
REVERSIBLE LOGIC SYNTHESIS

by

DMITRI MASLOV

M.Sc. (Mathematics) Lomonosov’s Moscow State University, 1998
MCS University of New Brunswick, 2002

A thesis submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF COMPUTER SCIENCE

We accept this thesis as conforming
to the required standard

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THE UNIVERSITY OF NEW BRUNSWICK

September 2003

c© “Dmitri Maslov”, 2003



In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of New Brunswick, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the head of my department or by his

or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

(Signature)

Faculty of Computer Science
The University of New Brunswick
Fredericton, Canada

Date



Abstract

Reversible logic is an emerging research area. Interest in reversible logic is sparked by

its applications in several technologies, such as quantum, CMOS, optical and nanotech-

nology. Reversible implementations are also found in thermodynamics and adiabatic

CMOS. Power dissipation in modern technologies is an important issue, and overheat-

ing is a serious concern for both manufacturer (impossibility of introducing new, smaller

scale technologies, limited temperature range for operating the product) and customer

(power supply, which is especially important for mobile systems). One of the main

benefits that reversible logic brings is theoretically zero power dissipation in the sense

that, independently of underlying technology, irreversibility means heat generation.

Most of the listed technologies are either emerging or not fully investigated. As a

result, only a small number of Boolean variables can be computed using hardware

based on reversible technology. Part of this problem comes from the incompleteness of

the technological results, the other part arises from absence of good circuit synthesis

procedures. Synthesis of multiple-output functions has to be done in terms of reversible

objects. This usually results in addition of garbage bits (bits needed for reversibility,

but not required for the output part of a circuit), which in contrast to the non-reversible

case is technologically difficult and expensive. The situation is rather pessimistic when

it is observed that proposed designed synthesis procedures use excessive garbage.

The amount of garbage is a very important criterion for a good synthesis procedure,

since in most technologies the addition of only one bit of garbage is very expensive

or even impossible to implement. Based on this information, a crucial way to help

reversible logic to evolve and become usable is to design a synthesis method which

uses the theoretically minimal number of garbage bits. This will help the emerging

technologies to use the results of reversible synthesis even in the early stage of their

development. Minimal garbage realization may require a larger number of gates in the

circuit, but it is better to have a large but working circuit than a small one that is not

ready for the technology.

In this thesis several synthesis methods that use minimal garbage are considered: RCMG

ii



Abstract

model (defined asa part of this thesis), Toffoli synthesis, Fredkin/Toffoli synthesis. Dy-

namic programming algorithms are synthesized separately with near minimal garbage.

Some of the methods use minimal garbage and produce small circuits (Toffoli and Fred-

kin/Toffoli synthesis) but work with reversible specifications, some handle “don’t cares”

(RCMG), some even allow a trade-off between the garbage amount and the number of

gates in the resulting circuit. When a technology is chosen and the relationship between

costs of one bit of garbage and a single gate is specified, one or the other method may

be better. In the presented thesis the main goal is to design synthesis methods that will

be suitable for different cost distributions.

iii



Acknowledgments

I would like to thank Dr. Marek Perkowski from Portland State University, Oregon, USA

for providing access to his lecture notes on reversible logic and his valuable comments

in the early stages of this research.

Also, I would like to thank Dr. Michael Miller from University of Victoria, Victoria,

Canada for his help and participation in the research done in chapters 4 and 5 while he

was on sabbatical in the University of New Brunswick.

Finally, I would like to thank my scientific advisor Gerhard W. Dueck from University of

New Brunswick, New Brunswick, Canada for his support, help and active participation

in the research.

iv



Glossary

AND — Boolean operation (&, concatenation) with properties 0&0 = 0&1 = 1&0 = 0,

1&1 = 1;

CNOT — Controlled NOT gate, also known as the Feynman gate;

CPU — Central Processing Unit;

EXOR — Boolean operation (⊕) with properties 0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1;

ESOP — EXOR sum-of-products;

mEXOR — multiple EXOR reversible gates family;

NOT — Boolean operation (¯) with properties 0̄ = 1, 1̄ = 0;

PLA — Programmable Logic Array;

RCMG — Reversible Cascades with Minimal Garbage;

RPGA — Reversible Programmable Gate Array.

v



Table of Contents

Abstract ii

Acknowledgments iv

Glossary v

Table of Contents vi

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Basic Definitions and Literature Overview 8
2.1 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Basic Definitions of the Reversible Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 The Popular Reversible Gates: Fredkin and Toffoli . . . . . . . . . . . . . . . . 15
2.2.3 Several Other Reversible Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Overview of Reversible Logic Synthesis Methods . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3. Reversible Cascades with Minimal Garbage 26
3.1 Minimal Garbage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Analysis of Garbage in Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 A New Structure: Reversible Cascades with Minimal Garbage . . . . . . . . . . . . 32

3.2.1 Definition of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Quantum Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Theoretical Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Heuristic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Multiple Output Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 RCMG and ESOP Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Multiple Output Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4. Toffoli Synthesis 66
4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 Bidirectional Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



Table of Contents

4.2.1 Unification of Class 1 and Class 2 Templates . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Templates - a New Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 5. Toffoli-Fredkin Synthesis 90
5.1 How Useful Are Fredkin Gates? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Box Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 A Note on Similarity of Fredkin And Toffoli Gates . . . . . . . . . . . . . . . . . 93
5.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Handling permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 Multiple output and incompletely specified functions . . . . . . . . . . . . . 104

5.4 Template simplification tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 6. Asymptotically Optimal Regular Synthesis 117
6.1 Quantum Cost of the mEXOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Asymptotically Optimal Reversible Synthesis Method . . . . . . . . . . . . . . . . . . . 122
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Sym-
metric Function Realization 131

7.1 Application: Multiple Output Symmetric Functions . . . . . . . . . . . . . . . . . . . . . 133
7.2 Comparison of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Chapter 8. Summary 143

