
A Graph-Based Synthesis Algorithm for AND/XOR Networks 1

Yibin Ye Kaushik Roy

School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285, USA

Abstract

In this paper, we introduce a Shared Multiple Rooted XOR-
based Decomposition Diagram (XORDD) to represent func-

tions with multiple outputs. Based on the XORDD rep-

resentation, we develop a synthesis algorithm for general

Exclusive Sum-of-Product forms (ESOP). By iteratively ap-

plying transformations and reductions, we obtain a compact

XORDD which gives a minimized ESOP. Our method can

synthesize larger circuits than previously possible. The com-

pact ESOP representation provides a form that is easier to

synthesize for XOR heavy multi-level circuit, such as arith-

metic functions. We have applied our synthesis techniques

to a large set of benchmark circuits in both PLA and com-

binational formats. Results of the minimized ESOP forms

obtained from our synthesis algorithm are also compared

to the SOP forms generated by ESPRESSO. Among the 74

circuits we have experimented with, the minimized ESOP's

have fewer product terms than those of SOP's in 39 circuits.

1 INTRODUCTION

In many applications, the AND/XOR realizations of digi-

tal circuits are very e�cient. While powerful optimization

tools for AND/OR based synthesis have been developed in

the last few years, (such as ESPRESSO [11], MIS [1] and

BOLD [6]), there are few minimization and synthesis tools

available which include AND/XOR realizations.

There are several classes of the AND/XOR forms, of

which the Exclusive Sum-of-Product (ESOP) expression is

the most general 2-level form. The problem of �nding the

minimal SOP's of a Boolean function is a classical problem

in switching theory which has been studied for many years.

The minimization of ESOP's is much more di�cult than

1The research was supported in part by NSF (9633516-MIP) and
by ARPA (F33615-95-C-1625), and IBM Corporation.

Design Automation Conference R

Copyright c
 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advan-
tage and that copies bear this notice and the full citation on the �rst
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior speci�c permission and/or a fee. Request permis-
sions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

that of SOP's. So far no e�cient method is known to ob-

tain a minimum ESOP of a function except for those with

very small number of variables. Recently, Sasao [12] devel-

oped a heuristic approach which applied methods similar to

ESPRESSO by iteratively �nding smaller covers of products

and by looking for parity-like patterns. While ESPRESSO

succeeds in minimizing the SOP's of most practical func-

tions, a similar methodology is less powerful when applied

to minimize the ESOP's. This is due to the fact that only

prime implicants need to be searched in the minimization of

SOP's, while the search space is drastically larger in mini-

mizing the ESOP's.

In this paper, we present a graph-based minimization

method for general ESOP's. We start from a decision dia-

gram (e.g. BDD [2]) of a function (multiple primary outputs

in general). By iteratively applying transformations and re-

ductions, we �nally obtain a compact Shared Multiple Rooted
XOR-based Decomposition Diagram (XORDD) which gives

a minimized ESOP. Our method promises to be e�cient

since transformations are performed by adding and remov-

ing edges and by changing edge values rather than comput-

ing new sub-functions. Although our synthesis method is

implemented for optimizing two-level AND/XOR networks,

it is possible to be applied to multi-level AND/XOR net-

works with some modi�cations. This is because a Shared
Multiple RootedXORDD is multi-level representation of func-

tions.

The rest of the paper is organized as follows. Section 2

introduces the XOR-Based Decomposition Diagrams. Sec-

tion 3 presents a synthesis algorithm based on XORDD rep-

resentation for minimizing ESOP's. Results of our synthesis

algorithm on benchmark circuits are detailed in Sect. 4. In

Sect. 5, we give the conclusions and discuss the further ex-

pansion of our algorithm to multilevel AND/XOR networks.

2 XOR-BASED DECOMPOSITION DIA-

GRAM

2.1 Graph representations of Boolean func-

tions

Bryant presented the Ordered Binary Decision Diagram

(OBDD) [2] as a canonical form for Boolean functions. It

is currently one of the most popular data structures for

the representation of Boolean functions. OBDDs have been

widely used in logic synthesis, veri�cation, and testing. While

OBDDs are MUX-based representations, another type of

Decision Diagram, the Ordered Functional Decision Dia-

grams (OFDD), have been introduced [7, 3], which are based

on AND/XOR representations. In the following paragraph,

we �rst examine the decomposition equations on which the

OBDDs and OFDDs are based, then we de�ne our new

graph representations for Boolean functions.

