
PERSONALIZED FACE ANIMATION FRAMEWORK

FOR MULTIMEDIA SYSTEMS

by

Ali Arya
B.Sc., Tehran Polytechnic, Iran, 1989

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Department of Electrical and Computer Engineering)

We accept this thesis as conforming

to the required standard.

........................

........................

........................

THE UNIVERSITY OF BRITISH COLUMBIA

February 2004

© Ali Arya, 2004

 ii

Abstract
Advances in multimedia-related technologies are enabling new applications such as

virtual agents, video conferencing, visual effects in movies, and virtual players in computer

games. Such applications are, in turn, motivating much research in digital character and face

animation. This thesis addresses an important area in this field, Personalized Face Animation

which is concerned with creating multimedia data representing the facial actions of a certain

character, such as talking, expressions, and head movements. Much success has been

achieved for this purpose using 3D head models (general and customized to specific

individuals) and also view morphing based on 2D images. The model acquisition and

computational complexity of 3D models, and large image databases for 2D methods,

however, are major drawbacks. The thesis addresses these issues along with other important

ones, mainly realism, authoring tools, content description, and architecture of the whole face

animation system.

We propose a comprehensive framework for personalized face animation which we

call ShowFace. ShowFace integrates a component-based architecture, well-defined

interfaces, helper objects and tools with a simple, yet effective, approach to content

generation. These are paired with a language for describing face animation events. ShowFace

is designed to satisfy the following basic requirements of face animation systems:

• Generalized decoding of short textual input into multimedia objects that minimizes the

model complexity and database size

• Structured content description for face activities like talking, expressions, and head

movement, their temporal relation, and hierarchical grouping into meaningful stories

• Streaming for continuously receiving and producing �frames� of multimedia data

• Timeliness issues

• Compatibility with existing standards and technologies and

• Efficiency with regards to algorithms and required data

ShowFace achieves this objective by introducing:

 iii

• Feature-based image transformations along with a 2D image-based method for creating

MPEG-4 compatible and realistic facial actions. This is accomplished without the need

for a complicated 3D head model and/or large databases of 2D images

• A face modeling language which is an XML-based language. It is compatible with

MPEG-4 standard and specifically designed for face animation It is also capable of

describing spatial and temporal relations of facial actions, behavioural templates, and

external event handling.

• A component-based structure for development of animation applications. This structure

has a well-defined interface, independently usable components, and streaming capability

and

• A comprehensive set of evaluation criteria for face animation systems

The thesis review basic concepts and related work in the area of face animation. Then

the ShowFace system is introduced and its contributions are thoroughly discussed. A

comparative evaluation of the system features and performance is also provided.

 iv

Table of Contents
ABSTRACT.. II

TABLE OF CONTENTS ... IV

LIST OF TABLES .. VII

LIST OF FIGURES ...VIII

LIST OF ABBREVIATIONS ... X

ACKNOWLEDGEMENTS ... XII

1. INTRODUCTION... 1
1.1. BACKGROUND AND MOTIVATIONS .. 1
1.2. PERSONALIZED FACE ANIMATION ... 5

1.2.1. Problem Model.. 5
1.2.2. Objectives.. 8

1.3. THESIS STRUCTURE.. 9

2. RELATED WORK ... 11
2.1. CONTENT DESCRIPTION ... 11
2.2. CONTENT CREATION.. 18

2.2.1. Visual Content... 18
2.2.2. Audio Content ... 27

2.3. SYSTEM ARCHITECTURE .. 29
2.4. EVALUATION CRITERIA ... 29

3. FACE MODELING LANGUAGE.. 33
3.1. DESIGN IDEAS.. 33
3.2. FML DOCUMENT STRUCTURE ... 36
3.3. MODELING ELEMENTS ... 37
3.4. STORY-RELATED LANGUAGE CONSTRUCTS ... 38

3.4.1. FML Time Containers and Moves .. 38
3.4.2. Iterations in FML.. 40

3.5. EVENT HANDLING AND DECISION MAKING ... 40
3.6. COMPATIBILITY ... 41
3.7. CASE STUDIES ... 42

3.7.1. Static Document .. 42
3.7.2. Event Handling ... 43
3.7.3. Dynamic Content Generation ... 45

4. FEATURE-BASED IMAGE TRANSFORMATIONS.. 47
4.1. BACKGROUND: OPTICAL FLOW-BASED APPROACH.. 47

4.1.1. Structural Overview.. 47
4.1.2. Optical Flow Field.. 48

 v

4.1.3. Map Validation and Filtering ... 50
4.1.4. Image Warping and Final Morph... 51
4.1.5. Experimental Results .. 51

4.2. FEATURE-BASED APPROACH: BASIC CONCEPTS .. 53
4.3. FACIAL STATES AND FEATURES... 57

4.3.1. Identifying Facial States and Transitions ... 57
4.3.2. Detecting Facial Features .. 58
4.3.3. Feature Translation Functions ... 61

4.4. MAPPING FACIAL FEATURES.. 62
4.5. IMAGE WARPING.. 64

4.5.1. Facial Regions .. 64
4.5.2. Warp Function .. 65
4.5.3. Newly Appeared Areas.. 67

4.6. TEXTURE TRANSFORMATION ... 68
4.7. SUMMARY OF FIX FEATURES AND ADVANTAGES.. 71

5. SHOWFACE SYSTEM.. 72
5.1. SYSTEM ARCHITECTURE .. 72

5.1.1. Requirements... 72
5.1.2. Basic Structure.. 73
5.1.3. Streaming .. 76

5.2. SPEECH SYNTHESIS .. 80
5.3. APPLICATION DEVELOPMENT .. 83

5.3.1. SF-API... 83
5.3.2. ShowFacePlayer ... 84

6. EVALUATION AND EXPERIMENTAL RESULTS... 86
6.1. EVALUATION CRITERIA ... 86

6.1.1. Criteria Categories ... 86
6.1.2. Content.. 87
6.1.3. Architecture... 90
6.1.4. Development ... 92

6.2. EXPERIMENTAL RESULTS... 93
6.2.1. Test Procedure .. 93
6.2.2. Realism.. 95
6.2.3. Graphic Capabilities... 99
6.2.4. Speech Generation .. 100
6.2.5. Timeliness ... 100
6.2.6. Descriptiveness ... 101
6.2.7. Compatibility... 101
6.2.8. Modularity... 102
6.2.9. Computational Simplicity and Efficiency.. 102
6.2.10. Input Requirements ... 103

7. CONCLUDING REMARKS ... 104
7.1. OBJECTIVES AND CONTRIBUTIONS... 104
7.2. FUTURE RESEARCH.. 107

 vi

BIBLIOGRAPHY... 109

 vii

List of Tables
Table 1-1. Example Applications for Virtual Software Agents.. 5

Table 2-1. Facial Action Coding System, Partial List of Action Units 13

Table 4-1. Visemes List .. 53

Table 4-2. Feature Lines and Points (FaceFeature Structure)... 61

Table 4-3. Features Associated with Face Patches ... 67

Table 4-4. Features Comparison for FIX vs. Typical 3D and 2D Methods............................ 71

Table 5-1. Basic Filter Interfaces.. 78

Table 5-2. ShowFace API Methods for Filters ... 83

Table 5-3. CDSGraph SF-API Class .. 84

Table 6-1. Evaluation Criteria... 86

Table 6-2. Evaluation Criteria, Revisited ... 94

Table 6-3. Summarized Comparative Evaluation... 95

Table 6-4. Realism in Different Animation Approaches .. 99

Table 6-5. Graphic Capabilities of Different Animation Approaches.................................. 100

 viii

List of Figures
Figure 1-1. Some Applications of Virtual Software Agents... 3

Figure 1-2. Personalized Face Animation System.. 6

Figure 1-3. Personalized Face Animation and Related Domains ... 7

Figure 2-1. Interoperability in XMT... 16

Figure 2-2. Some Approaches to Object Modeling .. 19

Figure 2-3. 3D Head Models from Photographs... 20

Figure 2-4. Mesh-warping for Face Animation .. 22

Figure 2-5. Feature-based Morphing .. 23

Figure 2-6. Creating Visual Speech in MikeTalk ... 25

Figure 2-7. Video Rewrite .. 26

Figure 2-8. Facial Image Transformations Based On Static 2D Prototypes........................... 27

Figure 3-1. FML Timeline and Temporal Relation of Face Activities................................... 35

Figure 3-2. FML Document Map.. 36

Figure 3-3. FML Model and Templates.. 38

Figure 3-4. FML Time Containers and Primitive Moves ... 39

Figure 3-5. FML Iteration ... 40

Figure 3-6. FML Decision Making and Event Handling.. 41

Figure 3-7. Static Iterative FML Document ... 43

Figure 3-8. Events and Decision Making in FML .. 44

Figure 3-9. JavaScript Code for FML Document Modification ... 45

Figure 4-1. Moving/Talking Head with Correlation-based Optical Flow 48

Figure 4-2. Sample Results of Optical Flow-based Approach ... 52

Figure 4-3. Feature-based View Generation... 55

Figure 4-4. Feature-based Image Transformation .. 56

Figure 4-5. Facial Expressions.. 57

Figure 4-6. 3D Head Movements.. 58

Figure 4-7. Facial Features ... 59

Figure 4-8. Feature Detection. .. 60

 ix

Figure 4-9. Using Feature Translation Functions ... 63

Figure 4-10. Mapping Vector for Feature Islands .. 65

Figure 4-11. Newly Appeared Areas for Head Movement and Talking................................. 68

Figure 4-12. Texture Transformation ... 70

Figure 5-1. ShowFace System .. 74

Figure 5-2. ShowFaceStudio ... 75

Figure 5-3. Sample DirectShow Filter Graph ... 76

Figure 5-4. Using DirectShow Filters... 77

Figure 5-5. ShowFace Filter Graph .. 79

Figure 5-6. Smooth Connection of Diphones ... 82

Figure 6-1. ShowFace Test Procedure .. 93

Figure 6-2. Image Transformation Results ... 97

Figure 6-3. Comparing Transformed and Real Images .. 98

Figure 7-1. Some Applications of Face Animation .. 104

Figure 7-2. Face Animation System Requirements and ShowFace Contributions............... 105

 x

List of Abbreviations
2D Two Dimensional

3D Three Dimensional

API Application Programming Interface

AU Action Unit

AVI Audio-Video Interleaved

BEAT Behaviour Expression Animation Toolkit

CML Cognitive Modeling Language

COM Component Object Model

DOM Document Object Model

ECA Embodied Conversational Agent

EDL Edit Decision List

EPG Electronic Program Guide

FACS Facial Action Coding System

FAP Face Animation Parameters

FDP Face Definition Parameter

FFT Fast Fourier Transform

FIX Feature-based Image Transformations

FML Face Modeling Language

FTF Feature Translation Function

MPEG Motion Picture Experts Group

MPML Multimodal Presentation Markup Language

OCI Object Content Information

OF Optical Flow

PCF Perspective Calibration Function

SDK Software Development Kit

SF-API ShowFace Application Programming Interface

SMIL Synchronized Multimedia Integration Language

SMPTE Society of Motion Picture and Television Engineers

 xi

TTS Text-To-Speech

VDP Visible Difference Predictor

VHD Virtual Human Director

VHML Virtual Human Markup Langugae

VRML Virtual Reality Modeling Language

XML Extensible Markup Language

XMT Extensible MPEG-4 Textual format

 xii

Acknowledgements
The work presented in this thesis is done under the supervision of Dr. Babak

Hamidzadeh and Dr. Rabab Ward, at the Department of Electrical and Computer Engineering

(ECE), University of British Columbia (UBC). Their effective guidance and insightful ideas,

throughout the entire project, are greatly appreciated. This research has also benefited from

invaluable helps by Dr. David Lowe of UBC Department of Computer Science (CS), to

whom the author offers the most sincere gratitude. The author also wishes to thank the heads

and professors at UBC departments of ECE and CS, and Institute for Computing,

Information, and Cognitive Systems (ICICS), for the wonderful learning and research

opportunity they have provided to the students.

Special thanks go to ECE, CS, and ICICS staff, in particular Doris Metcalf (ECE

Graduate Program Clerk), Cathleen Holtvogt (ECE Administrative Clerk), and Kirsty

Barclay (ICICS Technical Writing Advisor), for their administrative and technical support,

and also other ECE and CS graduate students for the active, supportive, and friendly

environment they have created.

Last but not least, the author would like to thank his dear friends, Mr. Kouros Goodarzi

and his wife Parisa, for reviewing and proofreading the final manuscript, and their love,

friendship, and patient support. The kindness of these and other friends and family members

have made this research, and a lot more, possible. Thank you all !

 xiii

To my mother and sister,

who have been the greatest sources of inspiration in all my life.

 1

1. Introduction
I frequently look up reverently at the image of him (St. Ambrose) high on

the church wall, which is said to be a very close resemblance, and almost

alive and breathing in the stone. This is no small reward for having come

here. I can not describe to you the authority in his face, the majesty of his

brows, the serenity of his gaze. Were his voice not lacking, this would be

the living Ambrose.

Francesco Petrarch – 1353 [68]

1.1. Background and Motivations

From the humble cavemen painting on the walls of their caves to the esteemed masters

of the École des Beaux Arts in 19th century Paris, to the animators of recent motion pictures

such as Antz and The Matrix, visual artists have long been creating views that represent ideas,

events, and characters. Regardless of what they represent in their work, and how they choose

to do so, these artists share one common role: visualization. In the absence of other means,

their creative minds and hands were what they had to bring ideas into form. The invention of

camera brought a new player into this game.

Cameras opened up a new approach to visualization, that of actually “recording” views

instead of “creating” them 1, and gradually, they proved to be quite reliable and precise in

doing it. Although the technology was very limited at the beginning, it was not hard to

foresee its improvement over time, as it actually happened. The ability of the new devices to

record and display scenes posed an important question to visual artists: if it is possible to

record subjects, is it still significant to draw or paint them? Modern art has a definite,

positive answer to this question. The key to this answer lies in realizing that visualization is

not simply a mirroring of the “real” world. It is also about representing things that do not

exist externally, or are hard to capture on camera, or representing existing subjects but in

different ways (for instance, introducing the effect of the artist’s viewpoint and impressions).

1 In one sense, recording can be considered a special type of creating content, but here we use the term

“creation” to mean generating “new” content, even if based on existing materials.

 2

This realization led to a variety of styles that form what we now call modern art. In 1890,

Vincent Van Gogh wrote [101]:

What excites me most in my profession, much, much more than anything

else, is portraiture, modern portraiture. I endeavour to do this through

colour … you see, I should like … to paint portraits which a hundred years

from now will seem to the people of those days like apparitions. Thus I do

not attempt to achieve this through photographic resemblance, but through

our impassioned aspects, using our science and our modern taste for

colour as a means of expression and of exaltation of character.

The 20th century saw many advances in visual art and technology, and many

interactions between them, and the ability of view creation and view recording to co-exist

was proved even more strongly. The entertainment industry (and especially movies) provides

good examples of such co-existence within traditional and computer-generated animation,

visual effects, and other areas. Although pre-recorded content played a dominant role for

decades, technological achievements have given artists and other content providers the means

of “creating” desired multimedia content. As a result, we see more and more synthetically

created, or modified, elements in traditional multimedia presentations such as movies, and

also newer types such as computer games and virtual/augmented/virtualized environments

[12,63]. In all these cases we still see the key concept of visualization. Even with all the

achievements in “recording” multimedia data, “creating” is necessary when the subject does

not exist, is not available, or needs non-real modifications. Character Face Animation is an

important example in this area.

Recent developments in multimedia-related areas such as Virtual Environment, Video

Conferencing, Computer Games, and Agent-based Online Applications have drawn

considerable attention to character animation [73,76,77,92,94,95,96,98]. Replacing the audio-

visual data of “real people” with “realistic” multimedia presentations based on “virtual

software agents” seems to be very beneficial, and in some cases necessary. For example, it is

beneficial to save bandwidth in video conferencing by replacing video data with animation

“commands”; while creating new movie scenes with “unavailable” characters is a necessity.

Figure 1-1 illustrates some exemplary cases.

 3

 (a) (b)

(c)

Figure 1-1. Some Applications of Virtual Software Agents

(a) Aging James Dean by Perception Lab, University of St. Andrews, Scotland [97]
(b) Visual Speech Synthesis by MikeTalk [41]

(c) Synthetic Facial Expressions for Virtual Environments [78]

Different methods have been proposed for computer face animation [30,80,88,89,95].

While each of these methods has its own advantages, they usually require a complicated 3D

model of the head, or a relatively large database of 2D images. The capability to

“personalize” a character (i.e. animating a specific individual) without recreating the model

or database is also another missing feature in some of the proposed approaches.

Compatibility with multimedia technologies and standards, at algorithm or system levels, is

also another requirement of face animation systems that is not addressed by all proposed

methods. Examples of such compatibility are MPEG-4 1 Face Animation Parameters (FAPs)

[13,40] and streaming structure [13,59].

Besides the emergence of new techniques for creating animation content, modern

multimedia presentations have also evolved in their styles and formats. They no longer a one-

piece pre-recorded stream of audio-visual data but a combination of processed and/or

1 Motion Picture Experts Group

 4

synthesized components. These components include traditional recordings, hand-drawn

animation, computer-generated sound and graphics, and other media objects required to be

created and put together based on certain spatial and temporal relations. This makes content

description one of the basic tasks in multimedia systems and a basic means of “interaction”

with “virtual agents”. Such a description can also lead to a “generalized encoding”, since it

represents the multimedia content in a form not necessarily the same as the playback format,

and usually is more efficient and compact. For instance, a textual description of a scene can

be a very effective encoded version of a multimedia presentation that will be decoded by the

media player when it recreates the scene. Also, having the content well described makes the

search and retrieval of multimedia data easier.

Efficient encoding is not the only advantage of content specifications. In many

situations, the “real” multimedia data does not exist at all, and has to be created based on a

description of desired actions. This leads to the novel idea of representing the desired spatial

and temporal relation of multimedia objects. In a generalized view, such a description

provides a hierarchical structure with elements ranging from low-level “images,” to simple

“moves,” and more complicated “actions,” to complete “stories”. We call this a Structured

Content Description, which also requires means for defining capabilities, behavioural

templates, dynamic contents, and event/user interaction.

Finally, in addition to topics such as content creation, presentation format, and

compression, the study of computer-generated character animation (like any other software

problem) should include system-level consideration and architectural issues such as

modularity, re-use, openness, and last but not least, performance evaluation criteria. Some

questions to be answered in this regard are the following:

• What are the requirements of a face animation system?

• What architectural components are needed?

• How can we evaluate such a system?

• What do features like realism and interactivity really mean?

The work presented in this thesis tries to address the issues we have introduced so far,

in the limited context of generating face animation for specific characters. In the following

 5

section of this chapter, we focus on the problem of Personalized Face Animation and clarify

the objectives of our research in more detail.

1.2. Personalized Face Animation

1.2.1. Problem Model
Personalized Face Animation is the creation of multimedia presentation of specific

individuals with a variety of facial activities, such as talking and expressions. It utilizes a set

of input data (e.g. descriptions and commands) and some knowledge of the character to be

animated (including but not limited to 3D head models, 2D images, and textual descriptions).

Face animation is a challenging area of computer graphics and multimedia systems research

[30,80,95]. Realistic and personalized face animation is the basis for Virtual Software Agents

that can be used in many applications, including video conferencing, online training and

customer service, visual effects in movies, and interactive games. Table 1-1 summarizes

some of these applications for virtual software agents.

Table 1-1. Example Applications for Virtual Software Agents

Application Description

Video
Phone/Conference

Sending a text description of video to be created at the receiver
side; this serves as a highly efficient compression form for use in
low-bandwidth channels.
Recreating lost or extra frames in a video stream

Online Services Realistic interactive trainer, customer service representative,
operator, etc (requires proper algorithms to control the agent and
decide the actions)

Special Effects in
Movies

Recreating “unavailable” characters in new situation, with new
speeches, expressions, etc

Computer Games Interactive characters

A software agent can play the role of a trainer, a corporate representative, a specific

person in an interactive virtual world, and even a virtual actor. Using this technology, movie

producers can create new scenes including people who are not physically available. Further,

communication systems can represent a caller without any need to transmit high volume

multimedia data over limited bandwidth lines. Adding intelligence to these agents makes

them ideal for interactive applications such as on-line games and customer service. In

 6

general, the ability to generate new and realistic multimedia data for a specific character is of

particular importance in cases where pre-recorded footage is unavailable, difficult or

expensive to generate or transmit, or simply too limited due to the interactive nature of the

application.