Chapter 9. Further Research 145

Bibliography 148

vii



List of Tables

2.1 Truth table method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Truth table for a 3-input 3-output function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Reversible function computing the logical AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Gate cost comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Truth table of f(x1, x2, x3) = (x1 ⊕ x̄2x3, x̄2, x1 ⊕ x2x3) . . . . . . . . . . . . . . . . . . . 46
3.5 Distance between f and its partial realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Effect of changing one bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Comparison with Miller’s results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Comparison with Perkowski’s results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9 Comparison with Khan’s results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.10 Complexity of the function exphardn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Example of applying the basic algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Example of applying the bidirectional algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Second gate building process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Optimal synthesis of all 3-input 3-output functions . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Basic approach synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Bidirectional approach synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Cost comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Circuit building process for a four variable function. . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 Circuit for the basic approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 Comparison of the results to RWC, KGF and GT . . . . . . . . . . . . . . . . . . . . . . . . . 140

viii



List of Figures

2.1 The general structure for a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 NOT, CNOT and Toffoli gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 SWAP gate realization in quantum technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Reversible design methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Horizontal line types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 A single gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Pruned circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Building a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Reversible design structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Circuit for the function shown in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Circuits for the function shown in Table 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Templates with 2 or 3 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Toffoli templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 All templates for m ≤ 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 All templates for m ≤ 7 depicted as donuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Optimal circuit for a full adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Circuit for rd53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Toffoli, Fredkin and box gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Transformation of a Toffoli circuit to a NOT-Fredkin circuit. . . . . . . . . . . . . . . . 94
5.3 Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Class AA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Class ABAB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6 A group of semi passes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7 Fredkin definition group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.8 Link group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.9 Class ATATB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.10 Class FTTFTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.11 Simplified networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.12 Simplifying one network into the other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Example of a mEXOR Toffoli gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Construction of a single mEXOR gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 mEXOR gate network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1 Circuit for rd53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ix



Chapter 1
Introduction

Energy loss is an important consideration in digital circuit design, also known as circuit

synthesis. Part of the problem of energy dissipation is related to technological non-

ideality of switches and materials. Higher levels of integration and the use of new

fabrication processes have dramatically reduced the heat loss over the last decades. The

other part of the problem arises from Landauer’s principle [34, 26] for which there is

no solution. Landauer’s principle states that logic computations that are not reversible

necessarily generate kT ∗ log 2 Joules of heat energy for every bit of information that

is lost, where k is Boltzmann’s constant and T the absolute temperature at which

computation is performed. For room temperature T the amount of dissipating heat is

small (i.e. 2.9 ∗ 10−21 Joules), but not negligible. This amount may not seem to be

significant, but it will become relevant in the future. Consider heat dissipation due to

the information loss in modern computers. First of all, current processors dissipate 500

times this amount of heat [56] every time a bit of information is lost. Second, assuming

that every transistor out of more than 4 ∗ 107 [18] for Pentium-4 technology dissipates

heat at a rate of the processor frequency, for instance 2 GHz (2 ∗ 109 Hz), the figure

becomes 4 ∗ 1019 ∗ kT ln 2 J/sec. The processor’s working temperature is greater than

400 degrees Kelvin, which brings us to 24 ∗ 1021k ln 2. Although this amount of heat

1



Chapter 1. Introduction

is still small (k ≈ 1.38 ∗ 10−23), i.e. only around 0.1 W, Moore’s law [55] predicts

exponential growth of the heat generated due to the information loss, which will be a

noticeable amount of heat loss in the next decade. A more accurate (verified in parts

with Intel’s principal engineer Jason C. Stinson) heat dissipation due to the information

loss calculation for the Madison Itanium-2 processor [80] showed the figure of at least

0.147 W when the processor is fully loaded.

Design that does not result in information loss is called reversible. It naturally takes

care of heating generated due to the information loss. Bennett [5] showed zero energy

dissipation would be possible only if the network consists of reversible gates. Thus

reversibility will become an essential property in future circuit design. For reversible

logic history refer to [6].

Quantum computations are known to solve some exponentially hard problems in poly-

nomial time [56, 16]. All quantum computations are necessarily reversible [56, 66].

Therefore research on reversible logic is beneficial to the development of future quan-

tum technologies: reversible design methods might give rise to methods of quantum

circuit construction, resulting in much more powerful computers and computations.

Quantum technologies [57, 77, 62, 31, 32, 30, 35, 68, 69] are not the only ones that

may (naturally) use reversibility, there are other technologies for which reversible im-

plementations are known. Specifically, it was shown that reversible gates can also be

built using technologies such as CMOS [46, 83, 10, 86], in particular adiabatic CMOS

[3], optical [63, 65], thermodynamic technology [48], nanotechnology [46, 47], and DNA

technology [65]. The billiard ball model [14, 6] is a model for reversible computations,

2



Chapter 1. Introduction

which among others, was simulated with reversible cellular arrays [38]. It happens that

reversible logic naturally appears in many applications that initially do not seem to be

connected to reversible logic at all, such as complex antenna simulations [76]. But the

essence of the simulation, a process of propagating a wave, is essentially a reversible

transformation. We do not discuss the different technologies in detail, since some of

their descriptions involve deep knowledge of physics, electronics, circuitry, quantum

mechanics, optics, thermodynamics and other physical/engineering subjects.

Most gates used in digital design are not reversible. For example the AND, OR and

EXOR gates do not perform reversible operations. Of the commonly used gates, only

the NOT gate is reversible. A set of reversible gates is needed to design reversible

circuits. Several such gates have been proposed over the past decades. Among them

are the controlled-not (CNOT) proposed by Feynman [13], Toffoli [82], and Fredkin [14]

gates. These gates have been studied in detail. However, good synthesis methods have

not emerged. Shende et al. [74, 75] suggest a synthesis method that produces a minimal

circuit with up to 3 input variables. Iwama et al. [22] describe transformation rules for

CNOT based circuits. These rules may be of use in a synthesis method. Miller [49]

uses spectral techniques to find near optimal circuits. Mishchenko and Perkowski [54]

suggest a regular structure of reversible wave cascades and show that such a structure

would require no more cascades than product terms in an ESOP (“exclusive or” sum of

products) realization of the function. In fact, one would expect that a better method

can be found. The algorithm sketched in [54] has not been implemented. A regular

symmetric structure has been proposed by Perkowski et al. [60] to realize symmetric

functions. The reversible logic design algorithms will be considered in the Literature

3



Chapter 1. Introduction

Overview chapter in detail.