Let f :Bn

! B be a Boolean function over the variable

set Xn. Let f
0
i denote the cofactor of f with respect to xi =

0 given by f0i (x) = f(x1; � � �xi�1; 0; xi+1; � � � ; xn). Similarly,
f1i denotes the cofactor of f with respect to xi = 1 given by

f1i (x) = f(x1; � � �xi�1; 1; xi+1; � � � ; xn). We also de�ne f2i as

f2i = f0i � f1i . Note that all f
0
i , f

1
i and f2i are independent

of xi. Using the above notations, we have the following

decompositions:

f = xif
0
i + xif

1
i = xif

0
i � xif

1
i (1)

= f
0
i � xif

2
i (2)

= f
1
i � xif

2
i (3)

While the OBDD representation of a Boolean function

is based on Eq. (1), the OFDD is based on Eq. (2) and

(3). A more general decision diagram, the Ordered Kro-

necker Functional Decision Diagram (OKFDD), has been

introduced recently in [4]. All three decomposition types

are used in OKFDDs, and hence OKFDD is a combination

of OBDD and OFDD. The size of OKFDDs is, in general,

smaller than that of OBDDs and OFDDs.

We now de�ne General Decomposition Diagrams (GDD)
and XOR-based Decomposition Diagrams (XORDD) which
are used for representation and minimization of ESOP's.

De�nition 1 A General Decomposition Diagram (GDD)
over a set of variables X := fnull; x1; x2; � � � ; xng is a rooted
directed acyclic graph (DAG) G=(V,E) with two types of
vertices, non-terminal and terminal. A non-terminal vertex
v is associated with an operation (OR, XOR, etc.) as well
as a variable 2 X, and has one or more children vertices
2 V . Edges from a non-terminal vertex of variable xi to its
children vertices are labeled with either a 0, 1 or 2, which
give the edge value xi , xi, or 1, respectively. Edges from
a non-terminal vertex associated with null variable are not
labeled and always have the value of 1. A terminal vertex is
labeled with either a 0 or a 1 and has no children vertices.
Each variable is encountered at most once when traversing
from root to a terminal vertex.

The GDD is simply a generic graph representation of

Boolean functions. What distinguishes GDD from an arbi-

trary multi-level logic representation is the restriction that

each variable is encountered at most once when traversing

from root to a terminal vertex in a GDD. This restriction

is due to the type of decompositions to be imposed on the

graph.

De�nition 2 An XOR Decomposition Diagram (XORDD)
over a set of variablesX := fnull; x1; x2; � � � ; xng is a special
case of GDD, in which only the XOR operation is associated
with each non-terminal vertex.

Note that XORDD is a decomposition diagram rather

than a decision diagram. A non-terminal vertex in an XORDD

can have one, two, or more children vertices. Outgoing edges

from a vertex can have the same label (and hence, the same

value). Fig. 1 illustrates how an XORDD relates to the func-

tion it represents. Assigning a value to each edge is an im-

portant feature in XORDD representations, because chang-

ing the type of decompositions can be realized by changing

2f 1f =

f 2f 1

null

f 1

f 2

f 3

x 1f f1

2

f 2 x 1f 3f =

(a) (b)

10

x1

Figure 1: The XORDD representation of functions

a

b b

c c

1

1

0

0

0 1

a

b

c

0 1 10

c

ab

c c

1 1

bc

0 1

1 1

10

0 0

0 1

0
2

0 2 0 1

0 2 1 2 01

(a) OBDD (b) OFDD (c) XORDD

abc c bc acaba bc ac

Figure 2: The same function represented by OBDD, OFDD

and XORDD, respectively

the edge connections and edge values rather than computing

new sub-functions.

OBDD, OFDD and OKFDD are special cases of XORDD

based on our de�nition of XORDD. We assume the readers

are familiar with the OBDD and OFDD representations of a

Boolean function. For the purposes of comparison, the fol-

lowing example gives the three graph representations given

by OBDD, OFDD and XORDD, respectively.

