli

Rotations

SchrÖdinger

Equation

Dynamics of a

Computing System

Cellular

Automata

3-qubit

gates

classical

quantum

4×4 Unitary matrices

2×2

Unitary

matrices

Hadamard

Inverter

Feynman

SWAP

GRM

Figure 5.7.1: Diagrams of main concepts introduced in chapter 6.
Various decision diagrams used for switching functions can be uniformly regarded as graphical representations related to AND-EXOR expressions, derived by considering the switching functions as functions in the Galois Field, GF(2) [Stankovic97]. The diagram of the main concepts introduced in this chapter and their mutual relations is presented in Figure 5.7.1.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

PAGE
100

[image: image208.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

=

0

2

1

0

2

1

2

1

0

2

1

0

2

1

0

2

1

0

0

2

1

0

2

1

2

1

0

2

1

0

0

2

1

0

2

1

2

1

0

2

1

0

0

2

1

0

2

1

*

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1

*

4

3

5

m

m

m

[image: image209.wmf]00

0

0

=

Ä

[image: image210.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

û

ù

ê

ë

é

Ä

ú

û

ù

ê

ë

é

0

0

0

1

0

1

0

1

[image: image211.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

*

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

1

0

0

1

2

1

0

0

0

1

0

1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

2

1

[image: image212.wmf]1

1

2

1

0

0

2

1

1

1

2

1

0

1

0

1

0

0

0

0

2

1

1

0

0

1

2

1

+

=

+

+

+

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

[image: image213.wmf])

,

(

1

0

1

1

)

,

(

0

d

c

I

d

c

d

c

F

d

d

c

F

d

c

H

d

c

J

d

c

d

c

H

b

b

b

b

=

+

=

+

×

=

=

+

×

=

=

+

=

=

=

+

=

[image: image214.wmf]d

c

a

bcd

c

a

b

a

F

+

+

+

=

[image: image215.wmf]d

c

bcd

b

d

c

bcd

c

b

d

c

bcd

c

b

d

c

b

a

F

F

c

bcd

c

d

c

bcd

c

b

d

c

b

a

F

F

a

a

a

a

+

+

=

+

+

×

+

=

×

+

+

×

+

×

=

=

=

+

=

×

+

+

×

+

×

=

=

=

=

0

1

1

1

)

,

,

,

(

0

0

0

)

,

,

,

(

1

0

[image: image216.wmf]d

c

b

a

acd

abc

d

c

b

a

G

+

+

+

=

)

,

,

,

(

[image: image217.wmf]d

c

cd

bc

d

c

b

cd

bc

G

d

c

b

d

c

b

cd

bc

G

a

a

+

+

=

+

×

+

×

+

×

=

+

=

+

×

+

×

+

×

=

0

1

1

1

0

0

[image: image218.wmf]1

1

0

0

0

1

=

+

=

=

+

=

=

×

=

=

×

=

d

I

d

d

I

d

J

d

d

J

c

c

c

c

[image: image219.wmf](

)

)

,

,

,

(

)

,

,

,

(

)

,

,

,

(

)

,

,

,

(

)

,

,

,

(

,

,

,

)

,

,

,

(

1

0

1

0

1

0

d

c

b

a

F

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

d

c

b

a

F

a

a

Å

=

+

×

=

×

+

×

=

=

=

[image: image220.wmf](

)

}

1

,

0

{

1

)

1

(

1

)

1

(

)

1

(

)

1

(

)

1

(

)