Traditional design methods use, among other criteria, the number of gates as a com-

plexity measure (sometimes taken with some specific weights reflecting the area of the

gate). From the point of view of reversible logic we have one more factor which is more

important than the number of gates used, namely the number of garbage outputs. Since

reversible design methods use reversible gates, where the number of inputs is equal to

the number of outputs, the total number of outputs of such a network will be equal to

the number of inputs. The existing methods [54] use the analogy of copying information

from the input of the network, therefore introducing garbage outputs—information that

we do not need for the computation. In some cases garbage is unavoidable. For exam-

ple, a single output function of n variables will require at least n − 1 garbage outputs,

since reversibility necessitates an equal number of outputs and inputs.

The importance of minimizing garbage is illustrated with the following example. Say

we want to realize a 5 input 3 output function in a reversible method on a quantum

computer, but the design requires 7 additional garbage outputs (that is 5 constant

inputs), resulting in a 10-input 10-output reversible function. In the year 2002 the best

quantum computer has 7 qubits [1], therefore we will not be able to implement this

design. In other words, in the case of choosing between increasing the garbage and

increasing the number of gates in a reversible implementation, the preference should be

given to the design method delivering the minimum amount of garbage. In this case we

will be able to build the device, while it is impossible with the other method.

The presented work is organized as follows.

4



Chapter 1. Introduction

• In the chapter Basic Definitions and Literature Overview the classic objects

from reversible logic theory are defined. With this introductory part the reader

becomes familiar with the objectives and notations of reversible logic theory. Pre-

vious work is analyzed and summarized in this section. As an important part of

this summary, the weaknesses of previous approaches are pointed out.

• The first step in our research is the attempt to minimize the garbage that is the

major weakness in all existing methods. The chapter Reversible Cascades with

Minimal Garbage is focused on the conditions for minimal garbage, introduces

and analyzes the new model that allows synthesis with minimal garbage, suggests

possible design algorithms for both reversible and multiple output functions, dis-

cusses implementation of the algorithms and results of their testing, compares

the proposed algorithms to known ones, and analyzes the quantum cost of the

model. Finally, we compare efficiency of the new model to the efficiency of a pop-

ular model for non-reversible synthesis, EXOR PLA (“exclusive or” programmable

logic array [70]). The results of the RCMG model and synthesis using it can be

found in three of our works: [11], [45], [40] and Miller’s work [50].

• In the next chapter, Toffoli Synthesis, the conventional Toffoli gates were cho-

sen to form the set of model gates. We create a theoretical synthesis method that

initially produces acceptable size networks and show its modification, the bidirec-

tional algorithm. Since, even after the bidirectional algorithm successfully termi-

nates the circuit may still not be optimal, the following heuristic simplification

procedures are applied: output permutation, control input reduction, choosing

between realizing f and inverting the network for f−1, applying a template tool.

5



Chapter 1. Introduction

The last simplification procedure seems to be the most promising from the point

of view of the network simplification, therefore the templates are properly defined,

classified, and applied. For some small parameters the set of all templates is com-

pletely built. The algorithm and simplification procedures are implemented and

tested on benchmark functions. In addition to the commonly used benchmark

functions we also create our own benchmark functions, the functions for which

the method produces a large network and analyze why it happens. Some of the

results of this chapter can also be found in our works [51, 42] and [43].

• The Toffoli gates are not the only gates that are widely used. There are also such

gates as the Fredkin gate, Miller gate, Kerntopf gate and many more. The Fredkin

gate can be generalized and incorporated into the algorithm initially designed

for Toffoli network synthesis. In the chapter Toffoli-Fredkin Synthesis both

versions of the algorithm and all the simplification procedures from the previous

chapter are updated and applied to the new network model consisting of Toffoli and

Fredkin gates. The new family of gates differs from the Toffoli gates only, therefore

the new template classification is shown. Again, the results were implemented

and tested on benchmark functions. As part of this testing, the results of the

algorithm application are compared with the optimal Toffoli-Fredkin networks for

all 3-input 3-output reversible functions. Part of the research done in this chapter

can be found in the following of our publications [51, 12, 41].

• Most of the classical synthesis methods for the conventional logic synthesis are

asymptotically optimal. Reversible logic is a new area and it does not have an

asymptotically optimal synthesis method. In the chapter Asymptotically Opti-

6



Chapter 1. Introduction

mal Regular Synthesis we introduce a new mEXOR model and show an optimal

synthesis (in terms of the number of gates used in the resulting design) method

for it. We also show that technologically it is not expensive to create the gates

for this new model, in fact their quantum cost differs only marginally from the

quantum cost of conventional Toffoli gates. This chapter has been published as

[39].

• The chapter Dynamic Programming Algorithms as Reversible Circuits:

Symmetric Function Realization talks about synthesizing some recursive func-

tions as a network of Toffoli gates. An example of recursive functions is the set of

symmetric functions. We show how to build inexpensive quantum circuits for any

multiple output symmetric function.

• The chapter Further Research points to the directions of the further research

in the reversible logic area.

• The dissertation concludes with the chapter Summary which highlights the ac-

complishments described in this thesis.

7



Chapter 2
Basic Definitions and Literature
Overview

2.1 Boolean Algebra

We start with a brief overview of Boolean logic. There are two Boolean constants, 0 and

1. One method to describe (and, therefore, define) a Boolean function f(x1, x2, ..., xn)

of n variables is by a truth table. This construction is a table with (n + 1) columns

and 2n rows. In the rightmost column the value of the function for the input that is

placed in the first n columns is given for each row. The number of different inputs for

a function of n Boolean variables is 2n, therefore the height of this construction is 2n.