Example 1 Let us consider the function f = ab+ ac+ bc.
Fig. 2 shows all three types of graph representations. Note
that in the OFDD, both decomposition types of Eq. (2) and
(3) have been applied, where label 0 denotes f0i , 1 denotes
f1i and 2 denotes f2i .

While XORDD is a multi-level representation, the two-

level AND/XOR form can be easily constructed from the

graph as follows: A 1-path is a path from root to a 1-labeled

terminal vertex. Each 1-path de�nes a product term which is

the product of all the edge values in the path. The function

can then be expressed in form of XOR sum of product terms

of all 1-paths. Therefore, the number of 1-paths is equal to

the number of terms in the ESOP's. One can observe that

the 0-labeled terminal vertex is not useful in the XORDD

representations. Unless otherwise mentioned, the XORDD's

have only one type of terminal vertex with label 1.

Let us consider Example 1 and Fig. 2 again. The two-

level expressions given by OBDD, OFDD and XORDD are

ab� ab� abc, c� bc� ac and bc� ac, respectively.
It is important to note that an OFDD representation of a

function always gives a sub-class of ESOP expressions, the

canonical Reed-Muller form [10]. The XORDD represen-

tation, however, gives general ESOP form. Conversely, an

ESOP expression can always be represented by an XORDD,

and only Fixed Polarity Reed-Muller [3, 10] expressions can

always be represented by OFDDs.

So far, only single output functions (hence single rooted

XORDD's) have been discussed. For functions with multiple

outputs, we construct Shared Multiple Rooted XORDD rep-

resentations, in which common internal vertices are shared

by several component functions. While this extension is

straightforward, we need to note that common 1-path should

Reductions

(a) (b) (c)

1

10

0
0 1

Figure 3: Three basic reduction rules of XORDD

be counted only once in determining the number of product

terms of ESOP's. Since in most cases we deal with multiple-

output circuits, unless otherwise mentioned, the XORDD is

a shared multiple rooted graph.

2.2 Reductions on XORDD

For a given XORDD, the following reduction rules can be

applied to reduce the size of XORDD.

1. Delete terminal vertices labeled with 0.

2. If two edges between two vertices have the same value,

then they are removed (Fig. 3(a) and 3(b)).

3. If two edges from vertex v to v0 are labeled with 0

and 1 respectively, we remove them and redirect edges

pointing to v to point to v0 (Fig. 3(c)).

4. Delete non-terminal vertices that do not have succes-

sors.

5. Delete non-terminal vertices (except root vertices) that

do not have predecessors.

Reduction rule (1) is necessary because the initial XORDD

we start with is a Decision Diagram (OBDD, OFDD or

OKFDD) which has two terminal vertices labeled with 0

and 1 respectively. Reduction rule (2) and (3) are illus-

trated in Fig. 3, which are based on the following facts:

xigj � xigj = xigj � xigj = 0 (4)

xigj � xigj = gj(xi � xi) = gj (5)

2.3 Transformations on XORDD

Besides the reductions given above, the following transfor-

mations on an XORDD will be applied on an XORDD.

Change of decomposition: The three types of

decomposition described in Eq.s (1) { (3) can be

rewritten as follows:

xif
0
i � xif

1
i = f

0
i � xi(f

0
i � f

1
i) = f

1
i � xi(f

0
i � f

1
i);

f 1f

(x)f
ee

11

(x)f

0f 1f

ee

0 0

0f 1f

(x)f
1

e

0

0f 1f()x0f1fx0fx 0f 1f()x1f

0

e

(e) Extract

e ee e

e

2

e
e

e1 e2

ee e

e2
e1

Transformations

(a) Change the decomposition type

e e

(c) Split

e e

(d) Merge

(b) Move

Figure 4: Basic transformation steps of XORDD

where f0i � f1i = f2i , which was de�ned in Sect. 2. The

change from one type of decomposition to another can be

realized by changing the value of an edge and adding

another edge. This is illustrated in Fig. 4(a), where the

label e 2 f0; 1; 2g.
Move: An edge with label 2 (or value 1) can move to

connect to parent nodes, as shown in Fig. 4(b)

Split: A vertex with multiple incoming or outgoing edges

can be split into two or more vertices, as illustrated in

Fig. 4(c).