1

)(

1

(

7

6

5

4

3

2

1

0

Î

×

Å

×

Å

×

Å

×

Å

×

Å

×

Å

×

Å

×

=

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

Å

Å

Å

Å

Å

=

Å

Å

i

c

abc

c

ab

c

ac

c

a

c

bc

c

b

c

c

c

c

PPRM

abc

b

ac

c

abc

ab

abc

bc

ab

b

abc

bc

ac

c

c

ab

b

ac

c

a

c

ab

b

a

c

ab

c

b

a

c

b

a

c

ab

c

b

a

c

b

a

_1255212689.unknown

_1258402992.unknown

_1259414951.unknown

_1259415040.unknown

_1261321145.unknown

_1287095595.vsd
NOT

Hadamard

Classical

Reversible

Quantum

AND

OR

EXOR

C/CNOT

CV

CV†

@

@

@

@

@

@

@

@

@

@

@

@

@

_1287130750.vsd
 V.V† = V†.V = I ; V†. V† = NOT

_1288029378.vsd

_1287135055.vsd
Quantum graph coloring oracle

Block = quantum inequality comparator

Composition of blocks

PPRM

FPRM

polarities

examples

Many-qubit gates

Universal quantum circuits

Quantum realization of circuits

permutative

Non-permutative

Toffoli Gate

Fredkin
Gate

Peres Gate

2-qubit gates

2-qubit Interaction Gate

CV, CV+

Single-qubit gate

Pauli Rotations

SchrÖdinger Equation

Dynamics of a Computing System

Cellular Automata

3-qubit
gates

classical

quantum

4×4 Unitary matrices

2×2 Unitary matrices

Hadamard

Inverter

Feynman

SWAP

GRM

_1287095983.unknown

_1286738506.vsd
H

m1

m3

m2

m4

m5

_1287093729.vsd
G = Grover Oracle from Figure 3.3.7

a1

a2

c3

|1>

|1>

|1>

|0>

G-1

.
.

.
.

.
.

a1

a2

c3

|1>

|1>

|1>

H

Z

H

.
.

Complete Grover Oracle

 Grover Loop

_1261321221.unknown

_1261320816.unknown

_1261320828.unknown

_1259415597.vsd
f

0y =

0x =

S

S

S

1y = y

1x = x

f00

f01

f10

f11

1y = y

0y =

l

k

_1259416051.unknown

_1259415175.vsd
f00

f01

0

1

1

0

x

f10

f11

f0

f1

_1259414979.unknown

_1258404390.unknown

_1258406424.vsd
=

=

_1259414883.unknown

_1258415318.vsd
a

b

a

0

1

0

1

0

1

b

0

0

1

1

0

1

a

b

a

b

0

1

b

1

0

1

a

ab

0

1

1

1

0

1

1

0

_1258404417.unknown

_1258404342.unknown

_1258404363.unknown

_1258404286.unknown

_1258404311.unknown

_1256594067.unknown

_1256601112.unknown

_1256605655.vsd

_1258399465.unknown

_1258399509.unknown

_1258399576.unknown

_1256606640.unknown

_1256651352.unknown

_1258398891.unknown

_1256606738.unknown

_1256606066.vsd
a

b

0

1

0

1

V

V

V

V

a

b

0

1

0

1

V

V

V

V

=>

V.V = NOT

_1256604273.vsd
0

00

01

11

10

00

01

11

10

1

0

1

1

0

0

0

1

1

1

0

1

0

1

1

0

0

0

1

b

a

c

d

_1256605310.vsd
T1

T2

T3

T4

_1256601160.unknown

_1256596428.vsd
.

_1256599326.vsd
V

c

0

1

00

ab

01

11

10

V+

V+

VVV

V

VV

V

VV

VV

1

0

V+

c

0

1

00

ab

01

11

10

V+

c

0

1

00

ab

01

11

10

0

1

0

0

1

1

_1256594587.unknown

_1255252502.vsd

_1256589208.unknown

_1256591166.unknown

_1256591185.unknown

_1256590546.vsd

_1255346093.unknown

_1255348323.vsd
x3x2

x1

00

01

11

10

0

1

0

0

1

0

0

1

1

0

0

x3x2

x1

00

01

11

10

0

1

0

1

1

0

1

1

1

_1255349583.vsd
x3x2

x1

00

01

11

10

0

1

0

0

1

0

0

1

1

0

1

x3x2

x1

00

01

11

10

0

1

1

0

1

1

1

0

1

_1255352784.unknown

_1255349203.vsd
x3

0

1

1

1

1

0

1

0

0

0

0

0

0

1

1

1

1

1

0

1

0

0

1

1

1

1

0

1

1

1

1

0

x2

x1

Polarity 110

1

x1x2

x1x2x3

1

x3

x2

x2x3

x1x3

RM
 basis functions

_1255347436.vsd
x3

0

1

0

1

1

0

1

1

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

1

0

1

1

0

0

1

1

1

x2

x1

Polarity 111

1

x1

x2

x1x2

x3

x3x2

x1x2x3

RM
Basis functions

x3x1

_1255345593.unknown

_1255346042.unknown

_1255262071.vsd
.