In other words, the truth table has 2n rows. Note that all the 2n Boolean patterns are

arranged in lexicographical order, and this reflects the conventional way of writing the

truth table. It can be seen that the truth table requires a lot of storage space though the

information about the order of inputs is not important, since it can be easily restored

from the information on which string of the truth table are we looking at. In order to

simplify the format, the truth vector method is used. The truth vector for a function of

n variables is the sequence of Boolean numbers of length 2n, where the k-th number of

this sequence is the value of the function on the input that is the binary representation

of number (k − 1). In the following example we see the advantage of the truth vector

8



Chapter 2. Basic Definitions and Literature Overview

method of representing a function compared with the truth table method.

Example 1. Consider the following truth table shown in Table 2.1. The truth vector for

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Table 2.1: Truth table method

the same function is [0, 0, 1, 1, 1, 0, 1, 1], which requires one-fourth of the storage space.

For a function of n variables the truth vector method requires (n+1) times less writing

than the truth table, so we will use the truth vector notation everywhere when it is

convenient.

By analogy one can define an n-input k-output multiple output Boolean function

(f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fk(x1, x2, ..., xn)) as a truth table with (n + k)

columns, where the last k columns represent the function output for the input pat-

tern contained in the first n columns. Equivalently, n-input k-output multiple output

Boolean function is a vector-function of k Boolean functions. A multiple output function

can also be written as a truth vector. In this case each of the 2n elements (coordinates)

9



Chapter 2. Basic Definitions and Literature Overview

of this vector is an integer number in the interval [0..2k − 1] which is the binary repre-

sentation of the output pattern.

Example 2. The 3-input 3-output multiple output Boolean function given in Table 2.2

has the truth vector [0, 1, 2, 3, 4, 5, 7, 6].

x1 x2 x3 f1 f2 f3

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Table 2.2: Truth table for a 3-input 3-output function

It is also possible to write functions as formulas. The operations of conjunction (written

as & or concatenation), negation (̄ ) and exclusive or (⊕, EXOR) are used. The popular

notation xσi
i represents xi if σi = 1 and x̄i if σi = 0.

For more information on Boolean logic see [70, 84].

10



Chapter 2. Basic Definitions and Literature Overview

2.2 Basic Definitions of the Reversible Logic

The main object in reversible logic theory is the reversible function, which is defined as

follows.

Definition 1. The multiple output Boolean function F (x1, x2, ..., xn) of n Boolean

variables is called reversible if:

1. the number of outputs is equal to the number of inputs;

2. any output pattern has a unique preimage.

In other words, reversible functions are those that perform permutations of the set of

input vectors.

Example 3. A 2-input 2-output function given by formula (x, y) → (x̄, x ⊕ y) or truth

vector [2, 3, 1, 0] is reversible. The correctness of this statement can be verified by

analyzing the truth table below.

x y x̄ x ⊕ y

0 0 1 0

0 1 1 1

1 0 0 1

1 1 0 0

Example 4. A 2-input 1-output function (x, y) → x ⊕ y is not reversible, since it is

not an n-input n-output function. However, it can easily be made reversible by adding

output x̄. Note, that for this example we do not need to add an input.

11



Chapter 2. Basic Definitions and Literature Overview

Example 5. Consider the function (x, y) → xy (where concatenation denotes the logical

AND operation). It is impossible to make it reversible by adding a single output, which

can be verified by exhaustively trying all the possible assignments. One way to make it

reversible is to add one input and two outputs so that the function becomes as shown

in Table 2.3. The output vector of the desired function can be observed in the third

output column of the table when the value of variable z = 0 (shown in bold font). To

realize the function, the input z must be the constant zero, and two garbage outputs

are present. The Toffoli gate [82] realizes this function.

x y z x y z ⊕ xy

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Table 2.3: Reversible function computing the logical AND

The previous examples show the necessity of adding inputs and/or outputs to make a

function reversible. This leads to the following definition.

Definition 2. Garbage is the number of outputs added to make an n-input k-output

12



Chapter 2. Basic Definitions and Literature Overview

function ((n, k) function) reversible.

We use the words “constant inputs” to denote the preset value inputs that were added to

an (n, k) function to make it reversible. In the previous example a single constant input

was added, namely the variable z with value 0. In general, if a reversible implementation

with “constant inputs” of a function is given, the function itself can be calculated by

assigning zeros and ones to the “constant inputs”.

The following simple formula shows the relation between the number of garbage outputs

and constant inputs

input + constant input = output + garbage.

2.2.1 Network Structure

No fan-outs and no feed-back is a natural restriction for building quantum networks, and

reversible logic is usually considered with the quantum technology in mind. Thus, due to

existing technological restrictions also likely for incompletely developed technologies, the

synthesis of reversible logic is done with the conventional agreements: no feed-backs and

no fan-outs are allowed [56]. This leaves us with the cascade structure as the only model

satisfying those conditions. (A cascade is any circuit with S gates G1, G2, ... , GS where

no two gates are activated at the same time: Gi works only when Gi−1 has produced

an output. In other words, cascade defines a total order on the set of gates induced by

the signal propagation timing.) Let the signal be propagated from left to right. The

pictorial representation of a network (circuit) is shown in Figure 2.1. The cost of a

function is defined as the number of gates in a circuit realizing it (S for the network

structure in Figure 2.1). Note, the cost defined here is different from the quantum cost

13



Chapter 2. Basic Definitions and Literature Overview

in
pu

t

ou
tp

ut

ga
te

 1

line 1

line 2

...

line n

ga
te

 2

...

ga
te

 S

line 1

line 2

...

line n

Figure 2.1: The general structure for a network

that will be defined later. In order to differentiate between them, the last will always

be used as a two word term.

The structure of a reversible network, therefore, is defined as a cascade. Such a restric-

tion makes the design difficult, but allows us to formulate the following Lemma.

Lemma 1. Given a network for a reversible function f , if the signal in it is propagated

backwards the output function is the inverse of f , f−1.

The proof of this Lemma is trivial, since both propagating the signal backwards and

finding the inverse is essentially the same operation. The Lemma itself may require a

correctness proof, in other words, justification of the fact that the signal can be prop-

agated backwards. We deal with reversible logic which means that one can restore the

input pattern of a gate given its output. This means that the signal can be propa-

gated backwards, showing the correctness of the Lemma statement. In conventional

non-reversible logic design it is impossible to propagate the signal backwards due to the

irreversibility of most of the gates used.