Figure 1-2. Personalized Face Animation System

Personalized Face Animation includes all algorithms, data, modules, and activities

required to create a multimedia presentation resembling a specific person. Although most of

research on face animation has been focused on parts of the complete system, personalized

face animation requires a comprehensive framework that allows proper interaction by users

and different applications. We envision the building blocks of this framework as shown in

Figure 1-2. The input to such a system can be a combination of audio-visual data and text

commands describing the requested animation. A successful face animation system needs to

have efficient yet powerful solutions for the following functions:

• Processing the input in order to determine the required multimedia objects

• Generating the multimedia objects

• Streaming the output for the next stages (playback, file, remote systems, etc)

The above functions are implemented through the use of appropriate audio and visual

knowledge basis. These may be libraries of images and speech segments; they may also be

Application Programming Interface (API)

Visual
Knowledgebase

Visual Frame
Generator

Audio Frame
Generator

Audio
Knowledgebase

Command
Processor

Stream

Generator Runtime
Data

 7

head or vocal tract models, or pre-learned transformations and behaviours. Complexity of the

models and related computation, size and flexibility of databases, and quality of produced

multimedia objects are major concerns, in this regard. Finally, client applications should be

able to interact with the system components through a well-defined interface.

Due to its nature, personalized face animation has close relations to many other areas in

Computer Science and Engineering, for example computer graphics, computer vision,

human-machine interface, and speech synthesis, as illustrated in Figure 1-3.

Computer graphics techniques play a major role in creating virtual software agents. 3D

and 2D methods are used to model and construct views of virtual characters. In relation to

graphics techniques, image processing operations are used to apply filters and other

transformations to images. An example of this is the generation of intermediate views

between key frames using Metamorphosis (View Morphing) [15]. Optical flow (OF) is a

method used in computer vision for motion detection [14]. It can be used by software agents

for finding control points in morphing. Other computer vision techniques can also be useful

for detecting heads, faces, and facial features in order to mimic the activities of a real person,

or simply map the features to new states (e.g. moving lips of a real image to create visual

speech).

Figure 1-3. Personalized Face Animation and Related Domains

Due to the multimedia nature of software agents, speech synthesis also plays an

important role. Different text-to-speech (TTS) systems [37] can be used in order to create

proper audio output for an agent. These are discussed in the coming chapters, but due to a

Computer Vision:
Object and Feature Detection

Software
Agent

Speech Synthesis:
Personalized Voices

Image Processing:
View Morphing and Image

Transforms

Computer Graphics:
Object Modeling and

Construction

Data Communication:
Multimedia Streaming

 8

considerable amount of existing research, and the availability of commercial and free

products, audio generation is not a main focus of this thesis.

Finally, software agents need to work with data communication systems (especially

web-based ones) to provide capabilities such as streaming and efficient data transfer.

Compatibility with different multimedia streaming and compression standards is an

important issue in this regard.

1.2.2. Objectives
Considering the three major issues, content delivery, content creation, and content

description, the following features can be assumed to be important requirements in a

multimedia presentation system in general, and in face animation specifically:

• Generalized Decoding: creating the displayable content with acceptable quality based on

some inputs. This may be decoding a compressed image or making a new image, as

requested.

• Structured Content Description: a hierarchical way to provide information about content

from high-level scene description to low-level moves, images, and sounds

• Streaming: structural and computational fitness for continuously receiving and displaying

data

• Component-based Architecture: the flexibility to rearrange the system components, and

use new ones, as long as a certain interface is supported

• Compatibility: the ability to use and work with widely accepted industry standards in

multimedia systems

• Algorithm and Data Efficiency: a minimized database of audio-visual footage and

modeling/input data, and simple efficient algorithms

Recently, technological advances have rapidly increased in multimedia systems,

speech/image processing, and computer graphics, and also in new applications, especially in

computer-based games, telecommunication, and online services. These have resulted in a

rapidly growing number of related publications. These research achievements, although very

successful in their objectives, mostly address a limited subset of the above requirements. A

comprehensive framework for personalized face animation is still in the conceptual stages.

 9

This thesis introduces the ShowFace system that we have developed as a step toward such a

framework.

ShowFace uses a modular structure consisting of components for content description,

creation, and delivery (streaming and playback). The components are related to each other

through the ShowFace Application Programming Interface (SF-API) and are accompanied by

tools for off-line design and wrapper objects to simplify application development. ShowFace

introduces Face Modeling Language (FML) and Feature-based Image Transformations (FIX)

as the main tools for content description and visual content creation.

Although the research in this area has clearly improved the quality and performance of

face animation systems, a well-defined set of criteria to evaluate such systems has not been

developed, yet. The words “Realistic,” “Real-time,” and “Compatible” are often used in the

literature to describe the proposed methods and systems. These words however often lack

clear definition in a specific application domain; some equally important issues are also

omitted from many recent proposals. In this thesis, we compile the most important objectives

considered in the literature, combine them with some general and application-specific

requirements, give more precise definitions, and then, as much as possible, provide measures

of evaluating a proposed system against those requirements.

1.3. Thesis Structure

This thesis introduces a system that we have developed and named ShowFace.

ShowFace is a comprehensive face animation framework that is designed with the objectives

presented in 1.2.2. The ShowFace system offers the following features as the main

contributions of this thesis:

• A component-based architecture [2,5,7] with streaming capability for face animation with

off-line authoring tools and web-ready objects

• A structured content description using Face Modeling Language (FML) [4,6], a language

we have developed specifically for face animation, based on the Extensible Markup

Language (XML, http://www.xml.org)

 10

• An efficient personalized face animation with Feature-based Image Transformation (FIX)

[3,5], a technique based on learning image transformation using only 2D images, and

applying them to a given 2D image

• A comprehensive set of evaluation criteria for face animation systems based on high-

level objectives

In Chapter 2, some of the existing work and approaches in face animation and the

following related areas are briefly reviewed:

• Multimedia modeling and specification (content description in general)

• Visual and audio content creation

• Architectural and system-level issues

• Evaluation criteria

The basic concepts and structure of our Face Modeling Language, Feature-based Image

Transformations, and the ShowFace system are discussed in Chapters 3, 4, and 5,

respectively. Chapter 6 is devoted to defining the evaluation criteria and the experimental

results of this project. Some concluding remarks are presented in Chapter 7.

 11

2. Related Work
2.1. Content Description

The diverse set of works in multimedia content description involves methods for

describing the components of a multimedia presentation and their spatial and temporal

relations. Historically, some of the first technical achievements in this area were related to

video editing where temporal positioning of video elements is necessary. The SMPTE

(Society of Motion Picture and Television Engineers) Time Coding [10,65] that precisely

specifies the location of audio/video events down to the frame level is base for EDL (Edit

Decision List) [10,65] that relates pieces of recorded audio/video for editing. Electronic

Program Guide (EPG) is another example of content description for movies in the form of

textual information added to the multimedia stream.

More recent efforts by SMPTE are focused on Metadata Dictionary that targets the

definition of metadata description of content (see http://www.smpte-ra.org/mdd). Metadata

can include items from title to subject and components. The concept of metadata description

is base for other similar research projects such as Dublin Core (http://dublincore.org), EBU

P/Meta (http://www.ebu.ch/pmc_meta.html), and TV Anytime (http://www.tv-anytime.org).

Motion Picture Expert Group (MPEG) is another major player in the field of standards for

multimedia content description and delivery. MPEG-4 standard [13], introduced after

MPEG-1 and MPEG-2, is one of the first comprehensive attempts to define the multimedia

stream in terms of its forming components (objects such as audio, foreground figure, and

background image). Users of MPEG-4 systems can use Object Content Information (OCI) to

send textual information about these objects.

A more promising approach in content description is the MPEG-7 standard [75].

MPEG-7 is mainly motivated by the need for a better and more powerful search mechanism

for multimedia content over the Internet. It can also be used in a variety of other applications

including multimedia authoring. The standard extends OCI and consists of a set of

Descriptors for multimedia features (similar to metadata in other works), Schemes that show

 12

the structure of the descriptors, and an XML-based Description/Schema Definition

Language.

Most of these methods are not aimed at, and customized for, a certain type of

multimedia stream or object. This may result in a wider range of applications but limits the

capabilities for some frequently used subjects such as human face. Study of facial

movements and expressions started from a biological point of view. After some older

investigations, for example by John Bulwer [22] in late 1640s, Charles Darwin’s book The

Expression of the Emotions in Men and Animals [32] can be considered a major departure for

modern research in behavioural biology.

More recently, one of the most important attempts to describe facial activities

(movements) was Facial Action Coding System (FACS) [38]. Introduced by Ekman and

Friesen in 1978, FACS defines 64 basic facial Action Units (AUs). A major group of these

Action Units represent primitive movements of facial muscles in actions such as raising

brows, winking, and talking. Eight AUs are for 3D head movements, i.e. turning and tilting

left and right and going up, down, forward and backward. Table 2-1 illustrates some of these

Action Units.

FACS has been successfully used for describing desired movements of synthetic faces

and also in tracking facial activities [80]. It forms a comprehensive set of codes for most

important facial actions needed in face animation and can be a good basis for animation

control and authoring but it does not provide any higher level construct to describe the

sequence of actions and spatial and temporal relations between facial activities. In other

words, FACS is not designed to be a face animation description language.

 13

Table 2-1. Facial Action Coding System, Partial List of Action Units

Images and AU descriptions from Automated Face Analysis Project
Robotics Institute, Carnegie Mellon University

(http://www-2.cs.cmu.edu/afs/cs/project/face/www/facs.htm)

AU Description Example Image

1 Inner Brow Raiser

2 Outer Brow Raiser

12 Lip Corner Puller

24 Lip Pressor

27 Mouth Stretch

51 Head Turn Left

56 Head Tilt Right

61 Eye Turn Right

 14

In the early 1990’s, some newer approaches to content description for face animation

were introduced in the form of dedicated animation languages. Reeves [88] describes a

language used in Pixar (http://www.pixar.com) that allows the face animation model to be

treated as a program. This special language has built-in functions for creating graphical

primitives and performing simple transformations on them. Many aspects such as realism and

synchronization are not addressed. Kalra et al. [53] describe a face animation system based

on layered abstractions with another special language that provides simple synchronizations.

The layers correspond to low-level muscles, minimal perceptible actions, phonemes and

expressions, words and emotions, and finally synchronization of activities. Following is an

example of this language:

[emotion HAPPY while

[say “Hi”]

]

Although the system lacks detailed synchronization (e.g. event handling) and does not

use an open technology and standard language (which did not exist at that time) but the main

concepts of layered description and synchronization of facial actions are major contributions.

MPEG-4 standard also uses an approach similar to FACS to integrate face animation

into multimedia communication, including natural and synthetic audio, natural and synthetic

video, as well as 3D graphics [13]. To do this, MPEG-4 includes Face Definition Parameters

(FDPs) and Face Animation Parameters (FAPs). FDPs define a face by giving coordinates

and other information for its major feature points such as eyes and lips corners. They allow

personalization of a generic face model to a particular face, and are more suitable for

synthetic faces. FAPs on the other hand, encode the movements of these facial features.

There are more than 70 FAPs defined similar to FACS AUs. MPEG-4 FAPs can be grouped

into:

• Visemes (visual representation of phonemes, i.e. the facial state when uttering a specific

sound)

• Facial Expressions

• 3D Head Movements

• Other Facial Movements

 15

It should be mentioned that Phonemes are possible sounds uttered when speaking a

language. Phonemes can share the same visual representation due to their similarities,

although they are different with regards to the vocal tract. MPEG-4 defines only 14 clearly

distinguished visemes and 6 facial expressions (Figure 1-1-c). More details on FAPs and

FDPs can be found online at the following URL:

http://www.research.att.com/projects/AnimatedHead/joern2.html

Together, FDPs and FAPs allow a receiver system to create or customize a face model

(using any graphic method) and animate it based on low-level commands in FAPs. It should

be noted that FAPs do not need to be used with a synthetic face and geometric models. They

are independent of animation method and simply define the desired movements. They can be

used to apply image transformations to a real 2D picture in order to create a visual effect

such as talking, facial expression, or any facial movements.

Although MPEG-4 defines two sets of higher-level codes, i.e. visemes and expressions,

compared to low-level FACS AUs, but it still has only a set of animation commands and not

an animation language. After a series of efforts to model temporal events in multimedia

streams [50,60,87], an important progress in multimedia content description is Synchronized

Multimedia Integration Language (SMIL) [21], an XML-based language designed to specify

temporal relation of the components of a multimedia presentation, specially in web

applications. SMIL can be used quite suitably with MPEG-4 object-based streams.

There have also been different languages in the fields of Virtual Reality and computer

graphics for modeling computer-generated scenes. Examples are Virtual Reality Modeling

Language (VRML, http://www.vrml.org), its XML-based version known as X3D, and

programming libraries like OpenGL (http://www.opengl.org).

MPEG-4 standard includes Extensible MPEG-4 Textual format (XMT) framework [55]

to represent scene description in a textual format providing interoperability with languages

such as SMIL and VRML. It consists of two levels of textual formats. XMT-A is a low-level

XML-based translation of MPEG-4 contents. XMT-Ω is a high-level abstraction of MPEG-4

features, allowing developers to create the scene description in languages such as SMIL and

VRML. These descriptions can then be compiled to native MPEG-4 format to be played back

by MPEG-4 systems. They can also be directly used by compatible players and browsers for

each language, as shown in Figure 2-1.

 16

Figure 2-1. Interoperability in XMT

None of these languages are customized for face animation, and they do not provide

any explicit support for it, either. The absence of a dedicated language for face animation, as

an abstraction on top of FACS AUs or MPEG-4 FAPs, has been evident especially within

XMT framework. Recent advances in developing and using Embodied Conversational

Agents (ECAs), especially their web-based applications, and growing acceptance of XML as

a data representation language have drawn attention to markup languages for virtual

characters [11,33,71,84]. The basic idea is to define specific XML tags related to agents’

actions such as moving and talking.

Virtual Human Markup Language (VHML) [71] is an XML-based language for the

representation of different aspects of “virtual humans,” i.e. avatars, such as speech

production, facial and body animation, emotional representation, dialogue management, and

hyper and multimedia information (http://www.vhml.org). It comprises a number of special

purpose languages, such as EML (Emotion Markup Language), FAML (Facial Animation

Markup Language), and BAML (Body Animation Markup Language). In VHML, timing of

animation-elements in relation to each other and in relation to the realisation of text is

achieved via the attributes “duration” and “wait”. These take a time value in seconds or

milliseconds and are defined for all elements in EML and FAML, i.e. for those parts of

VHML concerned with animation. A simple VHML document looks like this:

<vhml>

<person disposition=”angry”>

<p>

First I speak with an angry voice and

look very angry,

<surprised intensity=”50”>

 17

but suddenly I change to look

more surprised.

</surprised>

</p>

</person>

</vhml>

Multimodal Presentation Markup Language (MPML) [84] is another XML-based

markup language developed to enable the description of multimodal presentation on the

WWW, based on animated characters (http://www.miv.t.u-tokyo.ac.jp/MPML/en). It offers

functionalities for synchronizing media presentation (reusing parts of the Synchronized

Multimedia Integration Language, SMIL) and new XML elements such as <listen> (basic

interactivity), <test> (decision making), <speak> (spoken by a TTS-system), <move>

(to a certain point at the screen), and <emotion> (for standard facial expressions). MPML

addresses the interactivity and decision-making not directly covered by VHML, but both

suffer from a lack of explicit compatibility with MPEG-4 (XMT, FAPs, etc).

Another important group of related works are behavioural modeling languages and

tools for virtual agents [24,83]. Behaviour Expression Animation Toolkit (BEAT) [24] is an

XML-based system, specifically designed for human animation purposes. It is a toolkit for

automatically suggesting expressions and gestures, based on a given text to be spoken. BEAT

uses a knowledge base and a rule set, and provides synchronization data for facial activities,

all in XML format. This enables the system to use standard XML parsing and scripting

capabilities. Although BEAT is not a general content description tool, it demonstrates some

of the advantages of XML-based approaches together with the power of behavioural

modeling.

Funge et al. [43] propose the concept of cognitive modeling for character animation.

Their system is based on a set of geometric, behavioural, and cognitive models for the

characters to be animated. In this approach not only the physical capabilities but also the

behavioural and cognitive processes are defined and modeled. This provides the possibility

of a more realistic animation, not only for appearances but also for the behaviours. A special

Cognitive Modeling Language (CML) is also developed to support this system. CML does

 18

not provide any explicit support for face animation and (unlike BEAT) is not XML-based.

Neither is Parameterized Action Representation (PAR) [1], another language proposed to

describe and model actions of an agent based on interaction with environment and the

personality and emotions. In PAR, the agent personality is defined in terms of parameters

such as openness, agreeableness, and extraversion. Similar parameters are defined for other

aspects affecting the behaviour.

Other scripting and behavioural modeling languages for virtual humans are considered

by researchers [39,44,52,62,70,93,100]. These languages are usually simple macros to

simplify the animation, or new languages that are not using existing multimedia technologies.

Most of the times, they are not specifically designed for face animation. Lee et al. [62] have

proposed the concept of a hierarchical presentation of facial animation but no comprehensive

language for animation and modeling is proposed. The models proposed in face recognition

and video analysis can also be considered with regards to content description [85,94,104].

2.2. Content Creation

2.2.1. Visual Content
Animation techniques can be grouped into the following general (and possibly

overlapped) categories [80]:

• Interpolation; creating intermediate frames between given ones

• Performance-driven; tracking and following actions of a real person

• Direct parameterization; using a parameter set for head model

• Muscle-based and PsudoMuscle-based; simulating the body tissues

Creating the visual content for face animation is tightly related to the topic of object

modeling, and in this case human head and face modeling. Object modeling is a fundamental

issue in graphics and also vision (e.g. object recognition) for which two distinct approaches

can be observed: 3D and 2D. Objects can be modeled using a 3D geometry or multiple 2D

views [16,48]. Examples of 3D models are Wireframes, Constructive Solid Geometry, 3D

Surfaces, and Volume Elements (Voxels). 2D object models are usually in the form of

Aspect Graphs. Aspects are typical views of a certain object. Aspect Graphs represent these

 19

views and the relation between them. Other views of the object can be considered a function

of these aspects (e.g. a linear combination or interpolation [90]). Figure 2-2 illustrates some

of these approaches.

(a)

(c)

(b)

Figure 2-2. Some Approaches to Object Modeling

(a) Wireframe Models, (b) Constructive Solid Geometry, (c) 2D Aspect Model

3D human models have long been used for facial and character animation

[17,34,35,36,40,47,51,57,58,62,78,82,99,102]. They are mainly based on volume

(Constructive Solid Geometry, Voxels, Octrees) or surface (Splines and Polygons) modeling

[80]. Such models provide a powerful means of body and head reconstruction in different

views and situations, and have been used successfully for creating non-photo-realistic avatars

and similar applications. More recent works have tried to use them for photo-realistic

purposes, especially limited to facial animation rather than full body. But they usually lack

the realistic appearance due to difficulty of providing 3D information for all the details (such

 20

as facial skin and hair). They may also need expensive hardware such as laser range finders,

and complicated algorithms for reconstructing views (which requires more powerful

hardware again). As a result, they may not be suitable for applications such as video phones

where a small limited-power hardware has to perform all the processing, or cases when photo

realism is a major concern.

3D models of human head can be generated using 3D data or by customizing generic

head models with a set of modeling parameters (e.g. MPEG-4 FDPs). The former approach

uses 3D digitizers, laser range finders, and photogrammetry [80]. The latter approach results

in less expensive modeling hardware but the generated models might be less realistic due to

limited actual 3D information. Recent approaches have shown successful results in finding

the 3D model definition parameters from 2D images, e.g. a limited number of 2D

photographs [62,82]. After creating the model, computer graphics techniques can be applied

to reconstruct the desired views of the 3D head. Texture mapping (again based on the 2D

images) can then be used to give a more realistic appearance [62,80,82].

(a)

(b)

(c)

Figure 2-3. 3D Head Models from Photographs

(a) Orthogonal Photographs, (b) Texture Map, (c) Modified Generic Head Model.
From Virtual Human Director by Lee et al. [62].

 21

2D image-based methods are another alternative for face construction

[19,27,29,41,46,49,64,91,97]. A new image can be created as a function (e.g. linear

combination) of some existing ones. A video stream is a sequence of single frames. Given a

source and a target frame, such a sequence can be generated by interpolating a group of

intermediate frames. In traditional animation this is done by a technique referred to as Key

Framing. Image Metamorphosis or Morphing [15,61,103] is the computer graphics version of

key framing.

Mapping vectors are defined for source pixels that translate them to the target location,

generating the effect of changing/moving images. This mapping process is called Image

Warping [103] which can be performed in forward and backward ways. In Forward Warping,

target locations for source pixels are found, so the output image is based on source image

data (i.e. source pixels will be moved to perform the warp). Backward Warping involves

finding locations in source image corresponding to pixels in target image. In this case the

output image is based on the target image data 1. View Interpolation is the process of creating

intermediate images (synthetic views) by placing the pixels in the locations along the

mapping vector [25,69,91,103]. Final morph is usually formed by blending forward and

backward warps (e.g. a weighted average based on distance of the intermediate frame from

source and destination).