Merge: If two or more outgoing (incoming) edges of a

vertex have the same value and go to (come from) vertices

of the same variable, then they can be merged as shown in

Fig. 4(d).

Extract: If two or more incoming (outgoing) edges of a

vertex have the same value, they may be extracted in a

way as illustrated in Fig. 4(e). Extract is essentially a

compound operation consisting of split and merge.

3 SYNTHESIS ALGORITHM FOR ESOP

Our synthesis strategy of minimizing ESOP's is as follows:

Starting from an initial XORDD representation of a mul-

tiple output function (can be OBDD, OFDD or OKFDD),

we iteratively apply transformations and reductions to �-

nally obtain a shared multiple rooted XORDD which gives a

minimized ESOP.

3.1 Algorithms for minimization

Our goal is to obtain a compact XORDD from the initial

large XORDD by iteratively applying transformations and

reductions. The number of product terms and literals should

be simultaneously minimized. We concluded in the previous

section that the number of product terms is equal to the

number of 1-paths in an XORDD and that each 1-path de-

�nes a product term which is the product of all edge values

in the path. One exception is that a common 1-path shared

by multiple roots should be counted only once.

By examining the reductions and transformations intro-

duced in Sect. 2.3, one can observe that reductions always

reduce the objective functions (# of product terms and lit-

erals). However, transformations do not directly result in a

more compact graph. While merge, split, and extract do not
a�ect the objective functions, change of decomposition actu-
ally increases the value of objective functions. The purpose

of performing transformations on an XORDD is to create

opportunities for more reductions. Thus, we need to iden-

tify which types of transformations should be performed on

a particular node or edge. In our synthesis techniques, local
loop detection is used in determining transformations and

reductions.

Local loop detection: Detection of three basic loops are

performed in our synthesis technique. These are illustrated

in Fig. 5. In loop type 1 (Fig. 5(a)), we can �rst merge two
nodes and then apply reduction rule (3). In loop type 2
(Fig. 5(b)), an edge label is changed �rst. We then merge
two nodes followed by a reduction. In loop type
3(Fig. 5(c)), after changing an edge label, a reduction can

be applied.

An algorithm to minimize the objective functions of the

XORDD is given below:

Step 1: Create a Multiple Rooted Shared OBDD (or

OFDD, OKFDD) as the initial XORDD from the original

two-level or multi-level circuit descriptions.

Step 2.1: Start from the lowest level vertices. Examine

each node to determine if reductions can be directly

applied.

Step 2.2: Detect three reducible loops discussed in

Sect. 2.3 (also shown in Fig. 5). Change the label of some

incoming edges (i.e., change decompositions), then apply

reductions on parent node(s).

Step 3: For every vertex in the next lowest level, repeat

the same transformations and reductions given in steps 2.1

and 2.2.

Step 4: Level by level from the bottom up to the root

vertices, repeat the same operations given in steps 2.1 and

2.2.

Step 5: For each node, examine the incoming edges, do

merge and extract as shown in Fig. 4 to change the

topology of the graph. Then repeat step 2 { 4.

3.2 Global transformations

Note that only small loops are detected in step 2.2. Similar

opportunities for reduction exist in larger loops. However, it

is usually di�cult to detect larger loops and further identify

1

0

e

0

x

0 1

0 1

e

x

1
0

1

e

x
0

e

1

x
0

e

e e

0

0 1

e1

x

e

0 1

x

e1

x

e

e1
e1

(b) loop type 2

(a) loop type 1

(c) loop type 3

0 1

1

e

x
0

e

e 1

x

1

e

10

x
10 1

1

Figure 5: Three types of loops are identi�ed, on which re-

ductions can be applied after performing certain transfor-

mations.

which particular transformations should be applied. Poten-

tial reductions will be missed if only these small loops shown

in Fig. 5 are considered. As an example, let us consider the

loop shown in Fig. 6. The original loop in Fig. 6(a) will not

be detected in the algorithm shown above. If we exchange

the order of variable b and c, as shown in Fig. 6(b), we can

merge two nodes of variable b. Now the loop shrinks and will

be detected for reduction, as shown in Fig. 6(c). Therefore,

if we allow variables move from one level to another, there

are chances that large reducible loops will shrink, and be-

come detectable. We refer these transformations that allow

variables move as to \global transformations".