When the topology of the network is defined, the set of all possible circuit designs is

14



Chapter 2. Basic Definitions and Literature Overview

strongly restricted. The only thing that we may still vary is which transformations the

actual gates may do. The transformations themselves are strongly dependent on the

size of a gate.

Definition 3. The size of a reversible gate is a natural number which shows the number

of its inputs (outputs).

In the following subsections we introduce the gates starting from the most popular and

widely used Toffoli and Fredkin gates and ending with the more recent and less used

Picton gate, Kerntopf gate, Miller gate, Khan gate, etc.

2.2.2 The Popular Reversible Gates: Fredkin and Toffoli

In this subsection we define the popular Toffoli and Fredkin gates.

Definition 4. For the set of domain variables {x1, x2, ..., xn} the generalized Toffoli

gate has the form TOF (C; T ), where C = {xi1 , xi2 , ..., xik}, T = {xj} and C∩T = ∅. It

maps a Boolean pattern (x0
1, x

0
2, ..., x

0
n) to (x0

1, x
0
2, ..., x

0
j−1, x

0
j ⊕x0

i1
x0

i2
...x0

ik
, x0

j+1, ..., x
0
n).

In the literature, a number of gates from the set of all generalized Toffoli gates were

considered. The most popular are: the NOT gate (TOF (xj)), a generalized Toffoli gate

which has no controls; the CNOT gate (TOF (xi; xj))[13], which is also known as the

Feynman gate, a generalized Toffoli gate with one control bit; and the original Toffoli

gate (TOF (xi1 , xi2 ; xj))[82], a generalized Toffoli gate with two controls. The three

gates are illustrated in Figure 2.2, and the gates with more controls are drawn similarly.

Note that the way the gates are drawn is a convention which is not related to the way

15



Chapter 2. Basic Definitions and Literature Overview

target

control

control

NOT    CNOT
(Feynman)

Toffoli

Figure 2.2: NOT, CNOT and Toffoli gates

the gates are implemented. Gates with more than two controls are discussed in [56, 39].

The set of generalized Toffoli gates is proven to be complete (for example, see [45]); in

other words, any reversible function can be realized as a cascade of Toffoli gates.

Definition 5. For the set of domain variables {x1, x2, ..., xn} the generalized Fredkin

gate has the form FRE(C; T ), where C = {xi1 , xi2 , ..., xik}, T = {xj , xl} and C ∩ T =

∅. It maps a Boolean pattern (x0
1, x

0
2, ..., x

0
n) to (x0

1, x
0
2, ..., x

0
j−1, x

0
l , x

0
j+1, ..., x

0
l−1, x

0
j ,

x0
l+1, ..., x

0
n) if and only if x0

i1
x0

i2
...x0

ik
= 1. In other words, the generalized Fredkin gate

interchanges bits xj and xl if the corresponding product of C equals 1.

Several cases of the generalized Fredkin gates can be found in the literature. A gate

with no controls, FRE(x1, x2), is usually called SWAP since it swaps the signals on

x1 and x2. For some technologies the SWAP is done for free, for others there is a cost

associated with it. For example, in CMOS there is no cost for interchanging the two

wires. In contrast, in quantum technology the best one can do to interchange the values

on two wires is two apply 3 CNOT gates as it is shown in Figure 2.3. Depending on the

application we will refer to this gate as having a cost or not.

The classical Fredkin gate (the way it was originally presented [14]) has one control and

16



Chapter 2. Basic Definitions and Literature Overview

=

Figure 2.3: SWAP gate realization in quantum technology

can be written as FRE(x1; x2, x3).

For both gates defined above set C will be called the set of controls and T will be

called the target. The number of elements in the set of controls C defines the width

of the gate.

2.2.3 Several Other Reversible Gates

There were some more reversible gates proposed in the literature.

The Kerntopf gate [23, 25] is a reversible gate of size 3 which for the inputs x, y and z

produces the output (1⊕x⊕y⊕z⊕xy, 1⊕y⊕z⊕xy⊕yz, 1⊕x⊕y⊕xz). Unfortunately,

no good implementation of this gate is known, so it is not used very often. A size k

generalization of this gate was considered in [29, 52].

The Miller gate, initially considered as a benchmark function for the spectral techniques

synthesis method in [49] has a specification given by the truth vector [0, 1, 2, 4, 3, 5, 6, 7].

The circuit of Toffoli gates of size five and quantum complexity 9 was initially proposed

as a structural representation of this gate, but later on quantum circuits of size 7 were

found [85]. This gate was recently introduced, so it is not used in the current synthesis

procedures, but seems to be useful since it affects all three bits and its quantum cost is

comparable to the quantum cost of the size 3 Toffoli gate (ratio of costs is 7 to 5) and

quantum cost of the size 3 Fredkin gate (they have the same cost). It is not clear yet

17



Chapter 2. Basic Definitions and Literature Overview

how this gate can be generalized.

The recently introduced Khan gate [27] for the input vector (x1, x2, ..., xn) produces

the output (x1, x2, ..., xn−2, fxn−1 ⊕ xn, f̄ ¯xn−1 ⊕ x̄n) for an arbitrary function f =

f(x1, x2, ..., xn−2). The function f is usually the ⊕ or & of its arguments. For the

second case (operation &) the quantum complexity of such a gate was shown to be

twice as much as the complexity of the Toffoli gate with n − 2 variables. This gate

seems to be expensive and the existing synthesis procedure [28] requires a lot (growing

asymptotically faster than the minimal amount of garbage bits will be shown to be) of

garbage.

A newly shown majority-based reversible gate [85] is an odd size reversible gate, such

that at least one output is a majority Boolean function of its inputs. A majority Boolean

function is such a function that returns one if and only if more than half of its inputs

are ones. This gate seems complex in the classical Boolean circuit realization, and its

realizations in a reversible technology are not known yet. The Miller gate is a case of a

majority-based reversible gate.

The Picton gate [64] is a multi-valued logic generalization of a Fredkin gate. It is

not useful at this point since no multiple-valued reversible logic synthesis methods are

designed yet. No implementation of the Picton gate is known yet.