Showing source and target images with I0 and In, and forward and backward mapping

vectors with Mf and Mb, the intermediate image Ij can be created using the following

equations where w and b are warping and blending functions:

),(0 fjf M
n
jIwI = (2.1)

),(bnjb M
n

jnIwI −
= (2.2)

n
IjIjn

IIbI jbjf
jbjfj

)()(
),(

+−
≅= (2.3)

1 Forward and Backward Warping should not be confused with Forward and Inverse mapping done for each

warp operation. In Forward Mapping, for each pixel in input image a new location is found in output image.
This can result in unused locations in output (“holes”) that have to be filled with interpolation. Inverse
Mapping involves going through all locations (pixels) in output image and finding an input pixel
corresponding to them. Inverse Mapping is used more frequently due to its computational efficiency [87].

 22

As shown in equation 2.3, the blending of forward and backward warps is usually a

straightforward operation. The critical issue in the warping/morphing procedure is to find the

corresponding source and target pixels (Correspondence Problem). The correspondence

problem can be solved manually by selecting a set of key points, or automatically using

computer vision and feature/object detection techniques such as those applied in Stereo

Vision [48], e.g. Optical Flow [14,45,104].

Manual or semi-manual methods for solving correspondence problem include

identifying specific control points or lines in image pair, associating them with each other,

and finding the other corresponding points based on the control points.

Figure 2-4. Mesh-warping for Face Animation

First and third rows are forward and backward warps applied to the source and target
images, and the second row is the blend that creates the final morph [103]. Meshes are

defined on the first image and moved to the target locations by the animator.

Mesh-warping is the most common method in this regard [103]. Mapping vector of

each point inside a mesh is a function of mapping vectors of corner points which in turn are

 23

specified by the animator. Each mesh is defined according to some standard size and does not

necessarily relate to actual regions in the image (e.g. face). Figure 2-4 shows an example of

such mesh-based approach for face animation where meshes are defined roughly based on

facial geometry.

Beier and Neely [15] proposed the Feature-based Morphing where the corresponding

points in image pair are found based on a set of corresponding features (in their case, straight

lines). The algorithm uses the distance from feature line and the projection of the point onto

that line as parameters to find the corresponding point in the second image, knowing the

corresponding line. This algorithm is illustrated in Figure 2-5. Although more expressive

than mesh-based methods, the algorithm does not seem to be suitable for facial animation

where features are not straight lines and deform as the result of facial actions. Also the

original algorithm uses a global approach, finding the correspondent points based on all

feature lines. In case of face animation, not all feature lines are related to every face point

and some degree of localization might be necessary. A possible solution is to consider facial

regions and their related features that will be more expressive and high-level than general

meshes.

Figure 2-5. Feature-based Morphing

PQ and P’Q’ are the feature line in first and second images. V and V’ are the
corresponding points. a and a’ are projections of V and V’ onto the feature lines. The

distance x is considered the same in both images [15].

Optical Flow (OF) was originally formulated by Horn and Schunck in the context of

measuring the motion of objects in images [14]. This motion is captured as a 2D vector field

{dx, dy} that describes how each pixel has moved between a pair of source and destination

 24

images. From our perspective, optical flow is important because it allows for the automatic

determination of correspondence between images. In addition, since each pixel is effectively

a feature point, optical flow allows us to bypass the need for hand-coding any ad-hoc feature

points.

Differential (gradient-based) OF methods, as used originally by Horn et al. are the most

widely used optical flow techniques. They compute the velocity from spatio-temporal

derivatives of image intensities. These methods, in general, are highly under-constrained and

an additional set of assumptions about the underlying motion needs to be made to solve the

related equations. The limited range of motion which can be detected by these methods is

also another disadvantage of using them.

Correlation-based methods, used in stereo matching [42], can also be applied to find

the flow field. This is done, for each pixel of the source image, by performing a correlation-

based search in the corresponding neighbourhood in the target image. After finding the best

match, the flow vector can be easily and precisely calculated. Though more powerful in

handling large movements, these methods have a higher computational cost due to the search

algorithm to find the best match. Hierarchical image representations, originally used as a

compression mechanism [23], have been suggested to reduce the computational cost of

differential and correlation-based optical flow computations [14,41]. Multiple-motion,

boundaries of moving objects, and lighting conditions which change the intensities of points

in different images are among the problems which has to be dealt with in all optical flow-

based systems.

The optical flow methods (especially correlation-based ones) can be used as a basic

tool to achieve an automated solution for the correspondence problem as the key issue in

view morphing [15,91]. MikeTalk [41] is an image-based face animation system, which uses

optical flow to solve the correspondence problem. It uses a pre-recorded library of visemes

belonging to a specific person, and calculates the optical flow vectors for each pair of these

images. Visual speech can then be created by the procedure shown in Figure 2-6. Figure 1-1-

b illustrates some examples of the generated visemes.

The main unresolved issues in MikeTalk are:

• Limited ability in creating different facial images (e.g. moves and expressions)

 25

• Weakness of optical flow in detecting corresponding facial features specially in

movements (with large changes and new and hidden areas)

• Required image database for each person

Figure 2-6. Creating Visual Speech in MikeTalk

Row-1: Forward Warping, Viseme A (first image) towards B, without hole filling.
Row-2: Forward Warping, Viseme A (first image) towards B, with hole filling.
Row-3: Backward Warping, Viseme B (last image) towards A, with hole filling.

Row-4: A Morph between Viseme A and Viseme B.

Bregler et al. [19] combine a new image with parts of existing footage (mouth and jaw)

to create new talking views (see Figure 2-7). This method is also limited to a certain view

where the recordings have been made. No transformation is proposed to make a talking view

after some new movements of the head or to create more general facial actions (e.g. head

movements and expressions). In a more recent work, Graf et al. [46] propose recording of all

visemes in a range of possible views, so after detecting the view (pose) proper visemes will

be used. This way talking heads in different views can be animated but the method requires a

considerably large database. Other issues mentioned for MikeTalk still apply here, as well.

 26

(a)

(b)

Figure 2-7. Video Rewrite

(a) Finding the Jaw-Mouth Area,
(b) Replacing the Masked Area with Speaking Image Data.

At the same time as the research described in this thesis, Tiddeman et al. [97] have

used facial features to overcome some of these issues. Their objective is to apply effects such

as aging and facial expressions as done by some prototype images. The system performs

image transformation (warping) on a facial picture based on the changes learned from a

previous pair of prototype images. Such changes govern the geometric shape and are the

results of the movement of features. The system also applies a colour transformation (again

learned from prototype images) to introduce the effects such as aging and wrinkles in facial

expressions, as shown in Figure 1-1-a. Some normalization for shape and colour is

considered, in this regard. Figure 2-8 illustrates this process where the new image is created

by:

• Defining new shape, moving features by a scaled version of difference between source

and destination prototypes

• Warping the image based on new shape

• Colour transformation for all pixels, again by adding the difference of prototypes

 27

Figure 2-8. Facial Image Transformations Based On Static 2D Prototypes

The method does not address the effect of 3D head movements such as turning left or

right, and can be applied only to 2D shape changes. The delta transformation between the

source and destination prototypes cannot be applied to the subject by only a linear scaling

when 3D head movements are present. Also, the texture transformation done by colour

mapping is not very effective considering issues such as lighting and personalized skin

texture. Details of the warping function are not available for this work. Knowing the mapping

vectors for feature points and lines, this function determines such vector for other points.

2.2.2. Audio Content
Text-To-Speech (TTS) systems which produce an audio output based on a text input,

have long been studied [37,56]. There are several algorithms for TTS conversion. The choice

depends on the task for which they are used. The easiest way is to record the voice of a

person speaking the desired phrases. This is useful if only a restricted set of phrases and

sentences is necessary, e.g. messages in a train station or specified information via telephone.

The quality depends on the way recording is done.

 28

More sophisticated algorithms split the speech into smaller pieces. The smaller those

units are, the fewer they will be in number, and the wider range of audio they can create, but

the quality may also decrease due to artificial generation or concatenation of the units. An

often-used unit of speech is the phoneme, the smallest linguistic unit. Depending on the

language used, there can be anywhere from 30 to 60 phonemes in western European

languages, i.e. 30 to 60 single recordings. The problem is combining them because fluent

speech requires fluent transitions between the elements. The intelligibility is therefore lower

for smaller units used, but the memory required is much smaller.

A solution to this dilemma is using diphones (two consecutive phonemes) as the unit of

speech. Instead of splitting at the transitions, the cut is done at the centre of the phonemes,

leaving the transitions themselves intact. Considering the possible combination of phonemes,

this provides about 400 elements (20*20) and increases the quality. The longer the units

become, the more elements there are, but the quality increases along with the memory

required. Other units that are widely used are half-syllables, syllables, words, or

combinations of them, e.g. word stems and inflectional endings. These small units are usually

extracted manually from recorded sound by experts in a cumbersome process. Automated

tools for speech segmentation are challenging research topics in this regard [66]. Smooth

connection of the speech units [28], and their equalization and prosodic modification are also

other areas of research [67].

Another group of TTS systems use models of vocal tract and synthesize the desired

audio based on the phoneme list rather than using a pre-recorded sound [37]. In either case,

the basic functions of phoneme/diphone systems are text normalization (separating words),

word pronunciation (creating a sequence of phonemes), prosodic analysis (determining the

pitch, speed, and volume of syllables), and finally audio production (synthetic or

concatenative) [37, 56].

Commercial TTS products are available now as a result of extensive research in the

1980's and the 1990's. It should be noted that a personalized TTS system can be built by just

changing the model parameters or audio database without any need to change the core TTS

engine.

 29

2.3. System Architecture

Different architectures are also proposed to perform facial animation, especially as an

MPEG-4 decoder/player [18,79]. Although they try to use platform-independent and/or

standard technologies (e.g. Java3D and VRML), they are usually limited to certain face

models and lack a component-based and extensible structure, and do not propose any content

description mechanism more than standard MPEG-4 parameters.

In a more general view, a variety of structures and standards have been proposed for

multimedia streaming. Currently, the most considerable platforms available are Windows

Media, Real Player, and QuickTime [59]. These technologies try to comply with the industry

standards like MPEG, as much as possible. Relying on one of them, although results in some

limitations, can provide the benefit of using existing system support and functionality, e.g. in

multimedia streaming.

2.4. Evaluation Criteria

Any scientific or engineering system must have a clear set of objectives, precise

definition for them, and measures of evaluation regarding the system objectives. Research

projects, by their very nature, may not be expected to have such a precise structure, as they

aim at solving unknown aspects of a final system. So the objectives of a research project can

be only a subset of an “actual system” and the definitions and measures may still be vague

and incomplete. But with maturity of works, it is expected and necessary that these diverse

objectives and considerations converge to a well established and precisely defined set of

requirements and evaluation indices corresponding to them. Digital Face Animation is now

mature enough to do so 1.

Face animation systems proposed in literature have considered some objectives and

requirements as their research target and have evaluated their performance, accordingly.

Although acceptable for a research project, most of the time they are either not precise or

incomplete for a comprehensive animation framework. Realistic appearance (Realism), real-

time operation, and ability to animate a wide range of facial actions seem to be among the

1 Although this thesis focuses on face animation but most of the discussions apply to other areas in computer

animation and scene generation, as well

 30

most widely mentioned objectives in face animation. Compatibility with existing multimedia

and graphic standards, and also computational efficiency and simplicity are among other

objectives noted in the literature. Few researchers have also paid attention to modeling and

authoring capabilities. In most cases, precise and preferably quantitative measures are not

defined for these objectives in order to evaluate the systems. In many cases, these are

expressed merely as conceptual objectives rather than precise evaluation criteria, but we can

consider them as a “starting-point” alternative. Needless to say introducing an objective or

evaluation rule in a research work does not mean that the related requirement is satisfied by

the proposed method.

Realism is the major objective in face animation systems, and has been used as main

(or even the only) evaluation criterion. Examples are works by Blanz and Vetter [17],

DeCarlo et al. [34], Guenter et al. [47], and Pighin et al. [82]. Ease of user interaction, ability

to generate different face actions and applying them to specific pictures, and use of minimum

input data are implied but not thoroughly discussed.

View Morphing and Interpolation are popular methods for creating new images based

on existing ones. Seitz and Dyer [90,91] discuss the physical/geometrical validity of views in

image interpolation as a basic requirement for realistic appearance. They explain and apply

constraints such as visibility and user interaction to guaranty it in absence of 3D information.

Graf et al. [46] and Ezzat et al. [41] also consider realistic output the main objective in their

systems, and try to achieve that by using a relatively large database of images and performing

view morphing between them. This implies a second objective: using simpler input types as

opposed to 3D sensor data and/or 3D models. Ezzat et al. [41] have also considered lip-

synchronization as an added realistic feature and try to introduce audio information to their

system in order to provide a lip-synchronized talking head. In work by Graf et al. [46] head

movement is considered as a new requirement and added capability.

Video Rewrite [19] is another face animation system that also uses existing images to

create realistic lip-synchronized talking heads. It explicitly defines a set of criteria for

evaluation, mainly:

• Lip synchronization and movement

• Proper attachment of modified lip area to the rest of the face, and other related details

• Overall quality and believability

 31

Although these evaluation criteria are still qualitative and somehow vague but they

clearly show a positive step at least for the quality evaluation.

Thalman and Thalman [96] have studied the animation of digital actors. Their main

objective is again realistic output and flexible motions (ability to provide a wide range of

actions), but other objectives are also mentioned, explicitly or implicitly. They are:

• Real-time interaction

• Defining behaviours

• Authoring tools (not well explained and defined)

Chung and Hahn [26] have also worked on the animation of human walking and

proposed following objectives which can be considered as evaluation criteria from their point

of view:

• Capability (range of actions)

• Responsiveness (real-time operation)

• Controllability (user-friendliness)

• Realism

They provide some experimental evaluation mainly for the first two objectives which

are more “testable”. In evaluating the system regarding the timeliness, the concept of

computational complexity is also mentioned which may imply an independent evaluation

criterion. In their Real-time Speech-driven system, Hong et al. [51] have also proposed the

reduction of computational complexity as a major objective not only in “run-time” but also in

learning phase. It should be noted that computational complexity can affect not only

timeliness but also system development, maintenance, and upgrade, and has to be considered

an independent factor by itself, as noted by some other researchers [102].

Lee et al. [62] have used a configurable 3D head model for face animation. Along with

a powerful animation system, they have considered a set of objectives in their system,

including:

• Realism

• Robustness (applicable to many faces)

 32

• Personalization (applicable to specific people)

• Simplicity (using limited normal images as input)

• Scripting (being able to write macros for certain actions)

• MPEG-4 Compatibility

The simplicity requirement applies only to the input data not the system structure and

computation. The scripting objective is not well discussed and does not seem to be a very

important part of the system, but it could yield to the authoring tool considered by some

others, and in general a content description method. This requirement will be discussed in

detail later.

A behavioural approach to face animation has been considered by some researchers, as

mentioned before. More recently, Funge et al. [43] have studied a cognitive model for

character animation. This demonstrates a new objective in animation systems, i.e. being able

to define and model behaviours to be used later in a programmable way. Cassell et al. [24]

have proposed BEAT, a behavioural toolkit that uses an XML-based language for defining

the relation between a text to be spoken and certain actions during the speech. They

specifically aim at authoring and interaction purposes to ease up content description and

development. Here, other than content description capability, the compatibility with existing

standards, e.g. XML, is also considered.

Compatibility with existing standards and technologies (e.g. Web, XML, MPEG-4,

VRML, Java3D) is also a major concern as seen in works of Lee et al. [62], Ostermann [78],

and Pandzic [79]. MPEG-4 standard with its Face Definition and Animation Parameters

plays a special role in this regard, and compatibility with it can be considered an important

objective and so evaluation criterion.

 33

3. Face Modeling Language
3.1. Design Ideas

Describing the contents of a multimedia presentation is a basic task in multimedia

systems. It is necessary when a client asks for a certain presentation to be designed, when a

media player receives input to play, and even when a search is done to retrieve an existing

multimedia object. In all these cases, the description can include raw multimedia data (video,

audio, etc) and textual commands and information. Such a description works as a

“Generalized Encoding,” since it represents the multimedia content in a form not necessarily

the same as the playback format, and is usually more efficient and compact. For instance, a

textual description of a scene can be a very effective “encoded” version of a multimedia

presentation that will be “decoded” by the media player when it recreates the scene.

Although new streaming technologies allow real-time download/playback of

audio/video data, but bandwidth limitation and its efficient usage still are, and probably will

be, major issues. This makes a textual description of multimedia presentation (in our case

facial actions) a very effective coding/compression mechanism, provided the visual effects

can be recreated with a minimum acceptable quality.

Efficient use of bandwidth is not the only advantage of facial action coding. In many

cases, the “real” multimedia data does not exist at all, and has to be created based on a

description of desired actions. This leads to the idea of representing the spatial and temporal

relation of the facial actions. In a generalized view, such a description of facial presentation

should provide a hierarchical structure with elements ranging from low-level “images,” to

simple “moves,” more complicated “actions,” and finally, to complete “stories”. We call this

a Structured Content Description, which also requires means of defining capabilities,

behavioural templates, dynamic contents, and event/user interaction. Needless to say,

compatibility with existing multimedia and web technologies is another fundamental

requirement, in this regard.

Face Modeling Language (FML) [4,6] is a Structured Content Description mechanism

based on Extensible Markup Language (XML). The main ideas behind FML are:

 34

• Hierarchical representation of face animation

• Timeline definition of the relation between facial actions and external events

• Defining capabilities and behavioural templates

• Compatibility with MPEG-4 XMT and FAPs

• Compatibility with XML and related web technologies and existing tools

• Support for different content generation (animation) methods

FACS and MPEG-4 FAPs provide the means of describing low-level face actions but

they do not cover temporal relations and higher-level structures. Languages such as SMIL do

this in a general-purpose form for any multimedia presentation and are not customized for

specific applications such as face animation. A language bringing the best of these two

together, i.e. customized for face animation, seems to be an important requirement. FML is

designed to do so, filling the gap in XMT framework for a face animation language.

FML is an XML-based language. The choice of XML as the base for FML is due to its

capabilities as a markup language, growing acceptance, and available system support in

different platforms. Fundamental to FML is the idea of Structured Content Description. It

means a hierarchical view of face animation capable of representing a range of activities,

from simple individually meaningless moves to complicated high-level stories. This

hierarchy can be thought of as consisting of the following levels (bottom-up):

• Frame, a single image showing a snapshot of the face (naturally, may not be accompanied

by speech)

• Move, a set of frames representing linear transition between two frames (e.g. making a

smile or uttering a diphone)

• Action, a “meaningful” combination of moves (e.g. a piece of speech)

• Story, a stand-alone piece of face animation

The boundaries between these levels are not rigid and well defined. Due to complicated

and highly expressive nature of facial activities, a single move can make a simple yet

meaningful story (e.g. an expression). These levels are basically required by content designer

in order to:

• Organize the content

 35

• Define temporal relation between activities

• Develop behavioural templates, based on his/her presentation purposes and structure

FML defines a timeline of events (Figure 3-1) including head movements, speech, and

facial expressions, and their combinations. Since a face animation might be used in an

interactive environment, such a timeline may be altered/determined by a user. So another

functionality of FML is to allow user interaction and in general event handling. Notice that

user input can be considered a special case of external event. This event handling may be in

the form of:

• Decision Making; choosing to go through one of possible paths in the story

• Dynamic Generation; creating a new set of actions to follow

Figure 3-1. FML Timeline and Temporal Relation of Face Activities

A major concern in designing FML is compatibility with existing standards and

languages. Growing acceptance of MPEG-4 standard makes it necessary to design FML in a

way it can be translated to/from a set of FAPs. Also due to similarity of concepts, it is

desirable to use SMIL syntax and constructs, as much as possible. Satisfying these

requirements make FML a good candidate for being a part of MPEG-4 XMT framework.

It should be noted that an FML-based system usually consists of three parts:

• FML Document

• FML-compatible Player and its components (e.g. FML Processor and Animation

Generator)

 36

• Owner Application (e.g. web browser or a GUI application; may include FML playback

functionality in itself without separate player object)

3.2. FML Document Structure

Figure 3-2 shows typical structure of FML documents. An FML document consists, at

higher level, of two types of elements: model and story. A model element is used for

defining face capabilities, parameters, and initial configuration. This element groups other

FML elements (model items) described in next section.

<fml>

 <model> <!-- Model Info -->

 <model-item />

 </model>

 <story> <!— Story TimeLine -->

 <act>

 <time-container>

 <FML-move />

 </time-container>

 </act>

 </story>

</fml>

Figure 3-2. FML Document Map

Model-item, time-container, and FML-move represent parts to be replaced by actual
FML elements.

A story element, on the other hand, represents the timeline of events in face

animation in terms of individual Actions (FML act elements). Face animation timeline

consists of facial activities and their temporal relations. These activities are themselves sets

of simple Moves. These sets are grouped together within Time Containers (e.g. seq and par

representing sequential and parallel move-sets).

 37

FML supports three basic face moves: talking, expressions, and 3D head movements.

Combined through time containers, they form an FML act which is a logically related set of

activities. Details of these moves and other FML elements and constructs will be discussed in

the following sections.