Step 6 { Global transformations
Step 6.1: Randomly select a variable, move all the nodes

of this variable to the bottom.

Step 6.2: Repeat step 6.1 n times, where n depends on

the number of primary inputs (in our implementation, n =
of primary inputs). Then apply local transformations

(step 3{5) again.

Step 6.3: Repeat global transformations step 6.2 until

very few reductions can be found.

Let us consider a function f = abc + abc+ dbc+ dbc as

an example. The minimal SOP representation has 4 product

terms and 12 literals, and the minimal ESOP representation

is f = ab � ac � db � dc, which has 4 product terms and 8

literals The initial OBDD after removing the 0-terminal is

shown in Fig. 7(a). First, consider edges of the 1-terminal.

Merge or extract can not be directly applied. After changing
an edge label from 1! 0, the two nodes of variable c can be
merged and reduction can be applied. Thus we obtain the

graph of Fig. 7(b). We now consider the next lowest level

variable d. By examining the four incoming edges of node d,

0

(c)

1 1

0 1

1

0

1 1

0 1

1

0 1

1

10

a a a

b b

b b b

cc c c c c

d d d

(a) (b)

Figure 6: An example of global transformation. More re-

ducible loops can be found by performing global transfor-

mations.

the four nodes of variable c can be merged into two nodes,

as shown in Fig. 7(c). From node d, two type 2 reducible

loops (both are d ! c ! b ! c ! d) can be detected.

By changing the label (from 0 to 1) of the edge between

node d and c, we can merge the two nodes of variable c to

obtain Fig. 7(d). We now consider variable c. A number of

reductions are available on node c. After reductions, we have
the graph in Fig. 7(e). There is a new reduction available

between node c and node a. We can also merge two nodes

of b. After a �nal reduction step, we obtain the XORDD of

Fig. 7(f), which gives the minimum ESOP expression.

4 EXPERIMENTAL RESULTS

The XORDD-based synthesis method is applied to a

large set of benchmark circuits in both PLA and combi-

national formats. Results are summarized in table 1. In

the �rst column, circuits with an asterisk are in PLA for-

mat. in and out represent the number of inputs and outputs
of the circuits. cpu denotes the cpu time in seconds on

SPARC 5 workstation. Unlike many previous work [9, 10],

we synthesized multiple outputs simultaneously to explore

the common product terms shared by multiple outputs.

Minimized SOP's obtained from ESPRESSO are also in-

cluded in the tables. For many functions, e.g. 5xp1, apex5,
rd53, rd73, rd84, t481, xor5 etc., the ESOP's have consid-

erably fewer product terms than the SOP's. On the other

hand, for functions such as apex1, apex3, cps, spla, etc., the
SOP's are signi�cantly more compact. On average, the com-

pactness of these two forms are comparable. Among the 74

circuits we have experimented with, the minimized ESOP's

have fewer product terms than those of SOP's in 39 circuits.

For some particular types of functions, one representation is

better than the other. On average, the XORDD-based syn-

thesis algorithm consumes comparable cpu time with that

of ESPRESSO. However, for many larger circuits we exam-

ined, the XORDD-based algorithm consumes signi�cantly

less cpu time. Note that most of the cpu time consumed

in XORDD-based synthesis is for the initial BDD creation.

The synthesis algorithm usually consumes less than 50% of

the total cpu time reported in the table.