Among other existing gates are the Perkowski gates [29, 62], Margolus gates [24], and De-

Vos gates [25]. We do not introduce these gates here, since to the best of our knowledge

they were not yet used. However, one of the gates Perkowski mentions in [62] seems to be

a useful one, since for the input (x1, x2, x3) it produces the output (x1, x1⊕x2, x3⊕x1x2)

18



Chapter 2. Basic Definitions and Literature Overview

when a quantum circuit with cost only 4 (which is less than the cost of a Toffoli gate)

was found. Perkowski also states [62] that this implementation was known to Peres [57].

2.3 Overview of Reversible Logic Synthesis Methods

Such a variety of different reversible gates results in a variety of different approaches

to reversible logic synthesis. Fortunately, the basic analysis of different techniques of

reversible logic synthesis was successfully done in one of Perkowski’s work [85]. Here,

we use and expand this approach to the classification of reversible synthesis methods.

1. Composition methods [54, 59, 45, 11, 51, 12]. The idea is to compose a reversible

block using small and well known reversible gates. The reversible block should

be easy to use. Then, a modification of a conventional logic synthesis procedure

is applied to synthesize a network. The resulting network will be reversible as a

network essentially consisting of reversible gates.

2. Decomposition methods [59, 45]. Decomposition methods can be characterized as

a top-down reduction of the function from its outputs to its inputs. During the

design procedure a function is supposed to be decomposed into a combination of

several specific functions each of which is realized as a separate reversible network.

An example of a decomposition method can be found in [45] where synthesis

appears to be a reduction of the output to the form of the input.

The decomposition and composition methods can be multilevel. Observe that

the composition and decomposition methods form a very general and powerful

tool of logic synthesis. In fact, most of the algorithms can be classified as either

composition or decomposition. Using Lemma 1, one can notice the duality of the

19



Chapter 2. Basic Definitions and Literature Overview

composition and decomposition methods; a composition design procedure for a

reversible function f is a decomposition procedure for f−1.

3. Factorization methods [28]. Factorization is another powerful logic design tool.

Its idea is in choosing a Boolean operation, for instance, ? (often multiplication

or EXOR) for a function f and finding two functions f1 and f2 such that:

• f = f1 ? f2;

• for the synthesis cost metrics the cost of f is smaller than the sum of costs

of f1 and f2 plus a weight associated with the ? operation.

In general, the ? operation does not have to be a binary operation, but may be an

arbitrary multiple output function of several arguments. To our knowledge, the

factorization tool was first applied to reversible logic design in [28].

4. EXOR logic based methods [22, 59, 74, 75, 51, 42]. The Toffoli gate uses the

EXOR operation in its definition since when it is used the gate can be described

as a simplest formula. Usage of the properties of the EXOR operation such as:

• a ⊕ b = b ⊕ a;

• a ⊕ 0 = a;

• a ⊕ 1 = ā;

• a ⊕ a = 0;

allows heuristic synthesis [59] and simplification of the already created networks

[22, 74, 75, 51, 42]. For example, Iwama et al. [22] describe transformation rules

for CNOT based circuits. The input of their method is a reversible circuit of

20



Chapter 2. Basic Definitions and Literature Overview

Toffoli elements, and the output is a canonical form reversible circuit of the Tof-

foli elements. This canonical form is a straightforward reversible implementation

of PPRM (Positive Polarity Reed-Muller expansion), also known as a Zhegalkin

polynomial. Iwama et al. [22] prove that any circuit can be brought to a canonical

form by certain (reversible) operations, thus a canonical form can be transformed

to a minimal circuit. Unfortunately, they do not provide any method of simpli-

fying a circuit by the set of transformations they have, so the paper is more for

theoretical interest. In general, the EXOR operation is very hard to analyze (in

fact, the best Boolean EXOR polynomials were found only for functions of at most

6 variables [15]), therefore only heuristic approaches currently work.

5. Genetic algorithms [36, 62]. The general idea behind genetic algorithms is emu-

lation of the evolution process. First, several possible solutions or initial guesses

are coded by strings and the fitness function is defined. The fitness function rep-

resents the probability of “survival” of a string. The strings which are close to

the desired solution usually have a high fitness value. At the first part of the life

cycle, a crossing over operation is used to create the new strings out of the set

of strings available. At the second stage, mutation operations are applied. The

cycle finishes with the application of the fitness operation, which takes away some

of the strings. The new cycle begins. After several applications of this cycle (sev-

eral generations) the strings with the best fitness value are read. These genetic

algorithms have a lot of formulations and their actual implementations may vary.

Their main weakness is their extremely bad scaleability.

6. Search, backtracking, simulated annealing, etc. [29, 54, 59, 11, 12]. Backtracking

21



Chapter 2. Basic Definitions and Literature Overview

or look-ahead techniques are widely used in heuristic approximations of a desired

object. Their fundamental characteristic is in considering several steps ahead and

making a decision on a small change based on the information that this change

may result in. This technique is very expensive to use, since each vertex of the

decision tree branches and the size of the search space grows exponentially with

only a linear increase in the depth of the search. Simulated annealing is an idea

that comes from the cooling of metals. If the liquid metal is cooled very fast, the

structure of its lattice will not be regular and it will be easy to break such a metal.

If during the cooling process the metal is cooled and then slightly warmed, then

cooled and again warmed a little, and so on, the final molecular lattice of the metal

detail will be more regular, thus resulting in higher durability and robustness. The

same idea may work with circuit design: take a circuit and start expanding and

reducing it without changing its output functionality. After a certain number of

such operations, a more compact circuit may be found.

7. Group-theoretic methods including use of algebraic software such as GAP [73,

81, 85]. The set of all reversible functions forms a non-Abelian group (denoted

Sn) with respect to the composition operation. The group of all permutations of

n elements Sn is very well investigated. The first nice property of the group is

that if a reversible function f can be written as a composition of several other

permutations f = f1 ◦f2 ◦ ...◦fk, its circuit is a cascade of circuits for f1, f2, ..., fk.