3.3. Modeling Elements

The model element encloses all the face modeling information. As described in FML

specification 1, some important model elements are:

• img: An image to be used for animation; This element has two major attributes: src and

type. It provides an image and tells the player where to use it. For instance the image

can be a frontal or a profile picture used for creating a 3D geometric model.

• range: Acceptable range of head movement in a specific direction; It has two major

attributes: type and val, specifying the direction and the related range value.

• param: Any player-specific parameter (e.g. MPEG-4 FDP); param has two attributes:

name and val .

• event: external events used in decision-making; described later.

• template: defines a set of parameterized activities to be recalled inside story using

behaviour element.

• character: The person to be displayed in the animation; This element has one major

attribute name and is used to initialize the animation player database.

• sound: The sound data to be used in animation; This element also has a src attribute

that points to a player-dependent audio data file/directory.

Figure 3-3 shows a sample model module. FML templates will be extended in later

versions to include advanced behavioural modeling.

1 http://www.ece.ubc.ca/~alia/Multimedia/fml_1.html

 38

<model>

 <range type="left" val="60" />

 <template name="hi" >

 <seq begin="0">

 <talk>Hello</talk>

 <hdmv type=”0” begin="0" end=”3s” val="30" />

 </seq>

 </template>

</model>

<story>

 <behaviour name="hi" />

</story>

Figure 3-3. FML Model and Templates

3.4. Story-related Language Constructs

3.4.1. FML Time Containers and Moves
FML timeline, presented in Stories, consists primarily of Acts which are purposeful set

of Moves. The Acts are performed sequentially but may contain parallel Moves within

themselves. Time Containers are FML elements that represent the temporal relation between

moves. The basic Time Containers are seq and par, corresponding to sequential and

parallel activities. The former contains moves that begin at the same time and the latter

contains moves that start one after another. The Time Containers include primitive moves

and also other Time Containers in a nested way. The repeat attribute of Time Container

elements allows iteration in FML documents. They also have three other attributes begin,

duration, and end (default value for begin is zero, and duration is an alternative to

end) that specify the related times in milliseconds.

 39

FML also has a third type of Time Containers, excl, used for implementing exclusive

activities and decision-making as discussed later.

FML version 1.0 supports three types of primitive moves plus MPEG-4 FAPs:

• talk is a non-empty XML element and its content is the text to be spoken.

• expr specifies facial expressions with attributes type and val. The expression types

can be smile, anger, surprise, sadness, fear, and normal.

• hdmv handles 3D head movements. Similar to expr, this move is an empty element and

has the same attributes.

• fap inserts an MPEG-4 FAP into the document. It is also an empty element with

attributes type and val.

• nop performs no operation. It is an empty element with only timing attributes.

All primitive moves have three timing attributes begin, duration, and end. In a

sequential time container, begin is relative to start time of the previous move, and in a

parallel container it is relative to the start time of the container. In case of a conflict, duration

of moves is set according to their own settings rather than the container. Figure 3-4 illustrates

the use of time containers and primitive moves.

<act>

 <seq begin=”0”>

 <talk>Hello</talk>

 <hdmv end=”5s” type=”0” val=”30” />

 </seq>

 <par begin=”0”>

 <talk>Hello</talk>

 <expr end=”3s” type=”3” val=”50” />

 </par>

</act>

Figure 3-4. FML Time Containers and Primitive Moves

 40

3.4.2. Iterations in FML
Iteration in FML is provided by repeat attribute of Time Container elements that

simply cycles through the content for the specified number of times (in Definite Loops) or

until a certain condition is satisfied (Indefinite Loops). For a Definite Loop, repeat is either a

number or the name of an external event with a numeric non-negative value.

Indefinite Loops are formed when the repeat attribute has a negative value. In such

cases, the iteration continues until the value becomes non-negative. After that, the loop

continues like a Definite Loop. Of course, setting the value to zero will stop the iteration.

Figure 3-5 shows an example of FML iteration.

<event name="select" val="-1" />

< ... >

<act repeat="select">

 <seq>

 <talk begin="1">Come In</talk>

 < ... >

 </seq>

</act>

Figure 3-5. FML Iteration

3.5. Event Handling and Decision Making

Dynamic interactive applications require the FML document to make decisions, i.e. to

follow different paths based on certain events. To accomplish this, excl time container and

event element are added. An event represents any external data, e.g. the value of a user

selection. The excl time container associates with an event and allows waiting until the

event has one of the given values, then it continues with exclusive execution of the action

corresponding to that value, as illustrated in Figure 3-6.

The FML Processor exposes proper interface function to allow event values to be set in

run time. event is the FML counterpart of familiar if-else constructs in normal

programming languages.

 41

<!-- in model part -->

<event name=”user” val=”-1” />

<!-- in story part -->

<excl ev_name=”user”>

 <talk ev_val=”0”>Hello</talk>

 <talk ev_val=”1”>Bye</talk>

</excl>

Figure 3-6. FML Decision Making and Event Handling

3.6. Compatibility

The XML-based nature of this language allows the FML documents to be embedded in

web pages. Normal XML parsers can extract data and use them as input to an FML-enabled

player, through simple scripting. Such a script can also use XML Document Object Model

(DOM) to modify the FML document, e.g. adding certain activities based on user input. This

compatibility with web browsing environments, gives another level of interactivity and

dynamic operation to FML-based systems, as illustrated in 3.7.2.

Another major aspect of FML is its compatibility with MPEG-4 XMT framework and

face definition/animation parameters. This has been achieved by using XML as the base for

FML and also sharing language concepts with SMIL. As the result, FML fits properly within

the XMT framework. FML documents can work as an XMT-Ω code and be compiled to

MPEG-4 native features, i.e. FDPs and FAPs.

FML is a high-level abstraction on top of MPEG-4 Face Animation Parameters. FAPs

can be grouped into the following categories:

• Visemes

• Expressions

• Head Movements

• Low-level Facial Movements

 42

In FML, visemes are handled implicitly through talk element. The FML processor

translates the input text to a set of phonemes and visemes compatible with those defined in

MPEG-4 standard. A typical Text-To-Speech engine can find the phonemes and using the

tables defined in MPEG-4 standard, these phonemes will be mapped to visemes. FML facial

expressions are defined in direct correspondence to those in MPEG FAPs. FML also provides

hdmv element corresponding to FACS/FAPs basic 3D head movements. For other face

animation parameters, the fap element is used. This element works like other FML moves,

and its type and val attributes are compatible with FAP numbers and values. As a result,

FML processor can translate an FML document to a set of MPEG-4 compatible movements

to be animated by the player components.

Unlike MPEG-4 FAPs, in FML version 1.0, FDPs are not explicitly supported. This

support is provided indirectly through param model element that can define any modeling

parameter including FDPs. FML version 1.0 has been designed as part of the ShowFace

system that uses 2D photos for animation and does not need FDPs. As a result, inclusion of a

better support for FDPs was left to later versions of FML.

3.7. CASE STUDIES

FML can be used in a variety of ways and applications. It can be used as a high-level

authoring tool within XMT framework to create MPEG-4 streams (after translation), or be

used directly by compatible players for static or interactive face animation scenarios. Here

we discuss three sample cases to illustrate the use of FML documents.

3.7.1. Static Document
The first case is a simple FML document without any need for user interaction. There

is one unique path the animation follows. The interesting point in this basic example is the

use of iterations, using repeat attribute. An example of this case can be animating the

image of a person who is not available for real recording. The img element specifies the

frontal (base) view of the character and the story is a simple one: saying hello then smiling

(Figure 3-7).

 43

To add a limited dynamic behaviour, the image, text to be spoken, and the iteration

count can be set by the user, and then a simple program (e.g. a script on a web page) can

create the FML document. This document will then be sent to an FML-compatible player to

generate and show the animation. ShowFace system is an example of such a player,

discussed in Chapter 5.

<fml>

 <model>

 </model>

 <srory>

 <act>

 <seq repeat=”2”>

 <talk begin=”0”>Hello</talk>

 <expr begin=”0” end=”2s” type=”smile” val=”80” />

 <expr begin=”0” end=”1s” type=”normal” />

 </seq>

 </act>

 </story>

</fml>

Figure 3-7. Static Iterative FML Document

3.7.2. Event Handling
The second case shows how to define an external event, wait for a change in its value,

and then perform certain activities based on that value (i.e. event handling and decision

making). An external event, corresponding to an interactive user selection, is defined first. It

is initialized to –1 that specifies an invalid value. Then, an excl time container, including

required activities for possible user selections, is associated with the event. The excl

element will wait for a valid value of the event. This is equivalent to a pause in face

animation until a user selection is done.

 44

A good example of this case can be a virtual agent answering users’ questions online.

Depending on the selected question (assuming a fixed set of questions), a value is set for the

external event and the agent speaks the related answer. The FML document in Figure 3-8

uses two events: one governs the indefinite loop to process the user inputs, and the second

selects the proper action (reply to user question in mentioned example).

The FML-compatible player reads the input, initializes the animation (by showing the

character in initial state), and when it reaches the decision point, waits for user input because

the select event does not match any of the values inside excl. After the event is set

through proper API (see Chapter 5), the related action is performed. This will continue until

quit event used by repeat is set to a non-negative value. If the value is zero, it stops,

otherwise continues for defined number of times.

<event name=”quit” val=”-1” />

<event name=”select” val=”-1” />

< ... >

<act repeat=”quit”>

 <excl ev_name=”select”>

 <seq ev_val=”0”>

 <talk>Text One</talk>

 <expr type=”smile” val=”100” end=”2s” />

 </seq>

 <seq ev_val=”1”>

 <talk> Text Two</talk>

 <expr type=”smile” val=”100” end=”1s” />

 </seq>

 </excl>

</act>

Figure 3-8. Events and Decision Making in FML

 45

function onAdd()

{

 //fmldoc is FML (XML) document

 //loaded at startup

 //get the root (fml) element

 var fml =

 fmldoc.documentElement;

 //find the proper element by

 //navigating through fml node

 //details not shown

 var fmlnode;

 . . .

 //create/add a new element

 var new =

 fmldoc.createElement(“hdmv”);

 new.setAttribute(“type”,”0”);

 new.setAttribute(“val”,”30”);

 fmlnode.appendChild(new);

}

Figure 3-9. JavaScript Code for FML Document Modification

3.7.3. Dynamic Content Generation
The last FML case to be presented illustrates the use of XML Document Object Model

(DOM) to dynamically modify the FML document and generate new animation activities.

Example can be adding a new choice of action to the previous example, dynamically.

Figure 3-9 shows a sample JavaScript code that accesses an XML document, finds a

particular node, and adds a new child to it. Since this case uses standard XML DOM features,

we do not discuss the details. It only shows how the XML base can be helpful in FML

 46

documents. More information on XML DOM can be found at many online references such as

http://www.xml.org/xml/resources_focus_dom.shtml.

The same DOM methods can be accessed from within the FML Player to modify the

document while/before playing it. The FML Player can expose proper interface functions to

provide these capabilities to users/applications in an easier way. In Chapter 5, the ShowFace

system and the ShowFacePlayer component are introduced as examples of such user-friendly

environments for working with FML documents.

 47

4. Feature-based Image
Transformations

4.1. Background: Optical Flow-based Approach

4.1.1. Structural Overview
View Morphing has been a useful technique for generating new images based on some

existing ones. One of the main issues in morphing, as mentioned in Chapter 2, is finding the

corresponding points that work as controls to find out the mapping values for other pixels in

image [15,103]. Algorithms like optical flow have been used to automate the detection of

mapping vectors with or without such control points [41]. Optical flow method (especially

correlation-based) [14] can provide mapping vectors for all image pixels so animation will be

possible without any need for control points. This minimizes the required interaction by the

animator and makes the method suitable for any type of image (not just facial).

In the first stages of this research, a correlation-based optical flow algorithm was used

to create a moving/talking head [8,9]. The basic structure of the proposed system is

illustrated in Figure 4-1. The procedure is applied to a pair of given images (e.g. two

visemes) in order to create a video stream of head changing from one state (represented by

the first image) to another (represented by the second image).

Considering the case of moving/talking head, image pixels can have different 2D

movements. So no unique epi-polar line 1 can be specified for the whole image pair. The key

concept of this approach is to solve the correspondence problem by performing a 2D

correlation-based search in a 2D neighbourhood around each pixel.

Due to huge amount of computation required for the 2D search, a hierarchical

mechanism based on image pyramids is utilized [23]. The input image is resampled at

different resolutions to make a pyramid. The search is started at lower resolutions and the

result of each level is used as the initial guess for the next higher level.

1 A line along that all movements happen.

 48

Figure 4-1. Moving/Talking Head with Correlation-based Optical Flow

The result of the correlation-based search is a pair of disparity maps, corresponding to

forward and backward warps. After applying some validity checks and filtering, these maps

are used to perform the forward and backward warps to create the required number of

intermediate frames in both directions. The intermediate frames are generated by

incrementally moving the source image points along the optical flow vector (2D disparity).

The final morph is then made by blending these two sets of frames to do the hole-filling 1 and

create a smooth transition.

4.1.2. Optical Flow Field
Optical flow field is a set of 2D vectors corresponding to each pixel in the source

image which determines its motion. In our approach, this field is the disparity map resulted

from solving the correspondence problem by a correlation-based search. In stereovision

cases, disparity values are found by searching along an epi-polar line. This line specifies the

relative movement of camera/object which is not necessarily vertical or horizontal but is

unique for all image points.

Non-rigid and multi-component motions prevent us from using the concept of a unique

epi-polar line. In case of a moving/talking head, for instance, the mouth area has a multi-

1 Forward Mapping has been used.

 49

component movement which is different from other parts of the head. To allow such

movements, the proposed approach does not use any epi-polar line. A similarity score is

computed for every point (i,j) in image with respect to all points of the other image belonging

to a 2D neighbourhood centred at (i, j), and a disparity range parameter. The similarity score,

c, is calculated based on the correlation scheme used by Fua [42]:

)),((
)),((

)1,0max(

222

111

a

a

IjdyyidxxId
IjyixId

cs

−++++=
−++=

−=

∑∑
∑ −

=
jiji

ji

dd

dd
c

,
2

2,
2

1

,
2

21)(
 (4.1)

where I1 and I2 are the image pair and I1a and I2a are their average value over the

correlation window. dx and dy are displacement values in two dimensions.

As we can see, for a given 200x200 image and a maximum disparity of 20 in each

direction (search window of size 41x41), the total number of correlation calculations needed

to be done is approximately 200x200x41x41 = 67,240,000 (the searchable window shrinks

when approaching the image boundaries). Having a reasonable initial guess removes the need

for searching the entire 41x41 window for the best match. Image pyramids were originally

introduced as image compression tools [23]. They have been used in optical flow

computations both to reduce the computational cost and more importantly to allow detection

of larger motions which do not satisfy small motion constraints of some optical flow methods

[14]. An image pyramid consists of different levels of coarse to fine resolutions made by

resampling the input image. As an example, if maximum disparity is 20, corresponding to the

maximum amount of motion, a lower resolution image resampled at a 4:1 rate needs to be

searched only for a disparity range of 5.

Although more advanced and complicated mechanisms for creating the image pyramid

exist (e.g. Gaussian and Laplacian), in this work an image window is simply replaced by its

average to make a lower resolution image. The pyramid has three levels: low, medium, and

high resolutions, resampled at 4:1, 2:1, and 1:1 rates. Total amount of correlation operations

required at each level is:

 50

• Low Level: 302,500

• Medium Level: 250,000

• High Level: 1,000,000

This results in a total number of 1,552,500 operations that is almost 30 times less than

non-hierarchical approach.

The calculated disparity vector at each level gives the centre point of matching search

for the next level. For a disparity range of 20, the lowest level uses a range of 5 and others

only 2. The initial value of disparity vectors for the low resolution level is zero.

4.1.3. Map Validation and Filtering
The correlation-based matching is not guaranteed to find the real corresponding point.

It is always necessary to perform a validity check on the results. Two types of validation are

used in our system: uni-directional and bi-directional. Uni-directional validation consists of

two steps:

• Limit Check: The mapping should not change the relative positioning of points. If a point

is inside a group of others in one image it cannot be outside the same group in other

image. Working with the disparity maps, this means that the value of x or y component of

flow vector of each point must be limited to corresponding values of its neighbours.

• Filtering: To remove false matches (or reduce their effects) a standard Median or Low-

Pass filter is applied to maps.

Bi-directional validation is performed by comparing the disparity vector of each pixel

with the disparity vector of its corresponding point in the other image. Ideally, these two

vectors should sum up to zero, but a small amount of error (one or two pixels) can be

ignored. Unaccepted disparity vectors will be replaced by interpolation of their valid

neighbours. Due to performance results, the bi-directional validity check was implemented

but not used in this project.

 51

4.1.4. Image Warping and Final Morph
Given the input images and the calculated disparity maps (optical flow fields), the N

intermediate frames can be generated using the following mapping:

),(),(,121 yxk djdiIjiI ++⇒

),(
1

jiD
N

kd xx −
= (4.2)

),(
1

jiD
N

kd yy −
= (4.3)

where I1 and I12,k are source and kth intermediate frames, and Dx and Dy are components

of disparity vector.

Based on the way optical flow fields are calculated, a forward mapping is used in this

approach that needs final interpolation. Since the target image is available, better hole-filling

can be achieved if we initialize all the intermediate frames with the target image before

applying the above map. The same mapping will be applied to both input images to create

two sets of N frames. The final morphed kth frame can be computed as follows:

N
jikIjiIkN

jiI kk
mk

),(),()(
),(,21,12

,

+−
= (4.4)

where k is the frame index in forward direction and Ik,m is the kth frame of the final

morph.

4.1.5. Experimental Results
The proposed approach is implemented as a Windows application with the capability

of reading an input script which contains information about the input images and required

settings. It then applies the described algorithm to create the final morph and play them as a

video stream. Figure 4-2 shows a pair of input face images (a and f), four intermediate (b to

e), another input pair (g and j) and two intermediate frames (h and i). We can see that for

small movements like those in visemes (g to j), the optical flow works reasonably well but in

larger movements, illustrated by the first group, the mismatch in optical flow-based

algorithm causes noise-like pixels. Another major disadvantage of this method is the need for

all input images and their mapping database which makes the method hard to personalize.

 52

(a) (b)

(c)

(d) (e)

(f)

(g) (h) (i) (j)

Figure 4-2. Sample Results of Optical Flow-based Approach

Morphing from (a) to (f), and (g) to (j)

The moving/talking head based on this approach uses two groups of input images:

• Visemes

• Head turning left and right (profile and two intermediate positions, e.g. Figure 4-2-f)

All the mapping vectors between each image pair of each group is created and stored.

This results in a relatively large database that works only for one person. The visemes used in

this system (and also in feature-based approach discussed later) are shown in Table 4-1.

For audio, pre-recorded diphones and a TTS engine are used. The engine is used only

to convert the input text to a phoneme array. More details on the audio processing can be

found in Chapter 5.

 53

Table 4-1. Visemes List

Viseme Example Sound

A

a

E

e

i

m

n

o

u

v

NULL

soft

apple

see

set

sit

mother

no

go

foot

video

(silence)

4.2. Feature-based Approach: Basic Concepts

The rest of this chapter is devoted to the discussion of Feature-based Image

Transformation (FIX) as the proposed alternative to optical flow-based method described in

Section 4.1. As far as the content generation is concerned, the main objective of this research

has been the development of methods that allow photo-realism and yet minimize the need for

modeling data and also algorithmic complexity. To avoid the lack of realism and complexity

of algorithms, modeling data, and possibly hardware (as explained in Chapter 2), 3D

approaches have not been used. As discussed in 4.1, the research started with using view

morphing as the main technique. The optical flow-based approach has several advantages

including automated nature (no need to manually specify control points) and reasonable

quality for limited movements. But it suffers from some major drawbacks:

• Large amount of data (Each facial action has to be stored as a mapping vector for each

pixel)

• Lack of personalization (The mapping vectors are defined for a specific face and cannot

be applied to another one)

 54

• Optical flow mismatch (The matching error shows itself as noise-like pixels and will be

more noticeable in larger movements)

It should be noted that OF-based approach is a “blind” method, i.e. there is no

information regarding the content of image. This is beneficial for automation purposes but

makes it impossible to perform scaling and similar operations required for applying the

mapping to another face. Based on this idea, a primary modification to OF-based approach

can be introduction of facial feaures which can help:

• Apply the mapping to a new face (rotation, scaling, etc)

• Enhance the correlation search by providing initial values or extra constraints

On the other hand, as experienced by FACS and MPEG-4 FAPs, knowing the

movements of some important feature points and lines can be enough for generating new

images (such as talking and facial expressions) at some satisfactory level of quality. This

means that instead of storing mapping information for all facial points, we can only learn and

save such mapping vectors for limited features. When applied to an image, these vectors can

be scaled according to the size and orientation of the new image and then the mapping vector

for other non-feature points can be interpolated, making the method more flexible and

reducing the amount of required data. If I1 and I2 are images corresponding to two states of a

face, the optical flow-based approach defines the translation function T12 as mapping vectors

that take each point in I1 to its best match in I2:

I2 = T12 (I1) (4.5)

Here T12 has to be stored with all the mapping vectors for each pixel and due to its

“blind” nature, cannot be scaled or processed to handle a new image other than I1. The

feature-based method, on the other hand, performs a manual or automated feature detection

and forms a feature set Fi for each image Ii. The translation function will now be applied to

these new data structures:

F2 = Tf,12 (F1) (4.6)

 55

This idea is illustrated in Figure 4-3. Knowing the mapping vectors for feature points

(a) and (b), first the feature points are mapped (c), and then the other points are mapped by

interpolating their movements as function of the movement of feature points (d). This is

basically a warping operation, as introduced in Chapter 2. The warping function creates the

new image based on the pixel values of input image and has the limitation of not adding new

information like change of texture. Wrinkles are good examples of such new information that

cannot be handled by pure shape warping. In most of facial actions (including talking and

head movements) texture/colour changes are negligible. But in some cases like facial

expressions, they are more important. A secondary colour transformation can be added to

further enhance the transformed image (as discussed later).