a

b

0

1

0

1

NOT

a

b

0

1

0

1

I

V

V

=

.

a

b

0

1

0

1

V

V

=

a

b

0

1

0

1

V+

V+

a

b

0

1

0

1

V.V

I

_1255262535.vsd
ab

c

00

01

11

10

0

1

1

c

bc

b

ab

abc

a

ac

_1255213813.unknown

_1255215886.vsd
m5_00 =

 0.7071
 0
 0
 0.7071

m5_01 =

 0
 0.7071
 0.7071
 0

m5_10 =

 0.7071
 0
 0
 -0.7071

m5_11 =

 0
 0.7071
 -0.7071
 0

_1255252407.vsd

_1255214169.unknown

_1255212919.unknown

_1255213012.unknown

_1255212896.unknown

_1215165907.unknown

_1254220141.unknown

_1254258525.vsd
V

c

0

1

00

ab

01

11

10

0

V

V

V

V

0

0

V(d)

NOT

V

c

0

1

00

ab

01

11

10

0

V

V

0

0

0

0

c

0

1

00

ab

01

11

10

I

NOT

V(d)

V(d)

I

V(d)

_1254737981.vsd
b0

b1

b2

b3

c1

c0

c2

c3

1

0

0

1

1

1

0

1

1

1

1

0

_1254762072.unknown

_1254783129.unknown

_1254758470.vsd
V

a

=

V

b

V

V

a

a.b

V

b

a.b

=

V+

_1254761341.vsd
b1

ab

c

00

01

11

10

0

1

b0

b3

b2

b6

b7

b4

b5

_1254740234.unknown

_1254601100.unknown

_1254649102.unknown

_1254259273.vsd
I

c

0

1

00

ab

01

11

10

I

V

I

V

I

V

V

T1

V

c

0

1

00

ab

01

11

10

I

NOT

I

V

V

NOT

V

T2

V.V+

c

0

1

00

ab

01

11

10

I

NOT.V.V+

V.V+

I

NOT

NOT

NOT

T3

V

c

0

1

00

ab

01

11

10

I

NOT.V

V

V

V.V

NOT

V

T1

T4

_1254243628.unknown

_1254243652.unknown

_1254243324.vsd
+

a + b

a

b

c

P

Q

R

_1254222725.unknown

_1253035433.vsd
1

3

3

a

b

≠

(a ≠ b)

_1253483449.vsd
≠

≠

≠

a1

c1

a2

a3

b1

b2

b3

c2

c3

_1253559398.vsd
ZYX

YX

2

3

c

F

X

Y

Z

X

ZX

0

1

a

b

a

b

c

 =

X(c) for ab = 00

ZX(c) for ab = 01

YX(c) for ab = 10

ZYX(c) for ab = 11

_1253621523.unknown

_1253519132.unknown

_1253038340.vsd
red

blue

yellow

1

2

3

_1253055997.unknown

_1253029289.unknown

_1253032906.vsd
red

1

2

5

4

3

red

blue

blue

yellow

_1253031917.unknown

_1249658479.unknown

_1253026030.vsd
Quantum Array

M

M

Binary memory

_1249657845.unknown

_1192515189.unknown

_1215161407.unknown

_1215163870.unknown

_1215165826.unknown

_1215161536.unknown

_1215157339.unknown

_1215161186.unknown

_1215157745.unknown

_1192515193.unknown

_1215157194.unknown

_1192515195.unknown

_1192515191.unknown

_1186596540.unknown

_1186654153.unknown

_1192515185.unknown

_1192515187.unknown

_1187103538.unknown

_1192515170.unknown

_1187102336.unknown

_1186597828.unknown

_1186598151.unknown

_1186652197.unknown

_1186597741.unknown

_993724404.vsd

_1186594983.unknown

_1186596497.unknown

_1186422129.unknown

_1186422338.unknown

_1186594823.unknown

_1186422238.unknown

_1186421284.unknown

_993722792.vsd

_993724384.vsd

_993722410.vsd