So, circuit design is equivalent to the problem of finding a simple composition of

easy to build permutations. Small size generating sets can be found for the group

of all permutations, therefore producing a small and complete set of gates. In other

22



Chapter 2. Basic Definitions and Literature Overview

words, searching for new gates is possible with a group theoretic approach. In our

opinion, group theoretical approaches have not been investigated at a proper level

yet. One of the unavoidable weaknesses of this approach is its need for a reversible

specification.

8. Synthesis of regular structures such as nets [60, 61], lattices [2], and PLAs [65].

The idea behind these methods is creating conventional logic design objects out of

reversible components and then applying the known techniques of logic synthesis

to create reversible specifications. Such methods usually have a very high amount

of garbage which makes it impossible to use such designs in technologies with

the high cost of garbage, such as quantum technology. Also, one would expect

that reducing reversible synthesis to conventional non-reversible synthesis cannot

produce good results due to the different nature of the objects.

9. Spectral techniques by Miller [49, 50]. The spectrum [21] of a Boolean function is

its correlation with the vector of length 2n of all linear monotonically increasing

functions. In both of his works, Miller applied a composition approach with the

decision of choosing the gate based on the spectral complexity. If addition of a

gate to a cascade decreases the spectral complexity, then it is added. In practice,

such a gate has always existed. The method produces good results for small size

reversible functions, but it has its weaknesses: it scales badly, and requires a

reversible specification.

10. Exhaustive search [58, 74, 75]. Minimal circuits for reversible Boolean functions

of one variable are not interesting. There are only two reversible functions of one

23



Chapter 2. Basic Definitions and Literature Overview

variable: identity and NOT, which require 0 and 1 gates respectively. A search

of minimal circuits of 2 variable reversible functions was done by Perkowski in

his lecture notes [58] on reversible logic synthesis. Shende et al. [74, 75] search

exhaustively for minimal circuits of all reversible functions of 3 variables. It can be

shown that the number of reversible functions of n variables is 2n!, which for n = 4

becomes 24! = 16! = 20922789888000 ≈ 2 ∗ 1013. Even if each reversible function

requires one bit of storage, this results in 2345 Terabytes of storage, which does

not seem to be feasible with current technology. Thus, exhaustive search cannot

go any further at the present time.

11. Non-regular a-priori synthesis procedures, when the synthesis of the small circuits

is done mostly by hand [8].

2.4 Related Work

A few of the early presented works are similar to reversible logic. For example, inter-

esting results were obtained by Sasao et al. in years 1976-1979 [33, 72]. The authors

considered synthesis with multiple-output logic gates where the numbers of ones in the

input and the output are equal. These works are not quite in the area of reversible logic,

although reversibility implies equality of the number of ones in the input and output

domain. The authors considered equality of the ones for any input-output correspon-

dence (which, in some sense, can be treated as a power set of the set of reversible logic

functions).

In the year 2003 Sasao [71] has published an algorithm of n-input Boolean one output

multiple-valued function synthesis by reversible cascades. However, his mathematical

24



Chapter 2. Basic Definitions and Literature Overview

structure does not have a straightforward technological intuition, therefore these results

are likely to stay theoretical.

In the 1960s, Lupanov [37] considered general synthesis theory with k-input s-output

gates and with no fan-out restrictions. Thus, the structure of a network is a cascade,

which is absolutely the same as in the reversible case. The difference is in the manda-

tory reversibility of a single building block for the reversible case. Such a restriction

is not present in Lupanov’s work. The mentioned paper is very general and further

investigation is needed in order to be able to apply the published results to reversible

logic and its synthesis. Also, a high amount of garbage is expected to be added, which

makes it unlikely that the results will be applicable in a technology.

25



Chapter 3
Reversible Cascades with Minimal
Garbage

There are many ways of making a multiple output Boolean function reversible, each

requiring a different number of garbage outputs to be created. We start by analyzing the

conditions that affect the number of garbage outputs. Minimization of garbage outputs

may be even more important for some technologies than minimization of the number

of gates. For example, in NMR (Nuclear Magnetic Resonance) quantum technology

the maximum number of bits that can be used simultaneously for a computation is

limited by 7 [1]. In some other technologies (Trapped Ion, Neutral Atom, Solid State,

Superconducting, e-Helium, Spectral Hole Burning) introducing a garbage bit may be

possible without any restriction on the number of bits added, however it is not easy do

to [20]. In optic quantum technology garbage does not seem to cause a large problem

[20].

We further analyze the garbage amount for existing synthesis methods. A conclusion

of this analysis can be summarized in a few words: the garbage is excessive, therefore a

different approach/model should be created.

For this new model, first, and very important requirement, is few garbage outputs. What

26



Chapter 3. Reversible Cascades with Minimal Garbage

we build, in fact, has theoretically minimal number of garbage bits. Second, the model

gates should have a reasonable cost if implemented in at least one of the technologies

that support reversible logic implementations. In this thesis, a paper by Barenco et

al. [4] is used as a basis for quantum cost calculation. Unfortunately, Barenco et al.

consider only an approximation for a quantum cost calculation, where any one-qubit

and controlled-V gates [56] have a unit cost. Real quantum cost for a real technology is

different, but research laboratories who possess tools for real quantum cost calculation

do not want to share the information (partially because their quantum cost calculation

are designed specifically for their unique equipment). However, paper by Barenco et al.

gives reasonable approximation of the actual technological cost of the gates.

Finally, the results of the actual synthesis (that is, number of gates in a cascade) should

not be large in comparison to the other synthesis method results. If such a model will

be created, it may be very important for evolving further reversible logic theory and

bringing its theoretical results to the actual technology (NMR-oriented).