For some combinational circuits, no compact two-level

forms in either ESOP or SOP could be obtained. We ex-

perimented with circuits such as i3, i4, rot, pair, C432, and
C1908. The number of product terms are more than tens

of thousands for such circuits. We have not listed these cir-

cuits in Table 1. As long as the initial decision diagram are

successfully created, the XORDD-based method can always

generate results. Table 2 listed several circuits for which

a

b b

d

1

1 1

c c c c 1

1

1

c c c c c 1

a

b b

d

1

0 1

0

0

0 1

10

1

1 0

0
1

0

c

d

1

1 1

a

b b c

1

1

00 0
10

0 1

0 1 b c a

b cd

1 1 1

b d
1

1 0 0

0
1 1

a

b b

cc

d

c

1

1

1

0

1
1

1

0001
1

0

1

10

c

11

a

b b

c

d

1

00
0

1

1

0 0
1

0

1
0 1

1

0 1
0 1

0
1

0 1 0 1

0 1

1

0

0

(b)

(c)

(e) (f)

(a)

(d)

= ab a ccd

Figure 7: An example showing how the algorithm is per-

formed on a function|-from initial BDD to the �nal com-

pact XORDD, which gives a minimized ESOP form

ESPRESSO did not produce any result in 30 minutes on a

SUN SPARC workstation. The last column node in Table 2

represents the number of nodes in an XORDD. It should be

noted that the size of XORDD's is still small even though

the circuits have large number of product terms and liter-

als. The shared multi-level structure of XORDD's gives a

compact representation of these functions. Moreover, the

cpu time depends on the size of the graph. For some even

larger circuits, such as C2670, C3540, and C7550, we cre-
ated XORDDs, however, the number of product terms and

literals are excessively large. We feel that these circuits are

inherently not suitable for two-level realizations.

5 CONCLUSIONS AND FUTUREWORK

We have de�ned a new Shared Multiple Rooted XOR-based
Decomposition Diagram to represent multiple output func-

tions. Based on this type of graph, we presented an e�cient

algorithm to minimize the ESOP's. The method successfully

minimized large functions with multiple outputs.

In this paper, only two-level AND/XOR minimization

has been implemented. With some modi�cations, our algo-

rithm can be extended to optimize multi-level AND/XOR

networks. This is because a Shared Multiple RootedXORDD
is a multi-level representation of functions. An algorithm is

currently being developed to minimize multi-level AND/XOR

networks. This can be accomplished by using the number of

literals as the objective function(not to be confused with the

literal counts in two level ESOP's) and by relaxing the re-

striction that each variable can only be encountered once in

a path from a root vertex to the terminal vertex in XORDD.

Table 1: Minimized ESOP's for benchmark circuits (in both PLA and combinational formats) and their comparison with

SOP's from ESPRESSO

Circuit ESPRESSO XORDD-based synthesis
in out terms literals cpu terms literals cpu

5xp1* 7 10 65 347 0.3 39 141 0.7
9sym* 9 1 86 602 0.6 60 423 0.9
apex1* 45 45 206 2842 5.7 496 4386 8.4

apex3* 54 50 281 3303 7.4 436 3295 17.5

apex5* 117 88 1088 7281 106.3 401 4002 7.3
b12* 15 9 43 207 0.6 29 143 0.6

cps* 24 109 163 2836 10.7 342 4128 11.0
e64* 65 65 66 2210 1.3 65 2210 6.3
ex4* 128 28 279 1928 13.3 345 3232 5.0
ex5* 8 63 74 1122 65.5 122 767 13.1

rd53* 5 3 31 175 0.1 15 48 0.2

rd73* 7 3 127 903 0.4 44 191 0.9
rd84* 8 4 255 2070 1.6 61 309 4.6

spla* 16 46 252 3194 64.3 423 5048 52.8
t481* 16 1 481 5233 2.8 13 41 1.2

xor5* 5 1 16 96 0.0 5 6 0.0
apex6 135 99 656 4456 154.3 416 3088 6.4
apex7 49 37 434 3305 25.4 209 1808 2.3

ALU2 10 6 143 1029 1.8 89 528 2.2
ALU4 14 8 608 5444 21.7 534 4421 10.4

b1 3 4 4 18 0.0 6 14 0.0
b9 41 21 106 512 1.9 80 507 1.0
c8 28 18 79 333 0.7 51 172 0.7
cmb 16 4 17 74 0.3 4 39 0.2
count 35 16 169 793 1.5 50 268 0.8

dalu 75 16 2076 24972 74.6 1742 18816 73.4
frg1 28 3 119 914 0.9 124 1392 2.7
frg2 143 139 ** ** ** 1180 11997 43.6
i1 25 16 28 129 0.2 22 81 0.3
i6 138 67 202 919 3.6 143 493 3.2