(a)

(b)

(c) (d)

Figure 4-3. Feature-based View Generation

(a) Base Image with Features Detected, (b) Features of Base Image, (c) Features after
Applying the Known Mapping, (d) Warped Image.

With availability of geometrical information of the face, the Feature Translation

Function (FTF), Tf , can now be processed to handle normalization (scaling, rotation, and

even change of orientation) and it needs less data to be stored. With proper normalization, the

translation functions can be used for new characters or new images of the same character.

This idea is illustrated in Figure 4-4. Within the context of FIX, the terms (1) model image,

(2) base image, and (3) normalization are used respectively to refer to (1) images used to

learn the FTFs, (2) images that FTFs are applied to, and (3) processes like scaling needed to

make FTFs applicable to source images. Model and base images may also be called

prototype and input, respectively.

 56

To summarize, the Feature-based Image Transformation for Face Animation (FIX)

consists of:

• Learning Feature Translation Function (FTF) between different facial states, using a set

of model images 1

• Detecting the facial features for a given base image

• Applying the translation function to the feature points of the base image

• Proper interpolation to find mapping vectors for non-feature points

• Optional colour/texture transformation

• View morphing to generate any number of intermediate images

• Filling newly appeared regions of face (after head movements) for each frame

 (a) (b)

Figure 4-4. Feature-based Image Transformation

(a) The FTF learned between Images 1 and 3 is applied to features of Image 2 to
create a feature set for Image 4.

(b) Pre-learned “talking” FTF is applied to a new base image.

1 For the sake of computational simplicity, co-articulation, i.e. the effect of neighbouring phonemes and

visemes on each other, is not considered in this work.

 57

4.3. Facial States and Features

4.3.1. Identifying Facial States and Transitions
Facial activities are transitions between certain face “states” such as a viseme or

expression. In a training phase, a set of feature translation functions is learned by the system,

which can map between these face states. Translation functions are found by tracking facial

features when a model person is performing the related transitions. A library of these

functions is created based on following groups of facial states:

• Visemes in frontal view (Table 4-1)

• Facial expressions in frontal view (Figure 4-5)

• Head movements including 2D rotation to left and right, tilting forward and backward,

and turning left and right that poses more problems due to hidden and new areas and is

the focus of our work (Figure 4-6)

Figure 4-5. Facial Expressions

 58

Figure 4-6. 3D Head Movements

For group 1 and 2, mappings for all the transitions between a non-talking neutral face

and any group member are stored. In group 3, this is done for transitions between any two

neighbouring states (30-degree steps from right profile to left including frontal view).

4.3.2. Detecting Facial Features
Each transformation is associated with one facial state transition with a source and

destination image/state. It is defined in the form of T=(F,M) where T is the transformation, F

is the feature set in the source image, and M is the mapping values for features. Source image

information is saved to enable further normalization (scaling and calibration, explained later).

The feature set for each image includes face boundary, hair line, eyes and eye-brows, nose,

ears, lips, and some extra points as defined in MPEG-4 FDPs. These feature lines, and the

facial regions created by them are shown in Figure 4-7.

Off-line processing of facial features and their translation functions are done by a

specifically designed tool, ShowFaceStudio. Facial features in model and base images are

detected in a semi-automated way. Special points corresponding to major FAPs, are marked

on the face for the model images. For base images, these points will be specified manually.

Additional points will also be specified on the feature lines (Figure 4-8.b). The entire feature

line is then determined by the software applying a low pass filter for smoothing purposes.

The concept is similar to Snake [54] algorithm that tries to detect a contour by staying on the

edge of an image area while maximizing the smoothness. In our case, a poly-line is formed

based on the specified lines and then the low pass filter is used to smoothen the line. Due to

 59

offline nature of this operation and the fact that it is done only once for a limited set of

images, manually specifying some control points is more effective than normal edge

detection methods used in standard Snake algorithm. Figure 4-8 shows this process for upper

lip line. For the sake of visual simplicity, it does not show the marks on the face except in

(b).

(a)

(b)

(c)

Figure 4-7. Facial Features

(a) Image with Features, (b) Features with Facial Regions and Patches, (c) FDPs.

 60

(a)

(b)

(c)

(d)

Figure 4-8. Feature Detection.

(a) Lip Points specified, (b) Marked Feature Points for Precision,
(c) Feature Line Detected and Filtered, (d) Lip Line without Filtering.

Table 4-2 lists the facial features identified and used in FIX. The features are mostly

lines, but some additional points are added to improve the warp function, as discussed later.

Also, the lines are divided into segments based on important points on them (e.g. the vertical

maximum for eyes and brows). These control points and segments help find the

corresponding points on feature lines when calculating the FTFs. The control points are

found automatically using their geometric properties. Associated with each image, there is a

FaceFeature structure including these lines, points, and segments information 1.

1 Actual number of points in each feature line can be different depending on the image.

 61

Table 4-2. Feature Lines and Points (FaceFeature Structure)

Feature Type Segments Description

Head Line 4 Around head
Hair Line 2 Hairline Above Forehead
LeftBrowTop Line 2
LeftBrowBottom Line 2
LeftEyeTop Line 2
LeftEyeBottom Line 2
RightBrowTop Line 2
RightBrowBottom Line 2
RightEyeTop Line 2
RightEyeBottom Line 2
Nose Line 4
HighLipTop Line 3
HighLipBottom Line 3
LowLipTop Line 3
LowLipBottom Line 3
LeftEar Line 1
RightEar Line 1
LeftForehead Point FDP 11.2
RightForehead Point FDP 11.3
LeftCheek Point FDP 5.1
RightCheek Point FDP 5.2
Chin Point FDP 2.10

4.3.3. Feature Translation Functions
Feature Translation Functions define how feature points are mapped from one location

in the source model image to another in the destination model image, as a result of a facial

action. Because these mapping values are later applied to the feature points of a new base

image, the complete transformation includes the source model features, as well. Each FTF

has the same structure as the source feature (i.e. FaceFeature) with the same number of lines

and points, but instead of point coordinates, it includes mapping vectors.

The main issue in calculating FTFs is to find the corresponding points on feature lines,

since corresponding feature lines on two images may have different number of points. Three

methods have been investigated in this regard:

• Proportional

 62

• Correlation-based

• Piecewise Proportional

Proportional method simply assumes that the relative location of a point on the feature

line remains the same on all images. This means that if Fs is the feature line in source image

with Ns point, and Fd is the same feature on destination image with Nd points, then the

corresponding point to ith point of Fs is jth point of Fd where j is defined as follows:

i
N
N

j
s

d ×= (4.7)

In correlation-based method, a search is performed on Fd points to find the jth point that

gives the highest correlation. The search starts from ith point or with an initial guess based on

equation 4.7. This correlation can be similar to one described by equation 4.1. Such method

results in a higher computational cost and also does not guaranty a good match due to head

movements (similar to discussion on optical flow-based approach).

Piecewise proportional method (used in this research) is based on the assumption that

although the relative location of points does not remain the same on the whole feature line,

but their relative location on each segment of that line will remain the same, with some

reasonable approximation. These segments are defined based on co-visibility criterion 1 and

we can assume that they undergo a linear shrinking or extension as the result of facial action.

So the equation 4.7 will be replaced with the following formula where subscript k specifies

the kth segment:

k
sk

dk
k i

N
N

j ×=
,

, (4.8)

∑
−

=

+=
1

0
,

k

n
dnk Njj (4.9)

4.4. Mapping Facial Features

The transformations are done by first applying the FTF to the base feature points, as

shown in Figure 4-9. These transformations fall into two categories: Simple and Combined.

1 Co-visibility in this context refers to the points of a facial region being seen together under normal facial

actions.

 63

Simple transformations are those which have already been learned, e.g. T12 and T13 (assuming

we only have an image in position 1 as base image, and separate Images 1, 2 and 3 for

model). Combined transformations are necessary in cases when the destination image is

required to have the effect of two facial state transitions at the same time, e.g. creating

Image-4 from Image-1 using T14.

Figure 4-9. Using Feature Translation Functions

Before applying any FTF to a new set of features, the mapping vectors have to be

normalized based on the difference between source model image in T=(F,M) and the base

image features. Normalization involves size scaling and 2D rotation (tilt left and right). If

possible, the base image will be scaled to the same size as the model images and also rotated

to full vertical position. This way all the pre-learned transformation can be used without any

change. If it is necessary to use the base image in its original form, the model images will be

normalized to base image space (size and 2D angle) and new set of transformations will be

learned.

Assuming normalized transformation and images are being used, applying simple

transformation Tsd (from model feature set Fs to model feature set Fd) to the base feature set

Fb will create new feature set Fn:

)(sdbsdbn FFaFMaFF −×+=×+= (4.10)

 64

In this equation a (between 0 and 1) shows the portion of mapping we want to create.

The corresponding points of each feature are found according to equation 4.9.

In case of a combined transformation without 3D head movements (e.g. talking and a

facial expression), a linear combination can be used. Due to non-orthographic nature of 3D

head movements, combined transformations involving 3D head rotation cannot be considered

a linear combination of some known transformations. Feature mapping vectors for talking

and expressions (which are learned from frontal view images) need to be modified when

applied to “moved” heads. In Figure 4-9 to create Image-4 from Image-1, we have:
'

131214 TbTaT ×+×= (4.11)

24121,123,1312
'

13)()(),(TMFMFTTfT mmp =+−+== (4.12)

fp is Perspective Calibration Function (PCF) and involves moving Fm,1 and Fm,3 (model

features) using T12, and then re-calculating the FTF. Considering the way corresponding

points are found in each step, this is not equal to a linear combination. If Image-2 is given as

the base image, then we only need to apply T24.

4.5. Image Warping

4.5.1. Facial Regions
The stored transformations only show the mapping vectors for feature lines. Non-

feature points are mapped by interpolating the mapping values for the feature lines

surrounding their regions. This is done based on the face region to which a point belongs.

Face regions are grouped into two different categories:

• Feature islands, surrounded by one or two “inner” feature lines (e.g. eye-brows, eyes, and

lips)

• Face patches, covering the rest of the face as shown in Figure 4-7.

• New Regions, which appear as the result of head movement or talking (e.g. inside mouth)

The mapping vector for each point inside a feature island is found based on the

mapping vector of the points on feature lines above and below it, using the following

formula:

 65

lu
mlrabsmruabs

m clcu
cr −

×−+×−
=

))()((,,
, (4.13)

For the sake of simplicity, the mapping vector of each point is considered to be only a

function (weighted average) of mapping vectors for two feature points directly above and

below (mu,c and ml,c). r and c are row and column in image for the given point, u and l are the

row number for top and bottom feature points, and d is the mapping vector, as illustrated in

Figure 4-10 for an eye-brow.

Figure 4-10. Mapping Vector for Feature Islands

4.5.2. Warp Function
The next step after mapping the feature points is to map other image points. This is

done by the warp function. As discussed in Chapter 2, there are a few approaches to achieve

warping. Mesh-based methods are the most common in animation but they do not allow any

explicit control over critical features and the way they affect other points. Original feature-

based approach by Beier and Neely [15] is one step toward such control to consider local

information. But it’s limited to straight lines. In this work, a modified version of that

approach is used that:

• Works with any form of feature lines

• Finds the mapping vector of non-feature points as a function of feature point mapping

(instead of directly calculating the coordinates of corresponding point)

• Uses only local features around a point to warp it (the mapping of a point is a function of

limited features in its vicinity not all features as Beier-Neely consider)

• Does not use a fixed distance from the line

 66

To perform the warp using the local information, face is divided into facial patches. In

Figure 4-7, the solid lines are feature lines surrounding feature regions, while dashed lines

define face patches. The patches are defined in order to allow different areas of the face to be

treated differently. Co-visibility is again the main concern when defining these face patches

since it shows a common way of moving and being affected by the same feature lines/points.

Points in each patch will be mapped to points in the corresponding patch of the target image,

if visible. Face patches are defined based on co-visibility, i.e. their points are most likely to

be seen together. Defining the patches is necessary in order to preserve the geometric validity

of the transformation and allow local warping.

For each patch, a set controlling features (lines or points) are selected, and the mapping

vector of each point in that patch is defined as a weighted average of the mapping vector of

those features. For feature lines, the distance from the closest point on that line is considered:

∑

∑

=

=

×
= n

i
ip

n

i
ipip

d

md
m

0
,

0
,,

 (4.14)

In this equation, mp,i is the mapping vector of the closest feature point on feature i, dp,i

is its distance (to the patch point), and n is the number of features assigned to that patch. To

further enhance this method, mp,i can be replaced by the average of mapping values on the

feature line within a defined neighbourhood (e.g. 2 points on left and right). This adds a

smoothing effect that compensates for possible correspondence errors and creates a smoother

and more natural warping.

Table 4-3 shows the features that are considered for some examples of face patches. To

allow continuous and smooth transition from one patch to another, these features are not

limited to those around the patch but include some “farther” ones, as well. When the feature

is a line, for each patch point, the closest point on a feature line is considered. Exceptions are

closed feature lines such as Head and Nose, for them each patch point has four associated

feature points on its top, bottom, left and right sides.

 67

Table 4-3. Features Associated with Face Patches

Patch Features Comments

LeftForehead HeadTop, HeadLeft
Hair
BrowLeft

The left side of forehead,
above eyebrows

CentreForehead HeadTop, HeadRight, HeadLeft
Hair
BrowRight, BrowLeft

The centre of forehead,
above eyebrows

RightForehead HeadTop, HeadRight
Hair
BrowRight

The right side of forehead,
above eyebrows

LeftJaw HeadBottom, HeadLeft
LowerLip

The left side of lower face,
below mouth

CentreJaw HeadBottom, HeadLeft, HeadRight
LowerLip

The centre of lower face,
below mouth

RightJaw HeadBottom, HeadRight
LowerLip

The right side of lower face,
below mouth

4.5.3. Newly Appeared Areas
The warp function described in 4.5.2 uses an inverse mapping, i.e. it goes through all

the destination image pixels and finds the source pixels that correspond to them. This means

that all the areas of new image are filled and there is no need for interpolation. But as the

result of 3D head movements and also talking, there are certain areas in this newly created

image that do not exist in the base image. For such areas the warp function finds the closest

points on the base image. These points do not necessarily provide real data. Figure 4-11

illustrates this situation.

Filling the newly appeared regions is the only task that may not be done with a single

input (base) image. In case of talking, the inside mouth image data (from base image or a

second input image) is normalized properly and used to fill the open mouth area of new

images. In case of head movements, a second image (e.g. a profile of the same person) is

used that has the required region. We should map it to the target state, and use the data for

that specific region. Mapping the second base image follows the exact procedure described

above. The data from this new image can be used in two different ways:

• Create the final image as a blend of primary and secondary warp

 68

• Use the secondary warp only to enhance regions of primary warp

To minimize the dependence of the secondary warp, the latter alternative is selected.

The results can be seen in Figure 4-11.

(a)

(b)

(c)

(d)

Figure 4-11. Newly Appeared Areas for Head Movement and Talking

(a) Using Existing Data, (b) Using Profile Image,
(c) Using Existing Data and Painting Inside Mouth Black, (d) Using In-Mouth Data.

4.6. Texture Transformation

In some cases like facial expressions, moving the existing face points may not be

enough to cause the desired effects. Skin changes and wrinkles are the main issues, in this

regard. This means that not only the movement but also the change in colour (or grey level)

 69

of pixels has to be considered. Tiddeman et al. [97] have proposed an approach to this

colour/texture transformation. As discussed in Chapter 2, this approach has some

weaknesses, for example:

• Larger database (not only feature but also pixel information has to be stored)

• Model-specific data (colour transformations are not easy to normalize)

• Global changes that are hard to normalize (transformations are defined globally for whole

image rather than being associated with local features)

To address the need for texture changes, FIX has been extended to include local texture

transformations around the features. This method has the advantages of:

• Storing only texture changes that are necessary for any specific facial action

• Being easy to normalize due to dependence on local features

• Reducing the computational cost by applying texture transformation only to the necessary

areas

The colour change is stored in a normalized way (percentage of change) to be

independent of skin brightness when applied to a new base image. It will undergo a size

scaling as well (based on the feature size in the model and the base images) to match the size

of the new features. The following algorithm explains this process:

// In Learning Phase

//

For each Feature Fi in Destination Model Image

 Define Feature Area Si around Fi

 For each pixel in Si

 Find Corresponding Pixel in Source Model Image

 Calculate Normalized Colour Change

 (destination - source)/source

 Store Feature Area

 70

// In Run Time

//

For each Feature Fi

 Load Feature Area Si

 Resize Si based on the size of Transformed Base Image

 For each pixel in Si

 Find Corresponding Pixel in Transformed Base Image

 Apply Normalized Colour Change

 (colour += colour*change)

Figure 4-12 illustrates the result of such a texture transformation. For this example,

only the colour changes in the area between the eyebrows needed to be stored, in order to

amplify the effect of frown.

Figure 4-12. Texture Transformation

(a) Base Image, (b) and (c) Frown without and with Texture Transformation

 71

4.7. Summary of FIX Features and Advantages

In chapter 2 the existing approaches to visual content generation for face animation

were reviewed. In comparison to these methods, FIX offers a variety of advantages that can

be summarized as follows:

• No need for complicated computationally-expensive 3D models

• No need for hard-to-acquire 3D data

• No need for a large database of 2D images for each person (unlike morphing-based 2D

methods), due to use of only one set of learning images and storing only transformation

information

• Realistic output due to use of photographs

• Personalization by applying transforms to any photograph

Table 4-4 compares the features supported by FIX with typical 3D (using 3D geometric

models) and 2D (using image-based operations like morphing) methods.

Table 4-4. Features Comparison for FIX vs. Typical 3D and 2D Methods

Features FIX 3D Image-based 2D

Photo-Realism

Yes No Yes

Personalization Yes Somehow Only with a large
database

Data/Model Storage Low Low High

Model Acquisition Easy Depends on method
(some need 3D
sensors)

Easy

 72

5. ShowFace System
5.1. System Architecture

5.1.1. Requirements
As discussed in Chapter 2, one of the main weaknesses in existing face animation

systems is the lack of a comprehensive framework. Most of the research in this area have

been focused on graphic/animation techniques, limited compatibility (especially with MPEG-

4), and occasionally content description and modeling. System-level concerns (e.g.

architecture, openness, and streaming) and a “big picture” of face animation as a framework

(not simply a set of tools and algorithms) have not been properly addressed.

Such a comprehensive framework should provide well-integrated solutions to

following system-level issues:

• Modularity

• Compatibility

• Flexibility

A modular component-based architecture guarantees minimum interdependence

between system parts, which in turn allows independent and parallel development and

upgrade of one part with the least possible effect on the rest of the system. This is a major

concern especially due to ever-changing features and functionality and also the need to

introduce new technologies. A good example of such a modularity is encapsulation of visual

content generation into one component so it is possible to switch from one approach (e.g. 2D

image-based) to another (e.g. 3D geometry-based), without significant changes in the rest of

the face animation system. A well-defined interface is the basic necessity in a successful

modularization to make a component independent of internal implementation of the others.

Another important concern is compatibility with existing standards and technologies.

This compatibility has double benefit of being able to (1) connect to frequently used systems,

receive input in popular formats, provide output in an acceptable way, etc, and (2) use

existing tools and facilities which are designed to provide the services within a standard

 73

framework. MPEG-4 is a good example of standards in the first category. Many applications

now work with MPEG input/outputs and as discussed earlier, MPEG-4 standard has certain

means of describing and animating faces. XML parsers and multimedia streaming

environments such as Microsoft DirectShow [81] and Apple QuickTime [59] are examples of

the second category that can facilitate face animation and the related processes, provided the

system is compatible with their standards and interfaces.

Last but not least, flexibility in providing services to different types of applications is

another major issue in face animation systems. Most of existing face animation solutions are

either stand-alone application programs or single components (e.g. a Java applet) that has to

be used within a certain container program. A well-defined framework should have different

components and interfaces to allow different programs to connect and use its services.

Considering these general requirements, and all the capabilities mentioned in previous

chapters, the following sections describe the ShowFace animation framework and its

components and also underlying technologies and environments.

5.1.2. Basic Structure
The basic structure of the ShowFace system is shown in Figure 5-1. Five major parts of

this system are:

• Script Reader, to receive an FML script from a disk file, an Internet address, or any text

stream provider.

• Script Parser/Splitter, to interpret the FML script and create separate intermediate audio

and video descriptions (e.g. words and viseme identifiers)

• Video Kernel, to generate the required image frames

• Audio Kernel, to generate the required speech

• Multimedia Mixer, to synchronize audio and video streams

ShowFace relies on Microsoft DirectShow [81] as the underlying multimedia

technology for audio and video playback. DirectShow allows multimedia streaming through

components called “filters” that process “frames” of multimedia data in a streaming scenario.

DirectShow runtime environment provides a library of filters and utility functions for

streaming purposes. DirectShow filters are objects based on Component Object Model

 74

(COM) and work by exposing their functionality through COM interfaces. DirectShow will

be installed as part of many application programs such as Internet Explorer web browser and

many games. It comes with a set of filters such as audio and video decoders and renderers.

Custom filters and interfaces can be designed and added to perform specific actions.

DirectShow-based streaming is discussed in SubSection 5.1.3.

Figure 5-1. ShowFace System

ShowFace system is designed and implemented with the concept of openness in mind.

By that we mean the ability to use and connect to existing standard components and also

independent upgrade of the system modules. To make the most of existing technologies,

ShowFace components are implemented as DirectShow filters. This allows ShowFace

objects to access the existing filters easily and rely on multimedia streaming services

provided by DirectShow, e.g. receiving data from a URL reader or MPEG-4 decoder and

sending data to a video player or file writer.

ShowFace components interact with each other, and client applications, using standard

DirectShow interfaces and also ShowFace Application Programming Interface, SF-API, a set

of custom interfaces exposed by the components and utility functions provided by ShowFace

run-time environment (see SubSection 5.3.1). User applications can access system

components and functions through SF-API, or use a wrapper object called ShowFacePlayer,

 75

which exposes the main functionality of the system, and hides programming details. Script

Reader/Parser, FML Splitter, Video Kernel, and Audio Kernel are custom filters developed

for ShowFace system. The mixing functionality is achieved by using DirectShow standard

filters.

By using FML as the basic input mechanism, the script parser component of ShowFace

efficiently uses standard XML parsers (installed by web browsers). After parsing the

XML/FML input, the splitter filter interprets the FML commands, and creates detail

information for audio and video actions.

Video Kernel uses FIX technique to create the desired images using the base image,

transformation database, and facial actions description provided by splitter filter. The number

of frames generated for each action is specified in FML input or is determined based on the

duration of speech (to maintain synchronization). Audio Kernel uses a Text-To-Speech

(TTS) engine and a set of pre-recorded diphones to generate the required audio data. Audio

processing is described in Section 5.2. The ShowFacePlayer wrapper object is implemented

as an ActiveX control, which can be easily used in web pages and other client applications.

SubSection 5.3.2 describes this object and its usage.

Figure 5-2. ShowFaceStudio

 76

An off-line tool, ShowFaceStudio, is also developed to assist in detecting the features,

creating the maps, and recording scripts. Using this tool, system developers can identify

facial features in input images, create feature files and databases, perform normalization of

images, run test mappings, and generate FML documents corresponding to their desired

sequence of actions. A snapshot of this off-line tool is shown in Figure 5-2.

5.1.3. Streaming
The basic building block of DirectShow is a software component called “filter”. A

filter is a COM object that generally performs a single operation on a multimedia stream. For

example, there are standard DirectShow filters that:

• Read multimedia files in popular formats

• Get video from a video capture device

• Decode a particular stream format, such as MPEG-1 video

• Pass decoded video or audio data to the graphics or sound card

Figure 5-3. Sample DirectShow Filter Graph

Filters receive and deliver data through “pins,” input and output objects associated with

different media types. For example, if a filter decodes MPEG-1 video, the input is the

MPEG-encoded stream and the output is an uncompressed RGB video stream. To perform a

given task, an application connects several filters so that the output from one filter becomes

the input for another. A set of connected filters is called a “filter graph”. As an illustration of

this concept, Figure 5-3 shows a filter graph for playing an AVI 1 file.

1 Audio-Video Interleaved

 77

The application program does not have to manage the individual filters in a filter graph.

Instead, DirectShow provides a high-level component called the Filter Graph Manager. The

Filter Graph Manager controls the flow of data through the graph (e.g. by asking video filters

for a new frame of data). Applications make high-level API calls such as "Run" (to move

data through the graph) or "Stop" (to stop the flow of data). If an application requires more

direct control of stream operations, it can access the filters directly through COM interfaces.

The Filter Graph Manager also passes event notifications to the application, so that they can

respond to events, such as the end of a stream. DirectShow Software Development Kit (SDK)

includes GraphEdit, a tool for creating, viewing, and testing filter graphs.

A typical DirectShow application performs following basic steps, as illustrated in

Figure 5-4:

• Creates an instance of the Filter Graph Manager, using the CoCreateInstance COM

function.

• Uses the Filter Graph Manager to build a filter graph (adding filters)

• Controls the filter graph and responds to events.

Figure 5-4. Using DirectShow Filters

New filters can be developed and registered to be used by DirectShow runtime

environment, provided they implement the proper interfaces that allow Filter Graph Manager

perform filter creation and connection, and also data transfer. The most important of these

interfaces are IMediaFilter and IBaseFilter for basic filter construction, and also IPin and

IMemInputPin used for connections and data transfer. Some frequently used methods on

these interfaces, to be implemented by the filter, are listed in Table 5-1.

 78

Table 5-1. Basic Filter Interfaces

Interface Method Description

IMediaFilter

GetState Retrieves the filter's state (Running, Stopped, or Paused)

SetSyncSource Sets a reference clock for the filter

GetSyncSource Retrieves the reference clock that the filter is using

Stop Changes state to Stopped

Pause Changes state to Paused

Run Changes state to Running (actual data transfer in Receive
method of IMemInputPin)

IBaseFilter

EnumPins Enumerates the pins on this filter

FindPin Retrieves the pin with the specified identifier

QueryFilterInfo Retrieves information about the filter

IPin

Connect Connects the pin to another pin

ReceiveConnection Accepts a connection from another pin

Disconnect Breaks the current pin connection.

ConnectedTo Retrieves the pin connected to this pin

ConnectionMediaType Retrieves the media type for the current pin connection

QueryPinInfo Retrieves information about the pin, such as the name, the
owning filter, and the direction

EnumMediaTypes Enumerates the pin's preferred media types

EndOfStream Notifies the pin that no additional data is expected

QueryDirection Retrieves the direction of the pin (input or output)

IMemInputPin

GetAllocator Retrieves the memory allocator proposed by this pin

Receive Receives the next media sample in the stream. Media sample
is an object that implements IMediaSample interface

 79

The filter graphs for normal playback and also writing to file are shown in Figure 5-5.

The media types used as output of Video and Audio Kernels are image frame and block of

audio data. The block size for audio data is determined according to its sample size, sample-

per-second, and video frame-per-second, so that each audio and video “frame” corresponds

to the same time period.

AudioFrameSize = (AudioChannels x AudioSampleSize x AudioSamplePerSecond)

/ VideoFramePerSecond (5.1)

(a)

(b)

Figure 5-5. ShowFace Filter Graph

(a) Playback, (b) Write to File

FML Splitter uses the text data to be spoken, read from FML TALK tags, as input to

Audio Kernel. The video output of FML Splitter and also its input are in form of a block of

binary data of the type FMLMove. This type is defined as a structure with following integer

members:

• Move; Main category of supported facial actions, i.e. Talking, 3D Movement, and Facial

Expressions.

• Type; Subcategory of Move, i.e. what viseme, expression, or movement.

• Val; Amount of movement, i.e. percentage of complete transformation.

 80

• Begin and End; Start and End times in milliseconds. This determines the number of

frames to be generated by the Video Kernel. In case of talking, these times are calculated

based on the duration of corresponding diphone. For other moves, the timing is specified

in FML input.

5.2. Speech Synthesis

The ShowFace Audio Kernel is responsible for speech synthesis. As reviewed in

SubSection 2.2.2, there are two main approaches to speech synthesis: model-based and

concatenative. Due to difficulty of modeling vocal tract and the need for a natural speech, the

second method is used in our research. A database of diphones, spoken by the person to be

animated, is created off-line by extracting speech modules from existing audio footage. This

can be done manually or by an automated tool. The tool developed by Darbandi [31] is an

example of the automated approaches to this task. It utilizes different speech models to detect

and extract diphones from a given audio data.

The speech synthesis is performed with the following steps:

• Receive text from FML Splitter

• Convert the input text to a set of phonemes

• Create the sequential diphones list

• Find the diphone data from the database

• Connect the diphones in a smooth way

• Pass the speech to the audio playback filter, frame-by-frame

Any existing TTS engine can be used to translate the input text to phoneme list 1. The

most common on Windows platforms is the group of tools based on SpeechAPI (SAPI).

SAPI guarantees a standard COM interface for the TTS engines but it needs the installation

of SAPI-compatible software which is usually not free. The free version of TTS engine from

Microsoft does not expose the phoneme translation to external applications, due to limited

implementation. For this thesis, MBROLA open source speech synthesis tool

1 It is not efficient to develop a new translator for this purpose, due to availability of commercial and free

tools. It should be noted that only phoneme translation is done by the TTS engine. Actual speech synthesis
has to be performed by ShowFace Audio object.

 81

(http://tcts.fpms.ac.be/synthesis) has been used. It installs a small dictionary and can be

added to the ShowFace software at the source-code level.

Due to the extraction of diphones from different parts of audio footage, their smooth

connection needs three types of normalization to make the generated speech sound

homogeneous and natural [37]:

• Power

• Pitch

• Phase

Different methods are proposed for time or frequency domain transformation on speech

signal [56,86]. Current version of ShowFace does not provide on-demand transformation of

audio power, pitch, and duration. Power and pitch of the extracted diphones are normalized

off-line when creating database.

The phase normalization on the other hand has to be done in real time when connecting

two diphones. The reason is that, due to the way diphones are extracted, the start and end

points of diphones are the optimal connection point for the pair of phonems connected in the

original audio footage but not necessarily optimal for connecting the diphone to another

diphones/phonemes. Figure 5-6 illustrates this concept in a simplified manner. Diphones are

usually made from the centre of a phoneme to the centre of another one. In ShowFace, this is

done with an extra margin on each side. This allows a search to be done when connecting

two diphones in order to find the optimal point of connection for that specific case.

The waveforms shown in Figure 5-6 are the last and the first 11 milliseconds of two

diphones (each with a duration of about 200 milliseconds) which are supposed to be

connected. Clearly, end of diphone (a) does not match the beginning of diphone (b). Optimal

coupling seems to be possible by cutting 7 milliseconds off the end of (a) and 3 milliseconds

from the beginning of (b).

 82

(a)

(b)

Figure 5-6. Smooth Connection of Diphones

(a) Ending Part of a Diphone,
(b) Beginning of Another Diphone Starting with the Same Phoneme.

The search for optimal coupling point can be done in time domain (comparing

windows of audio samples) or frequency domain (comparing windows of FFT 1 values). Due

to the existence of noise, frequency domain comparison provides better results but requires

more processing time. In either case, a simple distance function can be used to compare

moving windows of two diphones (or the FFTs) and find the location that provides the

minimum distance. 256-point windows seem to be suitable for comparison. Ideally, the

windows should be moved 1 point each time, but for computational efficiency and without

loss of too much accuracy, larger movements can be used.

1 Fast Fourier Transform

 83

It should be mentioned that the work presented in this thesis has focused mainly on

visual aspects of face animation. Audio/speech processing has been the subject of

considerable research. They are included in this work only to the minimum level necessary.

5.3. Application Development

5.3.1. SF-API
ShowFace components interact with each other, and client applications, through

standard DirectShow interfaces and custom SF-API. Table 5-2 illustrates some important

interfaces and methods of SF-API implemented by ShowFace components in addition to

standard DirectShow interfaces.

Table 5-2. ShowFace API Methods for Filters

Interface Method Description

IFMLSrc

SetFMLEvent Set the value of an FML Event for decision-making

ISFVideo

SetImageFolder Set the path to image/transformation database

ISFAudio

SetWaveFolder Set the path to audio database

SetWordInfo Provide the input text (used by FML Splitter not
applications)

Any program capable of using COM interfaces and DirectShow runtime environment

can create and interact with the ShowFace filters. In a typical situation, this will be done

through Filter Graph Manager, as described in SubSection 5.1.3. SF-API also includes

CDSGraph class to make this interaction easier (Table 5-3). This class uses the standard and

custom COM interfaces of Table 5-1 and Table 5-2 to perform the actions while isolating the

applications from the COM programming details.

 84

Table 5-3. CDSGraph SF-API Class

Method Description

CreateFilterGraph Create a Filter Graph using DirectShow COM interfaces

AddGraphFilter Add a filter to graph

RenderFMLFile Create a complete graph to render an FML file

PlayMedia Start playing the graph

SetEvent Set the value of an FML event

WaitForGraphEvent Wait for an event from graph (e.g. stop) using a new thread

5.3.2. ShowFacePlayer
The COM interfaces and CDSGraph class have to be used at the source-code level in

the client applications. To further simplify application development, especially for web-based

systems where only simple scripting languages are available, SF-API includes a wrapper

object. ShowFacePlayer is an ActiveX control that can be used in any application or web

page, and interacts with the container program at binary level rather than source code.

ShowFacePlayer includes simple methods such as CreateMedia, Play, Stop, and

SetEvent. A simplified HTML source for creating and using this control is shown here:

<INPUT onClick="Play()" type=button value="Play">

<OBJECT

id=SFPlayer

type=application/x-oleobject

width=20 height=20 standby="Loading ShowFace Player..."

classid=CLSID:71e54faa-d2ca-4a89-b62c-b60cd4191630>

<PARAM NAME="InputFile" VALUE="c:\ShowFace\TestFml.xml">

</OBJECT>

A simple script on that page is responsible for invoking methods on the object:

 85

<script language="javascript">

function Play()

{

 SFPlayer.InputFile = "c:\\ShowFace\\TestFml.xml";

 SFPlayer.CreateMedia();

 SFPlayer.Play();

}

</script>

 86

6. Evaluation and Experimental
Results

6.1. Evaluation Criteria

6.1.1. Criteria Categories
Based on the survey in Chapter 2 and more studies, we categorize the basic

requirements of a face animation system into the following groups:

• Content (e.g. realism)

• Architecture (e.g. compatibility)

• Development (e.g. minimum modeling data)

Table 6-1. Evaluation Criteria

Category Criteria Code

Content Realism
Graphic Capabilities
Speech Generation

C-1
C-2
C-3

Architecture Timeliness
Descriptiveness
Compatibility
Modularity

C-4
C-5
C-6
C-7

Development Computational Simplicity and Efficiency
Input Requirements

C-8
C-9

Since the requirements should have a clear (and if possible, one-to-one)

correspondence to test and evaluation criteria, we consider these requirements to be the base

for a comprehensive set of evaluation criteria. Following subsections provide information on

members of each category and try to give clear definition and some numerical metrics for

them.

 87

Table 6-1 summarizes our proposed evaluation criteria. Although it might not be

possible in all cases, in compiling this set, we consider an evaluation measure to be:

• Clearly defined,

• Quantifiable and objective,

• Generally accepted as a requirement,

• Automatable

The last item in the above list refers to the ability to have a software tool performing

the evaluation without any need for a human observer. This may be considered a result of the

first and the second items but has been mentioned separately to emphasize its importance.

6.1.2. Content
6.1.2.1 Realism

Having a realistic output seems to be the most frequently mentioned feature of

animation systems, although in some cases a non-photo-realistic output is acceptable or even

desired. Under the umbrella of realism we consider some other aspects, which might seem

not directly related, such as geometric validity and comprehensibility. Although a realistic

multimedia data is supposed to be physically valid and comprehensible to the audience, not

every valid or comprehensible data is necessarily realistic.

Realism can be defined as similarity to the real multimedia data with the same subject

(people and actions). To what degree animation is realistic is primarily judged by the

viewers. The evaluation can so be done by creating samples using the proposed method and

analyzing the viewers’ reactions. Some guidelines can be:

• Choosing unbiased random viewers

• Using standardized significant subjects

• Checking testable effects such as lip-synchronization and mapping of specific points

Selecting non-random viewers may also have its own advantages. For instance,

animators can be good candidates since they pay attention more carefully and can provide

feedback on more issues (e.g. user interface).

 88

The evaluation can be improved by using “ground truth,” i.e. existing footage of the

animation subjects. Comparison can be done directly between the animation output and the

existing footage showing the same actions by the same characters. This, of course, is limited

to the cases when the corresponding “real” footage is available.

The subjective evaluation, regardless of such guidelines, is somewhat unreliable and

more importantly inefficient. Objective methods for evaluation of synthesized and/or

processed images have been studied by image processing and compression researchers [72]

and also recently by computer graphics community [74]. Direct physical metrics based on

pixel-wise comparison of image intensity and colour are usually combined with some means

of considering viewer sensitivity to spatial frequency, brightness, and other image aspects

[72]. Perception-based methods are more advanced methods in this regard. Using models of

human visual system, and considering spatial frequency, contrast, and colour distribution,

Visible Difference Predictor (VDP) and it’s variations [74] are shown to be powerful means

of defining image quality metrics. VDP maps images to be compared to a multidimensional

representation and applies a model of human visual system to find the image difference in

perceptual space rather than normal physical space.

Such methods can be used for global or regional comparison of real photos with

computer-generated images. For instance pure 3D approaches may not be able to create

realistic images due to complicated 3D models required for details such as hair and wrinkles.

Another example can be optical flow-based view morphing techniques which suffer from

“visual noises” caused by mismatching the image points.

Special characteristics of face animation also need more feature-based approaches.

They should consider validity and correctness of movements for significant feature points

and lines in face. Such feature-based considerations can be done in three different ways:

First, performing regional image comparison for certain regions specified by important

facial features. The comparison itself can be done by above-mentioned image quality metrics.

A difference measure, D, can be defined as follows:

∑=
k

fkk jidwD),((6.1)

Where dfk is regional distance function, calculated over all region points, for kth feature

area of images i and j, and wk is the weight for that feature area in the whole quality

assessment.

 89

Second, performing the image comparison only for feature points and lines.

∑=
k

kjkik ffdwD),((6.2)

Where d is Euclidean distance function, and fki and fkj are kth feature set in images i and

j (e.g. lip lines). These measures are calculated in units of misplaced pixels and can be further

normalized using the image size.

Third, checking the geometric validity of feature movements according to a set of pre-

defined physical rules. For instance horizontal alignment of feature points must remain

unchanged after moving head to right or left.

6.1.2.2 Graphic Capabilities

Common capabilities required in face animation systems include:

• Creating a wide range of actions (such as talking, head movement/rotation in different

directions, and facial expressions)

• Personalization, i.e. creating images for a certain person based on minimum input data

(2D photos or 3D sensor data)

• Robustness, i.e. making faces for different people

Evaluation of a proposed system based on these objectives is more straightforward than

evaluating realism due to clearer definition, but also more qualitative. It is still possible to

assign numerical weights to each one of these desired capabilities in order to incorporate

them into a quantitative set of evaluation criteria. Such weights can be defined based on the

importance of the related capabilities in each application.

6.1.2.3 Speech Synthesis

The ability to create speech is another major evaluation item. It can include

maximizing quality and minimizing training and database requirements. A concatenative

Text-To-Speech (TTS) system used for personalized speech synthesis needs a proper

database of speech segments (e.g. diphones). For such a system we can define:

 90

SEM = SC x SQM / SDS (6.3)

Where SEM, SQM, and SDS are Speech Evaluation Index, Speech Quality Metric, and

Speech Database Size, respectively, and SC is a proper scaling coefficient. Common

measures of audio quality (such as signal-to-noise-ratio and comprehensibility) can be used

for SQM. The database size can be measured in terms of the number of pre-recorded speech

segments and their individual size.

6.1.3. Architecture
6.1.3.1 Timeliness and Streaming

Most of the new applications for face animation (such as video conferencing and

interactive agents) need real-time operation. This means that the system has to receive

continuous input (in some form) and produce output in real-time. A streaming real-time

animation not only needs to be reasonably fast but also has to guaranty synchronization and

work with input and output in standard formats. So this criterion includes some architectural

concerns as well as pure performance measures.

Relying on existing real-time streaming technologies can be considered a positive

point, in this regard. On the other hand, complex mathematical calculations, as common in

3D approaches, might be time consuming operations that make the system unsuitable for

real-time operation, especially in applications with limited hardware like video phones.

Real-time operation and streaming capabilities can be simply translated to quantitative

metrics (for example, the number of frames with certain number of colours and resolution,

that can be processed in real time). The ability to receive streams of input and produce

streams of output as opposed to input/output files with fixed sizes, and synchronization issues

(e.g. lip-synch) are also important, in this regard.