i8 133 81 951 7966 41.9 1198 9974 22.4
i9 88 63 1279 8523 50.0 1287 8189 18.0

parity 16 1 ** ** ** 16 17 0.1
ttt2 24 21 124 700 1.6 65 429 0.7
vda 17 39 93 1442 4.5 191 1123 6.7
x2 10 7 17 84 0.2 20 78 0.6
x3 135 99 656 4458 188.6 412 4062 12.0

x4 94 71 520 3062 21.6 307 1875 3.1

* circuits in PLA format ** not available after 15 minutes of cpu time

Table 2: Some combinational circuits with large number of

product terms and literals

Circuit XORDD based synthesis
in out terms literals cpu nodes

des 256 245 9266 59782 49.5 3562

i3 132 6 202234 4076549 2.5 130
i4 192 6 212642 7191492 7.8 192

my adder 33 17 36258 612348 8.1 65
C432 36 7 1.2e6 3.0e7 116.5 1280

REFERENCES

[1] R.Brayton, R.Rudell, A.Sangiovanni-Vincentelli, and A.Wang,
\MIS: A Multi-level Logic Optimization System," IEEE Trans-

actions on CAD/ICAS, Vol. CAD-6, No. 6, November 1987,
pp. 1062-1081.

[2] R.E. Bryant, \Graph-Based Algorithms for Boolean Function
Manipulation," IEEE Trans. on Computers, Vol. C-35, No. 8,
August 1986, pp. 677-691.

[3] R.Drechsler, M.Theobald, and B.Becker, \Fast OFDD based
Minimization of Fixed Polarity Reed-Muller Expressions," Proc.

European Design Automation Conf., 1994, pp. 2-7.

[4] R.Drechsler, A.Sarabi, M.Theobald, B.Becker, M.A.Perkowski,
\E�cient Representation and Manipulation of Switching Func-
tions based on Ordered Kronecker Functional Decision Dia-

grams," DAC, Proceedings of the Design Automation Confer-

ence, 1994, pp. 415-419.

[5] H.Fleisher, M.Tavel, and J.Yeager, \A Computer Algorithm for
Minimizing Reed-Muller Canonical Forms," IEEE Trans. on
Computers, Vol. C-36, No.2, 1987, pp. 247-250.

[6] G. Hachtel, M.Lightner, R.Jacoby, C.Morrison, P.Moceyunas,
and D. Bostik, \Bold: The Bould optimal Logic Design System,"
Hawaii Int. Symp. on Systems Sciences, 1988.

[7] U.Kebschull, E.Schubert, and W.Rosenstial, \Multilevel Logic
Based on Functional Decision Diagrams," Proc. European De-
sign Automation Conf., 1992, pp. 43-47.

[8] S. Malik, A.R.Wang, R.K. Brayton, and A. Sangiovanni-
Vincentelli, \Logic Veri�cation using Binary Decision Dia-
grams," Proc. Intl. Conference on Computer-Aided Design.,
1988, pp. 6-9.

[9] A.Sababi, and M.A.Perkowski, \ Fast Exact and Quasi-Minimal
Minimization of Highly Testable Fixed-Polarity AND/XOR
Canonical Networks," Proc. 29th ACM/IEEE Design Automa-

tion Conference, 1992, pp. 30-35.

[10] M.A.Perkowski, L.Csanky, A. Sarabi, and I.Schafer, \Fast Min-
imization of Mixed-Polarity AND/XOR Canonical Networks,"
Proc. Intl. Conference on Computer Design, 1992, pp. 33-36.

[11] R.Rudell and A. Sangiovanni-Vincentelli, \Multiple-valued Min-
imization for PLA Optimization," IEEE transactions on
CAD/ICAS, Vol. CAD-6, No. 5, September 1987, pp727-750.

[12] T.Sasao, \EXMIN2: A Simpli�cation Algorithm for Exclusive-
OR-SUM-of Products Expressions for Multiple-Valued-Input
Two-Valued-Output Functions," IEEE Trans. on Computer-

Aided Design, Vol. 12, No. 5, May 1993, pp. 621-632.