6.1.3.2 Descriptiveness

A structured method for describing desired actions and content is absolutely necessary

for authoring and interaction with the system. Such a Structured Content Description needs to

be compatible with commonly used languages and methods, in order to make interfacing

easier. As seen in Chapter 2, this objective is usually ignored in face animation systems.

 91

Some desired features of such a description mechanism are:

• Hierarchical view of animation, including high-level “stories” to low-level “actions” (like

mouth-open)

• Support for MPEG-4 FAPs

• Support for MPEG-4 XMT framework

• Behavioural modeling and templates

• Dynamic decision-making (allowing external events to change the sequence of actions)

Face Modeling Language (FML) is an example of such a content description

mechanism. FML time containers par, seq, and excl make it possible to put actions

together in parallel, sequential, and exclusive ways. The latter is considered to provide

decision making based on an external event which selects one of exclusive actions to

execute.

Another aspect of FML (also seen in CML [43] and BEAT [24]) is cognitive and

behavioural modeling. Current version of FML defines simple configuration and behavioural

templates consisting of standard face actions. The FML documents can then use these

templates in their “scenarios”. CML and BEAT extend this modeling approach by defining

more complex behaviours.

Such languages can be used both for authoring animation applications and also as input

to animation players. Use of XML Document Object Model (DOM) and introduction of

events and decision-making structures provide dynamic and interactive content.

6.1.3.3 Compatibility

As mentioned before, existing multimedia technologies and standards can help improve

the performance of face animation. In some cases compliance with these standards can be

required, due to their popularity. MPEG-4 standard and Web-based systems are good

examples, widely used in normal applications.

Another example can be the use of XML-based languages for animation and modeling.

This allows utilizing existing XML parsers and also compatibility with XML-enabled

systems.

 92

It may be hard to define numeric measures for this and some other requirements as

evaluation criteria. Assigning weights to each one of them and considering those numbers as

metrics can be one approach.

6.1.3.4 Modularity

Rapid development of technologies means that a system should be designed in a way

that can be upgraded with minimum effort, in order to work with new components. A

modular architecture and a set of well-defined and possibly accepted interfaces make such

upgrade easier to achieve, and allow parallel development and maintenance of modules.

ShowFace system, for instance, provides SF-API which acts as a communication

interface between different components. Each part of the system can be upgraded/modified

without affecting the other parts, as long as they all use SF-API. An example can be using 3D

face models instead of 2D image transformation currently implemented in the ShowFace.

6.1.4. Development
6.1.4.1 Simplicity and Efficiency

Computational simplicity and efficiency of the methods and components used in the

system are primarily related to issues such as timeliness. But they also make the system

development, maintenance, and evolution easier. So it is worthwhile to consider them as

independent evaluation criteria. Needless to say, such criteria are highly subjective and hard

to measure. Measuring software efficiency and simplicity, in terms of parameters such as the

number of lines of code and programming structures, is a major area of research which is out

of scope of this thesis.

6.1.4.2 Minimum Input Requirements

As mentioned in speech synthesis subsection, the amount and type of data required to

“train” the system is a major evaluation index. For example, some animation systems based

on geometric head models need 3D data produced by 3D scanners which might be hard to

provide. Some 2D image-based methods, on the other hand, need a relatively huge database

of images to create new ones. MikeTalk [41] uses a complete set of “visemes” (visual

 93

presentations of phonemes) to create visual speech. Although the number of such images is

limited for one person in one orientation of the head, the method cannot be used to generate

animation for other faces and in other head orientations. Other extensions to this approach

[46] use a more extended set of images to deal with head movement which increases the

database size.

A weighted combination of difficulty of creating the database and its size is a necessary

evaluation index for face animation systems. Methods that create the 3D head model based

on 2D photos (e.g. [62]), and those which use one set of images to learn the necessary image

transformations and apply them to multiple faces, will result in better evaluation indices, in

this regard.

6.2. Experimental Results

6.2.1. Test Procedure

Figure 6-1. ShowFace Test Procedure

Considering the criteria introduced in 6.1, as shown in Figure 6-1, the ShowFace

system has undergone a series of test experiments, which fall into the following groups:

• Individual transformed images mainly to test the FIX approach (used ShowFaceStudio).

• Simple facial actions to evaluate the integration of system components, lip-synch,

streaming, and other system-level concerns (used ShowFace components and GraphEdit

SDK tool).

System Level: Modular Development
New Technologies and Methods.

All System Components Involved.

Application Level
More Complicated Scenarios.

All System Components Involved.

System Level: Integration/Operation
Simple Cases with All Components.

Used Filter Graph and Simple Web Page

Algorithm/Transformation Level
Creating individual images/sounds.

Used ShowFaceStudio.

 94

• System upgrades (with new technologies and methods) to verify openness, modularity,

and component-based structure (used ShowFace components and sample applications).

• Animation applications to test FML, application-level concerns, system abilities in real-

world scenarios involving more complicated tasks such as decision-making, event

handling, and web-based operation (used ShowFace components and sample

applications).

During these experiments, the system has been evaluated according to the criteria

introduced in Section 6.1 (revisited in Table 6-2). Also, a comparison has been made

between ShowFace and some of the most influential and accepted face animation systems.

Three of these systems [19,41,97] use 2D image-based approaches which make them more

suitable for comparison. A 3D system [62] is also selected due to its typical capabilities, to

provide a more comprehensive comparison. The compared animation systems are:

• MikeTalk by Ezzat et al. [41].

• Video Rewrite by Bregler et al. [19].

• Perception Lab Face Animation System, by Tiddeman et al. [97].

• Virtual Human Director (VHD), by Lee et al. [62].

Table 6-2. Evaluation Criteria, Revisited

Criteria Code

Realism (geometry, texture, lip-synch, etc)

Graphic Capabilities (personalization, variety of facial actions, etc)

Speech Generation (audio quality, lip-synch, etc)

Timeliness (streaming, real-time operation, etc)

Descriptiveness (structured content description)

Compatibility (with existing standards and technologies)

Modularity (independent components with well-defined interfaces)

Computational Simplicity and Efficiency (specially considering
applications with limited hardware)

Input Requirements (for modeling and also in run-time)

C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

 95

Table 6-3 summarizes the results of this comparative evaluation. Although this thesis

has proposed a comprehensive set of evaluation criteria for face animation systems, but due

to their complex nature, quantitative measures for most of the proposed criteria are still in the

offing or out of the scope of this work. Using qualitative evaluations has been an unavoidable

consequence of this fact. Following sections describe the experiments, evaluation, and

comparison, in more detail. The performance according to different criteria is evaluated at

five levels of Not-Supported, Low, Medium, High, and Very High (0 to 4) quality.

Table 6-3. Summarized Comparative Evaluation

Criteria ShowFace MikeTalk Video

Rewrite

Perception

Lab

Virtual
Human Dir.

C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

2.3

3

2

2

4

4

4

3

3

1.6

1.5

2

1

0

1

1

3

1

2

1.75

2

1

0

1

1

3

2

2

2.25

0

1

0

1

1

3

3

2.3

3

2

1

3

3

2

2

3

6.2.2. Realism
Figure 6-2 shows some sample images created by FIX method. Images in each row are

generated using the transformations applied to the image at the left side. In case of second

row, no profile (side) image was available so recreation of the side of the head has not been

possible. In all talking images, generic inside-mouth data is used to fill the newly appeared

regions. This can be improved by using real data for the character in image if available (as in

image c).

Subjective evaluation is performed by different viewers, including:

• Development team (author and his supervisor)

• Two other graduate students in the same ECE group/lab

 96

• Two computer engineers from un-related fields

• Two other individuals who are not working in animation or computer fields

Evaluating the realistic appearance of the transformed images has been done by

individually observing them, and also comparing the synthetic images with corresponding

real ones (when they exist), in four different aspects:

• Mapping of facial feature lines and points

• General warping of existing image regions

• Filling newly appeared areas

• Texture/colour changes

Figure 6-3 shows two sets of sample base images, transformed versions and real

images corresponding to those transformations. Using equations (6.1) and (6.2), and using

feature points and selected non-feature points, we can see that the average misplacement for

existing image pixels is less than 5%. Proper smoothing of transformed feature lines may

enhance the visual appearance but not necessarily this measure. This shows that such a

measure cannot be used by itself, and has to be accompanied by other measures. Also, the

number is larger for newly appeared areas due to the fact that they are filled with pixels of

the profile image and usually mapped corresponding to a large movement. Difficulty of

applying a single texture transformation to different people is another cause of error.

Non-integer ratio of diphone time to frame time causes minor errors in lip-

synchronization. ShowFace tries to overcome this by adding up the extra times and inserting

a new frame when necessary. This makes the correct total number of frames (e.g. per word or

sentence) but still suffers from lip-synch errors at diphone level. Further synchronization

(e.g. reducing diphone time as suggested below) is necessary to resolve this quality issue.

)int(
FrameTime

eDiphoneTimamesNumberOfFr = (6.4)

FrameTimeamesNumberOfFrneTimeIdealDipho ×= (6.5)

 97

 (a-1) (a-2) (a-3) (a-4)

 (b-1) (b-2) (b-3) (b-4)

 (c-1) (c-2) (c-3) (c-4)

 (d-1) (d-2) (d-3) (d-4)

Figure 6-2. Image Transformation Results

Images at the left side are the base images. Others are “angry”, “talking”, and “moved”
(“happy” in c-4 and d-4).

 98

 (a-1) (a-2) (a-3) (a-4)

 (b-1) (b-2) (b-3) (b-4)

 (c-1) (c-2) (c-3) (c-4)

 (d-1) (d-2) (d-3) (d-4)

Figure 6-3. Comparing Transformed and Real Images

(a-1) to (a-4) and (c-1) to (c-4) Transformed Images, (b-1) to (b-4) and (d-1) to (d-4)
corresponding Real Photo. Transformations, all applied to (b-1), are from left to right:

Top Group (a): neutral, sound “a”, sound “m”, sound “n”
Bottom Group (c): sound “u”, sound “v”, frown, and left-turn.

 99

Another measure to consider was the amount of error when reading lips in absence of

audio. This test was not possible due to lack of proper individuals. The video resembles the

related speech for non-expert people, in a subjective way.

Considering the overall visual quality of output, and comparing with other animation

systems in Table 6-3 (for which no detail measurement was available or possible), all of them

are at a medium to high level of realism for visual speech, but facial expressions and head

movements are not supported by all the systems. This results in the following table of

comparison where a score of 1 means that the system has either low or no direct support for

that sub-criterion of realism but it is possible to extend the approach for partial support:

Table 6-4. Realism in Different Animation Approaches

Sub-
criterion

ShowFace MikeTalk Video
Rewrite

Perception
Lab

Virtual Human
Dir.

Speech

Expressions

Movements

3

2

2

3

1

1

3

1

2

2

3

1

3

1

3

Average 2.3 1.6 2 2 2.3

6.2.3. Graphic Capabilities
For this criterion personalization, visual speech, facial expressions, and head

movements are considered as sub-criteria. The scores for each is not necessarily related to

quality and realism as presented in Table 6-4, but shows how each functionality is supported

in the related system. In this regard, scores 0 to 4 mean:

• Not supported at all.

• Not supported directly but somewhat extensible to include.

• Partially supported.

• Typically supported but with limitations.

• Fully supported.

 100

The optical flow-based approach in MikeTalk makes it impossible to apply

transformations to other persons unless two characters are similar in geometry and texture.

Feature-based approach of Video Rewrite allows a limited support for personalization

although method is not specifically designed for it. On the other hand, Virtual Human

Director uses a 3D head model that can be applied to any individual provided we have

enough input information.

The result of this part of evaluation is shown in Table 6-5. It has been hard to come up

with scores for the systems that do not support a specific functionality. For example, the

Perception Lab Face Animation system has no direct involvement in visual speech but a

logical extension to its visual content generation approach will be capable of supporting

visual speech.

Table 6-5. Graphic Capabilities of Different Animation Approaches

Sub-criterion ShowFace MikeTalk Video
Rewrite

Perception
Lab

Virtual
Human Dir.

Personalization

Speech

Expressions

Movements

3

3

3

3

1

3

1

1

2

3

1

1

3

1

3

1

4

3

1

4

Average 3 1.5 1.75 2.0 3

6.2.4. Speech Generation
All the systems under review (except Perception Lab system) have direct support for

speech generation. Unfortunately detail information and enough samples are not available for

comparison purposes. Based on existing data, they all seem to be at a medium level of

quality.

6.2.5. Timeliness
ShowFace has a streaming framework and lip-synch algorithms in place which are

major issues in timeliness. Real-time performance needs optimization of algorithms and

 101

implementation. At this point generation of one single frame takes about 150 millisecond on

a 1 GHz PC which makes it necessary to write data to a file and play it back later, for frame

rates higher than 6 fps (frame per second).

No such data is available for other systems, but comparing the algorithms used, they

are unlikely to have a real-time performance. On the other hand, ShowFace is the only

system providing a streaming structure that makes a real-time operation possible after some

optimizations.

6.2.6. Descriptiveness
The inclusion of FML in ShowFace provides a structured content description. VHD has

the similar concept but no details are available on definition of spatial/temporal relations or

support for decision-making. No specific way for content description is defined in other

systems except VHD which has a hierarchical content description method, although it is not

defined clearly and may not support higher level functionality such as event handling and

parallel actions.

Several sample applications are developed for ShowFace to test and illustrate its

descriptive power. These examples are reviewed in Section 3.7 and show the flexibility of

FML to provide content description in simple and more complicated cases involving parallel

actions, external events, and even dynamic content modification.

6.2.7. Compatibility
Due to expanding use and popularity of MPEG-4 FAPs, compatibility with these

parameters to describe facial actions is widely considered by face animation systems. As

discussed before, the input format and transformations used in ShowFace are fully

compatible with MPEG-4 FAPs. Also, FML is capable of working in MPEG-4 XMT

framework. MikeTalk, Video Rewrite, and Perception Lab system do not support FAPs

explicitly, but the techniques they use provide basic means of working with them, at least

partially (e.g. visemes in MikeTalk). VHD has MPEG-4 compatibility as an explicit

requirement, but it is only at FAP level.

 102

Another aspect of compatibility in ShowFace is the use of XML that allows utilization

of available tools and also translation into XMT. None of the other methods have considered

an XML basis, although it has been used by few other systems as mentioned in Section 2.1.

ShowFace is also compatible with DirectShow multimedia technology which provides

a set of functionality to animation system. This aspect, of course, has its own limitations, i.e.

certain extra requirements and limitations for the run-time platform. On the other hand, the

modular structure of ShowFace allows it to be ported to another platform, with minimum

effort.

6.2.8. Modularity
Component-based structure and well-defined interfaces have been major requirements

of ShowFace. During the work on the system, several “upgrades” and “replacements” have

occurred that illustrated the flexibility of system structure and its ability to replace a

component with a new one without affecting the other parts. Examples are:

• Using FIX instead of OF-based approach.

• Using MBROLA instead of SpeechAPI.

• Using FML instead of simple FAPs.

ShowFace also provides interfacing mechanism, library functions, and wrapper objects,

and relies on a fully component-based multimedia technology. Architectural information is

not available for other systems but no such concern is explicitly mentioned in the related

publications.

6.2.9. Computational Simplicity and Efficiency
Avoiding complex algorithms has been another requirement in designing ShowFace.

Considering the fact that a major target application is videophone systems with limited

hardware and relatively low-end processors, it is important to use simple computations and

optimize the software to be as efficient as possible. Some of the features used in ShowFace

are already supported by the operating platform (e.g. XML parsing and audio/video

playback). Most of the remaining (core) components use simple algorithm for interpreting

FML scripts, converting text to phonemes and diphones, and mapping the pixels (mainly

 103

adding a vector and averaging). Among more complicated tasks are correlation-based search

and FFT for smooth coupling of diphones.

On the other hand, the implementation of the ShowFace algorithms has not been

properly optimized, yet. As a result of this, the execution takes more than necessary time,

memory, and disk space. Proper optimization is required (and possible) to reduce the

algorithm execution time, number of disk access tasks, and database size. No detail is

available on computational aspects of other systems but 2D approaches are likely to have the

same level of complexity while VHD needs to have more complicated 3D graphics.

6.2.10. Input Requirements
Generally two sets of data are required for an animation system. In ShowFace

terminology they are called model and base. Model data shows how to do different tasks (e.g.

pre-learned transformations). Base data is about the character for which the animation is

being created (e.g. input images). Combination of FML and FIX considerably reduces the

model and base data sizes, compared to OF-based approaches like MikeTalk, due to the fact

that only feature mapping needs to be stored as model, and it can be applied to any new

character represented by only one base image.

3D approaches that utilize 3D sensors have major difficulty regarding the model data.

This has been reduced in systems like VHD by using two 2D photographs to calibrate a

generic model. On the other hand, having a 3D head model (with one or two images for

texture mapping) results in almost the same amount of data requirements as in ShowFace, but

the 3D model has to be modified/calibrated for each character to be animated.

 104

7. Concluding Remarks
7.1. Objectives and Contributions

Within the diverse field of multimedia composition and presentation, from more

traditional examples such as painting to state-of-the-art computer animation, Making Faces

appears to be a very challenging task. Recent developments in the areas of Virtual Reality,

Virtual Environment, Video Conferencing, Games, and Agent-based Online Applications

(e.g. Shopping and Customer Support) have drawn considerable attention to character, and

especially face animation. Replacing the audio-visual data of “real people” with multimedia

presentations based on “virtual agents” seems to be very beneficial, and in some cases

necessary. Saving bandwidth in video conferencing by replacing video data with animation

“commands” can be considered an example of the former case, while creating new scenes

with “unavailable” characters is an example of the latter. Figure 7-1 illustrates some

application areas where face animation can be used.

 Entertainment Services

Figure 7-1. Some Applications of Face Animation

Personalized Face Animation includes all the information and activities required to

create a multimedia presentation resembling a specific person. The input to such a system

can be a combination of audio-visual data and textual commands and descriptions.

Technological advances in multimedia systems, speech/image processing, and computer

graphics have resulted in a rapidly growing number of publications. These research

achievements, although very successful in their objectives, mostly address a limited subset of

Visual Effects
Movies

Virtual Agents
Online Systems

Virtual Players
Computer Games

Visual Messages
Phones

 105

face animation requirements (Figure 7-2, right side). The ShowFace system that we proposed

in this thesis, takes an important step toward a comprehensive framework for face animation

by introducing the following major contributions:

• Component-based structure with well-defined interfaces, independent modules to be

designed and upgraded with minimum effect on the other parts, and different means of

application development.

• Hierarchical structured content description language (FML) compatible with MPEG-4

FAPs, XMT framework and XML parsers, with support for parallel actions, detailed

timing, and external events.

• Feature-based Image Transformation for face animation in order to maximize realism and

minimize the input data.

• Comprehensive evaluation criteria covering different aspects of face animation systems.

Figure 7-2. Face Animation System Requirements and ShowFace Contributions

Figure 7-2 shows how these system features contribute to addressing animation

requirements. The preceding chapters discuss major aspects of ShowFace in addition to other

system details such as speech synthesis. The defined set of evaluation criteria has

successfully shown the effectiveness of ShowFace in dealing with face animation

Generalized Decoding
(Content Creation)

Structured Content
Description

Streaming
Timeliness

Modularity

Compatibility

Algorithm and Data
Simplicity/Efficiency

Component-based
Architecture

Face Modeling
Language

Feature-based Image
Transformations

Evaluation Criteria

 106

requirements. Although defining quantitative and objective measures for all of these

evaluation criteria is not yet completely possible 1, our criteria not only help evaluate the

proposed system, but also qualify as a major contribution of this thesis, since no proper effort

has been made to define such a comprehensive evaluation criteria for face animation systems.

We cover the following criteria:

• Realism (geometry, texture, lip-synch, etc)

• Graphic Capabilities (personalization, variety of facial actions, etc)

• Speech Generation (audio quality, lip-synch, etc)

• Timeliness (streaming, real-time operation, etc)

• Descriptiveness (structured content description)

• Compatibility (with existing standards and technologies)

• Modularity (independent components with well-defined interfaces)

• Computational Simplicity and Efficiency (specially considering applications with limited

hardware)

• Input Requirements (for modeling and also in run-time)

ShowFace architecture consists of independent components for reading and parsing the

input, creating audio and video content, and playback or file storage. It provides

comprehensive API and wrapper classes and components to simplify application

development.

Feature-based Image Transformation (FIX) acts as the main visual content creation

method in ShowFace. FIX is based on detecting the required mapping of facial features

needed for specific facial actions and applying them to a base image combined with warping

the non-feature points of the image. Speech, facial expressions, and 3D head movements are

included in the FIX library of transformations in a way that is compatible with MPEG-4

FAPs. FIX maximizes the realism of generated images while minimizing input and modeling

data. This approach may not be as powerful as a 3D model-based one in generating 3D

movements, lighting, or facial skin effects, but it does provide an optimal solution when the

application domain is constrained with hardware and software limitations and still requires a

realistic appearance.

1 Such measures are worthy of being the topic of separate research projects by themselves.

 107

Last but not least, Face Modeling Language (FML) is presented as a high-level content

description language for face animation, bringing together the strengths of MPEG-4 and

XML, to handle spatial and temporal relations between face actions, event handling and

decision-making, behavioural templates, and dynamic content generation.

The evaluation of the proposed system is performed by considering a comprehensive

set of criteria and comparing the system with a group of face animation systems/approaches.

This evaluation shows that ShowFace provides acceptable levels of quality in content

together with a flexible modular streaming structure, minimum amount of modeling and

runtime input data, and also computational simplicity. Although it may not have the same

constructive power of a 3D head model for various head movements, the provided

capabilities make it suitable for a variety of applications.

7.2. Future Research

This thesis does not claim to have answered all the questions related to face animation

but is intended as a step toward a comprehensive framework for personalized face animation.

Although quite successful in satisfying the requirements to some reasonable levels,

ShowFace has certain areas for improvement. Further research will be mainly focused on:

• Optimizing FIX algorithm for real-time applications

• Replacing FIX with a 3D approach for less-constrained applications

• Making expression overlays (e.g. talking with frown) more realistic by studying the inter-

effect of image transformations

• Better integration of FML with MPEG-4 XMT by providing automated translators from

FML to native MPEG-4 format

• Adding behavioural modeling to FML

• Defining quantitative measures for evaluation criteria

The above list is certainly open to other enhancements, and the face animation

community as a member of a larger group of virtual/virtualized/augmented reality has more

questions to answer in the years to come. Here are some intriguing ones:

• What are reality and realism? How are they related to comprehensibility?

 108

• What are the moral issues involved in creating “realistic” virtual worlds/people?

• How far can we go into virtual worlds without losing contact with the real world?

• Is virtual world a real world itself? Where is the boundary?

• Is a holographic character (animated in the “outside” world) real?

• Can virtual reality recreate the dead, or recreate the world in a better way?

It will take quite some time to debate and perhaps answer all of these questions, but for

now it seems proper to end this discussion with a short fantasy that links the concepts of

information and creation (and so animation).

Ev straightened and nodded to Reyn, then moved to a position beside the

switch that would complete the contact when he threw it. The switch that

would connect, all at once, all of the monster computing machines of all the

populated planets in the universe, ninety-six billion planets, into the

supercircuit that would connect them all into one supercalculator, one

cybernetics machine that would combine all the knowledge of all the galaxies.

Ev threw the switch, …, stepped back and drew a deep breath. “The honour of

asking the first question is yours, Reyn.”

“Thank you,” said Reyn. “It should be a question which no single cybernetics

machine has been able to answer.”

He turned to face the machine. “Is there a God?”

The mighty voice answered without hesitation.

“Yes, NOW there is.”

Sudden fear flashed on the face of Ev. He leaped to grab the switch.

A bolt of lightning from the cloudless sky struck him down and fused the

switch shut.

From Answer

Frederic Brown (1954) [20]

 109

Bibliography
1. Allbeck, J., and N. Badler, "Toward Representing Agent Behaviours Modified by

Personality and Emotion," Proceedings of First Intl Conf Autonomous Agents & Multi-

Agent Systems, Workshop on Embodied Conversational Agents, Bologna, Italy, July

2002.

2. Arya, A., and B. Hamidzadeh, "ShowFace: A Framework for Personalized Face

Animation," Proceedings of IEEE/EURASIP RichMedia-2003, Lausanne, Switzerland,

October 16-17, 2003.

3. Arya, A., and B. Hamidzadeh, "FIX: Feature-based Image Transformations for Face

Animation," Proceedings of IEEE Intl Conf on Information Technology: Research and

Education, ITRE-2003, Newark, NJ, USA, August 10-13, 2003.

4. Arya, A., and B. Hamidzadeh, "Face Animation: A Case Study for Multimedia Modeling

and Specification Languages," Multimedia Systems and Content-based Image Retrieval,

S. Deb editor, pp 356-375, IGP, 2003.

5. Arya, A., and B. Hamidzadeh, "Personalized Face Animation in ShowFace System," Int.

Journal of Image and Graphics, Special Issue on Virtual Reality and Virtual

Environments, vol. 3, no. 2, pp 345-363, World Scientific Publishing, April, 2003.

6. Arya, A., and B. Hamidzadeh, "An XML-Based Language for Face Modeling and

Animation," Proceedings of IASTED Intl Conf on Visualization, Imaging and Image

Processing, VIIP-2002, pp 1-6, Malaga, Spain, 2002.

7. Arya, A., and B. Hamidzadeh, "ShowFace MPEG-4 Compatible Face Animation

Framework," Proceedings of IASTED Intl Conf on Computer Graphics and Imaging,

CGIM-2002, pp 32-37, Kauai, Hawaii, 2002.

8. Arya, A., and B. Hamidzadeh, "TalkingFace: Using Facial Feature Detection and Image

Transformations for Visual Speech," Proceedings of IEEE Intl Conf on Image

Processing, ICIP-2001, pp 943-946, Thessaloniki, Greece, 2001.

9. Arya, A., and B. Hamidzadeh, "A Personalized Talking/Moving Head Presentation Using

Image-based Transformations," Proceedings of Intl Conf on Augmented Virtual

Environments and 3D Imaging, pp 232-235, Mykonos, Greece, 2001.

 110

10. Ankeney, J., "Non-linear Editing Comes of Age," TV Technology, May 1995.

11. Arafa, Y., et al., "Two approaches to Scripting Character Animation," Proceedings of

First Intl Conf Autonomous Agents & Multi-Agent Systems, Workshop on Embodied

Conversational Agents, Bologna, Italy, July 2002.

12. Badler, N. I., "Animation 2000+," IEEE Computer Graphics and Applications, vol. 20,

no. 1, pp 28-29, January 2000.

13. Battista, S., et al., "MPEG-4: A Multimedia Standard for the Third Millennium," Part 1

and 2, IEEE Multimedia, vol. 6, no. 4, pp 74-83, and vol. 7, no. 1, pp 76-84, October

1999 and January, 2000.

14. Beauchemin, S.S., and J. L. Barron, "The Computation of Optical Flow," ACM

Computing Surveys, vol. 27, no. 3, pp 433-466, September 1995.

15. Beier, T., and S. Neely, "Feature-Based Image Metamorphosis," Proceedings of ACM

SIGGRAPH, pp 35-42, 1992.

16. Besl, P. J., and R. C. Jain, “Three Dimensional Object Recognition,” ACM Computing

Surveys, vol. 17, no. 1, pp 75-145, March 1985.

17. Blanz, V., and T. Vetter, "A Morphable Model For The Synthesis Of 3D Faces,"

Proceedings of ACM SIGGRAPH, pp 187-194, 1999.

18. Bonamico, C., et al., “A Java-based MPEG-4 Facial Animation Player,” Proceedings of

Intl Conf Augmented Virtual Reality& 3D Imaging, pp 335-338, European Project

INTERFACE IST Press, 2001.

19. Bregler, C., et al., "Video Rewrite: Driving Visual Speech with Audio," ACM Computer

Graphics, pp 353-360, 1997.

20. Brown, F., “The Answer,” Inside Information (Computers in Fiction), short stories

selected by Abbe Mowshowitz, Addison-Wesley, 1977.

21. Bulterman, D., “SMIL-2,” IEEE Multimedia, vol. 8, no. 4, pp 82-88, October 2001.

22. Bulwer, J., Pathomyotamia, or, A dissection of the significtive muscles of the affections of

the minde, Humphrey and Moseley, London, 1649.

23. Burt, P., and E. Adelson, "The Laplacian Pyramid as a Compact Image Code," IEEE

Trans on Communications, vol. 31, no. 4, pp 532-540, April 1983.

24. Cassell, J., et al., “BEAT: the Behavior Expression Animation Toolkit,” Proceedings of

ACM SIGGRAPH, pp 477-486, 2001.

 111

25. Chen, S., and L. Williams, "View Interpolation for Image Synthesis," Proceedings of

ACM SIGGRAPH, pp 279-288, 1993.

26. Chung, S., and J. K. Hahn, "Animation of Human Walking in Virtual Environments,"

Proceedings of IEEE Conf Computer Animation, pp 4-15, 1999.

27. Cohen, M., et al., "Image-Based Rendering: Really New or Deja Vu," Panel, ACM

SIGGRAPH, 1997.

28. Corkie, A. D., and S. Isard, "Optimal Coupling of Diphones," Progress in Speech

Synthesis, Springer, 1997.

29. Cosatto, E., and H. P. Graf, "Sample-Based Synthesis of Photo-Realistic Talking Heads,"

Proceedings of IEEE Conf Computer Animation, pp 103-110, 1998.

30. Damer, B., et al., "Putting a Human Face on Cyberspace: Designing Avatars and the

Virtual Worlds They Live In," Panel, ACM SIGGRAPH, 1997.

31. Darbandi, H., Speech Recognition & Diphone Extraction for Natural

Speech Synthesis, M.Sc. Thesis, University of British Columbia, February, 2002.

32. Darwin, C., Expression of the Emotions in Men and Animals, John Murray, London,

1872.

33. De Carolis, B., et al., "APML, a Markup Language for Believable Behaviour

Generation," Proceedings of First Intl Conf Autonomous Agents & Multi-Agent Systems,

Workshop on Embodied Conversational Agents, Bologna, Italy, July 2002.

34. DeCarlo, D., et al., "An Anthropometric Face Model using Variational Techniques,"

Proceedings of ACM SIGGRAPH, pp 67-74, 1998.

35. DiPaola, S., “FaceSpace: A Facial Spatial-Domain Toolkit,” Proceedings of Info Viz-02,

2002.

36. DiPaola, S., and D. Collins, “A 3D Virtual Environment for Social Telepresence,”

Proceedings of Western Computer Graphics Symposium, Skigraph-02, Silverstar, BC,

Canada, 2002.

37. Dutoit, T., An Introduction to TTS Synthesis, Kluwer Academic Publishers, 1994.

38. Ekman, P., and W.V. Friesen, Facial Action Coding System, Consulting Psychologists

Press Inc., 1978.

39. ElNasr, M. S., et al., "Emotionally Expressive Agents," Proceedings of IEEE Conf

Computer Animation, pp 48-57, 1999.

 112

40. Escher, M., et al., "Facial Deformations for MPEG-4," Proceedings of IEEE Conf

Computer Animation, pp 56-62, 1998.

41. Ezzat, T., and T. Poggio, "MikeTalk: A Talking Facial Display Based on Morphing

Visemes," Proceedings of IEEE Conf Computer Animation, pp 96-102, 1998.

42. Fua, P., "A parallel stereo algorithm that produces dense depth maps and preserves image

features," Machine Vision and Applications, no. 6, pp 35-49, 1993.

43. Funge, J., et al., “Cognitive Modeling: Knowledge, Reasoning, and Planning for

Intelligent Characters," Proceedings of ACM SIGGRAPH, pp 29-38, 1999.

44. Gammuri, M., and A. Coglio, "An Architecture for Emotional Agents," IEEE

Multimedia, vol. 5, no. 4, pp 24-33, October 1998.

45. Ghosal, S., "A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation,"

IEEE Trans Pattern Analysis and Machine Intelligence, vol. 18, no. 2, pp 181-194,

February 1996.

46. Graf, H.P., et al., "Face Analysis for the Synthesis of Photo-Realistic Talking Heads,"

Proceedings of IEEE Conf Automatic Face and Gesture Recognition, pp 189-194, 2000.

47. Guenter, B., et al., "Making Faces," Proceedings of ACM SIGGRAPH, pp 55-66, 1998.

48. Haralick, R. M., and L. G. Shapiro, Computer and Robot Vision, vol. 2, Addison-Wesley,

1993.

49. Hirose, M., "Image-based Virtual World Generation," IEEE Multimedia, vol. 4, no. 1, pp

27-33, January 1997.

50. Hirzalla, N., et al., "A Temporal Model for Interactive Multimedia Scenarios," IEEE

Multimedia, vol. 2, no. 3, pp 24-31, Fall 1995.

51. Hong, P., et al., "Real-Time Speech-Driven 3D Face Animation," Proceedings of Intl

Symp 3D Data Processing Visualization and Transmission, 2002.

52. Kallmann, M., and D. Thalmann, "A Behavioral Interface to Simulate Agent-Object

Interactions in Real Time," Proceedings of IEEE Conf Computer Animation, pp 138-146,

1999.

53. Kalra, P., et al., “SMILE: A Multi-layered Facial Animation System,” IFIP WG 5.10,

1991.

54. Kass, M., et al., "Snakes: Active contour models." Intl Journal of Computer Vision, vol.

1, no. 4, 1987.

 113

55. Kim, M, et al., “Extensible MPEG-4 Textual Format (XMT),” Proceedings of ACM Conf

Multimedia, pp 71-74, 2000.

56. Kleijn, W. B., et al., Speech Coding and Synthesis, Elsevier Publishers, 1995.

57. Kouadio, C., et al., "Real-Time Facial Animation based upon a Bank of 3D Facial

Expressions," Proceedings of IEEE Conf Computer Animation, pp 128-136, 1998.

58. Lande, C., and G. Francini, "An MPEG-4 Facial Animation System Driven by Synthetic

Speech," Proceedings of IEEE Conf Multimedia Modeling, pp 203-212, 1998.

59. Lawton, G., "Video Streaming," IEEE Computer, vol. 33, no. 7, pp 120-122, July 2000.

60. Lee, G. S., "A General Specification for Scene Animation," Proceedings of IEEE Conf

SIBGRAPHI, pp 216-223, 1998.

61. Lee, S., et al., "Polymorph: Morphing Among Multiple Images," IEEE Computer

Graphics and Applications, vol. 18, no. 1, pp 58-71, January 1998.

62. Lee, W. S., et al., "MPEG-4 Compatible Faces from Orthogonal Photos," Proceedings of

IEEE Conf Computer Animation, pp 186-194, 1999.

63. Lengyel, J., "The Convergence of Graphics and Vision," IEEE Computer, vol. 31, no. 7,

pp 46-53, July 1998.

64. Lin, D., and H. Huang, "Facial Expression Morphing and Animation with Local Warping

Methods," Proceedings of IEEE Conf on Image Analysis and Processing, pp 594-599,

Sept. 1999.

65. Little, T.D.C., "Time-based Media Representation and Delivery," Multimedia Systems,

J.F. Koegel Buford (ed), ACM Press, 1994.

66. Ljolje, A., et al., "Automatic Speech Segmentation for Concatenative Inventory

Selection," Progress in Speech Synthesis, Springer 1997.

67. Macchi, M., "Issues in Text-to-Speech Synthesis," Proceedings of IEEE Intl Conf

Intelligent Systems, pp 318-325, 1998.

68. Mann, N., and L. Syson, The Image of the Individual, Portraits in the Renaissance, The

Trustees of British Museum, 1998.

69. Manning, R. A., and C. R. Dyer, "Interpolating View and Scene Motion by Dynamic

View Morphing," Proceedings of IEEE Conf Computer Vision and Pattern Recognition,

vol. 1, pp 394-400, 1999.

 114

70. Manske, K., and R. Rudisch, "Comic Actors Representing Software Agents,"

Proceedings of IEEE Conf Multimedia Modeling, pp 213-222, 1998.

71. Marriott, A., and J. Stallo, "VHML: Uncertainties and Problems. A discussion,"

Proceedings of First Intl Conf Autonomous Agents & Multi-Agent Systems, Workshop on

Embodied Conversational Agents, Bologna, Italy, July 2002.

72. Mayache, A., et al., “A Comparison of Image Quality Models and Metrics,” Proceedings

of IEEE Intl Conf Image Processing, ICIP-98, vol. 3, pp 409-413, 1998.

73. Metaxas, D., et al., "Vision-based Animation of Digital Humans," Proceedings of IEEE

Computer Animation, CA-98, pp 144-152, Philadelphia, 1998.

74. Myszkowski, K., “Perception-Based Global Illumination, Rendering, and Animation

Techniques,” Proceedings of ACM Conf Computer Graphics, pp 13-24, Budmerice,

Slovakia, 2002.

75. Nack, F., and A.T. Lindsay, "Everything You Wanted To Know About MPEG-7," IEEE

Multimedia, vol. 6, no. 3, pp 65-77, July 1999.

76. Noma, T., et al., "Design of a Virtual Human Presenter," IEEE Computer Graphics and

Applications, vol. 20, no. 4, pp 79-85, July 2000.

77. Ohya, J., et al., "Virtual Metamorphosis," IEEE Multimedia, vol. 6, no. 2, pp 29-39, April

1999.

78. Ostermann, J., "Animation of Synthetic Faces in MPEG-4," Proceedings of IEEE Conf

Computer Animation, pp 49-55, 1998.

79. Pandzic, I. S., “A Web-based MPEG-4 Facial Animation System,” Proceedings of Intl

Conf Augmented Virtual Reality & 3D Imaging, pp 323-326, 2001.

80. Parke, F. I., and K. Waters, Computer Facial Animation, A. K. Peters, 1996.

81. Pesce, M. D., Programming Microsoft DirectShow for Digital Video and Television,

Microsoft Press, 2003.

82. Pighin, F., et al., "Synthesizing Realistic Facial Expressions from Photographs,"

Proceedings of ACM SIGGRAPH, pp 75-84, 1998.

83. Piwek, P., et al., "RRL: A Rich Representation Language for the Description of Agent

Behaviour in NECA," Proceedings of First Intl Conf Autonomous Agents & Multi-Agent

Systems, Workshop on Embodied Conversational Agents, Bologna, Italy, July 2002.

 115

84. Prendinger, H., et al., "Scripting Affective Communication with Life-like Characters in

Web-based Interaction Systems," Applied Artificial Intelligence, vol.16, no.7-8, 2002.

85. Quek, F., et al., "A Multimedia Database System for Temporally Situated Perceptual

Psycholinguistic Analysis," Multimedia Tools and Applications, vol. 18, no. 2, pp 91-

113, Kluwer Academic Publishers, 2002. Also as VISLab Report: VISLab-00-03.

86. Rabiner, L. R., and R. W. Schaffer, Digital Processing of Speech Signal, Prentice-Hall,

1978.

87. Ram, A., et al., "PML: Adding Flexibility to Multimedia Presentation," IEEE

Multimedia, vol. 6, no. 2, pp 40-52, April 1999.

88. Reeves, W. T., “Simple and Complex Facial Animation: Case Studies,” State of the Art in

Facial Animation, ACM SIGGRAPH-90 Course Notes #26, 1990.

89. Rowland, D. A., and D. I. Perrett, "Manipulating Facial Appearance through Shape and

Color," IEEE Computer Graphics and Applications, vol. 15, no. 5, pp 70-76, September

1995.

90. Seitz, S. M., and C. R. Dyer, "Physically-Valid View Synthesis by Image Interpolation,"

Proceedings of IEEE Workshop Presentation of Virtual Scenes, pp 18-25, 1995.

91. Seitz, S. M., and C. R. Dyer, "View Morphing," Proceedings of ACM SIGGRAPH, pp

21-30, 1996.

92. Sturman, D. J., "Computer Puppetry," IEEE Computer Graphics and Applications, vol.

18, no. 1, pp 38-45, January 1998.

93. Takeda, K., et al., "User Interface and Agent Prototyping for Flexible Working," IEEE

Multimedia, vol. 3, no. 2, pp 40-50, Summer 1996.

94. Terzopoulos, D., and K. Waters, "Analysis and Synthesis of Facial Image Sequences

Using Physical and Anatomical Models," IEEE Trans Pattern Analysis and Machine

Intelligence, vol. 15, no. 6, pp 569-579, June 1993.

95. Terzopoulos, D., et al., "Facial Animation: Past, Present and Future," Panel, ACM

SIGGRAPH, 1997.

96. Thalmann, N. M., and D. Thalmann, "Digital Actors for Interactive Television,"

Proceedings of of IEEE, 1995.

 116

97. Tiddeman, B., et al., “Prototyping and Transforming Facial Textures for Perception

Research,” IEEE Computer Graphics and Applications, vol. 21, no. 5, pp 42-50,

September 2001.

98. Valente, S., and J. L. Dugelay, "Face Tracking and Realistic Animation for

Telecommunicant Clones," IEEE Multimedia, vol. 7, no. 1, pp 34-43, January 2000.

99. Vetter, T., et al., "A Bootstrapping Algorithm for Learning Linear Models of Object

Classes," Proceedings of IEEE Computer Vision and Pattern Recognition, pp 40-46,

1997.

100. Wey, J. D., and J. A. Zuffo, "InterFace: a Real Time Facial Animation System,"

Proceedings of IEEE Conf SIBGRAPHI, pp 200-207, 1998.

101. Whitford, F., Expressionist Portraits, Thames and Hudson, London, 1987.

102. Williams, L., "Performance-Driven Facial Animation," ACM Computer Graphics, pp

235-242, August 1990.

103. Wolberg, G., Digital Image Warping, IEEE Computer Society Press, Los Alamitos,

CA, USA, 1990.

104. Yacoob, Y., and L. S. Davis, "Recognizing Human Facial Expressions From Long

Image Sequences Using Optical Flow," IEEE Trans Pattern Analysis and Machine

Intelligence, pp 636-642, June 1996.