In our new model we consider generalization of the n-bit Toffoli gate, where input

variables can be optionally negated. Negations are technologically easy operations, and

the n-bit Toffoli gates have reasonably low (linear) cost. Thus, the model gates are

not be expensive and the second requirement on the model is satisfied. When the

set of model gates is set and geometry of the circuit is chosen (cascades in our case),

there comes the problem of synthesis: given a multiple-output Boolean function, find

a cascade of the gates from the given model which realizes it. This problem is solved

by the following procedure. First, find the minimal garbage required by the function

27



Chapter 3. Reversible Cascades with Minimal Garbage

to be able to decomposed into a set of reversible cascades (this number is independent

of the synthesis model). Then, the ways of building a circuit split into theoretical and

practical. In theoretical, a minimal reversible specification of the given multiple output

function is found and then, a reversible function is synthesized by a procedure which

always terminates with a valid circuit. This guarantees minimality of garbage, but

the number of cascades in the resulting circuit may be large. Therefore, a practical

approach was designed. It works as follows. When the amount of garbage for minimal

reversible specification is found, the corresponding number of variables is added to the

multiple output function without specifying them (“don’t cares”). Function then is

synthesized heuristically based on the idea of decreasing Hamming distance by choosing

a gate which does it best from the set of all model gates. Such approach guarantees

minimality of garbage and is capable of producing small circuits. Theoretically, this

practical approach may never create a valid circuit (keep working forever). However, it

did converge for all the examples that we tried.

3.1 Minimal Garbage

Before we analyze the garbage in other models, we need to show a formula to calculate

the minimum amount of garbage.

Theorem 1. For an (n, k) function the minimum amount of garbage required to make it

reversible is dlog(M)e, where M is the maximum of number of times an output pattern

is repeated in the truth table.

Proof. The output of a reversible function is a permutation of its input. Therefore,

the obstacle in having a multiple output function being reversible is that some output

28



Chapter 3. Reversible Cascades with Minimal Garbage

pattern appears more than once. In order to separate these outputs we have to introduce

new inputs to assign additional bits to the output vector. If an output (o1, o2, ..., ok)

has the largest occurrence in the output vector and it appears M times, then in order

to separate different occurrences of it we need to introduce dlog(M)e new output bits.

dlog(M)e new bits will be capable of creating 2dlog(M)e ≥ M new patterns. And, since

the output (o1, o2, ..., ok) had the largest occurrence among all other outputs, all other

outputs can be easily separated from one another by means of dlog(M)e bits. ¥

3.1.1 Analysis of Garbage in Existing Methods

In this subsection we analyze garbage in proposed designs. Several of the proposed

design methods (for example [29, 74, 75], and [49]) start with a reversible function. The

garbage is introduced during a preprocessing phase, during which the function is made

reversible. Note that there are many ways in which the value of the garbage outputs can

be set. Different settings of these variables will lead to results with varying complexity.

Mishchenko and Perkowski [54] suggest a cascade reversible design, called reversible

wave cascade. The design is shown in Fig. 3.1A. For the purposes of garbage analysis

here we concentrate only on the number of garbage outputs added. Trivial analysis of

the number of garbage bits shows that in the proposed model the garbage size will be

(n+M), where n is the number of inputs of the multiple output function f and M is the

number of vertical cascades in the particular realization of a function. However, in an

e-mail correspondence Perkowski explained that the zero constant input on the top can

be ignored (which is not trivial from the paper), thus each vertical cascade itself does

not introduce the new garbage. With this explanation, the garbage of Mishchenko and

29



Chapter 3. Reversible Cascades with Minimal Garbage

0

...

0

...

0

...

...

...

...

...

1

x

x

x

x1

2

3

n

F

x xx

x1

2 3 n

1

1 1 1

1

1

...

...

... ...

f f f1 2 k

0 0 0

A.  Reversible wave cascades B.  RPGA

Figure 3.1: Reversible design methods

Perkowski [54] method becomes n, the number of inputs of the function to be realized.

In Table 3.1 this (updated) garbage calculation is shown in brackets.

Perkowski et al. [60] suggest a regular structure for a symmetric (n, k) function reversible

design, called RPGA (Fig. 3.1B.). The synthesis for a symmetric function, as it is easy

to see from the structure Fig. 3.1B, will require garbage equal to the sum of the number

of inputs and the number of gates used (additional wires are reserved for the outputs),

which gives

n +
n(n − 1)

2
=

n(n + 1)
2

.

Khan and Perkowski [28, 27] propose a method which has a similar structure to the one

described in [54]. The synthesis and garbage results for these methods are essentially

the same, although later work has, on average, worse results both in the number of gates

and the amount of garbage.

We calculated the number of garbage bits in the proposed model for some benchmark

30



Chapter 3. Reversible Cascades with Minimal Garbage

functions. The following table summarizes the result for the methods suggested in

[54, 60, 28] on some benchmark functions used in [54]. The first column shows the

name in out RWCG RPGAG KPG max out occur min garbage

5xp1 7 10 38(7) > 28 53 1 0

9sym 9 1 60(9) 45 60 420 9

b12 15 9 43(15) > 120 41 6944 13

clip 9 5 72(9) > 45 N/A 37 6

in7 26 10 61(26) > 351 N/A 11651840 24

rd53 5 3 19(5) 15 19 10 4

rd73 7 3 43(7) 28 47 35 6

rd84 8 4 66(8) 36 68 70 7

sao2 10 4 38(10) > 55 52 513 10

t481 16 1 29(16) > 136 28 42016 16

vg2 25 8 209(25) > 325 217 12713984 24

Table 3.1: Experimental results

name of the function, the second and third are the number of input and output bits

respectively. The fourth column is the wave cascade method garbage amount. The fifth

column is occupied by the number of garbage bits for the RPGA method given by the

formula described above. Since every non-symmetric function can be made symmetric

by adding new outputs, the procedure of making the function reversible can be done

prior to the usage of the algorithm as Perkowski et al. [60] suggest. In general, such

a procedure requires many additional inputs, each resulting in a high garbage price for

31



Chapter 3. Reversible Cascades with Minimal Garbage

their introduction. In cases where the function is not symmetric we use the sign “>”

to represent that the actual garbage amount is higher. Numbers in the sixth column

represent the garbage cost of synthesizing the Khan family gates. The seventh column

shows the maximal output occurrence, the logarithm of which added to the function

input size forms the last, eighth column, which shows the minimal garbage to be added

to make the corresponding function reversible.

We conclude this section with the observation that all three regular methods analyzed

have garbage that is far from the theoretical minimum. In the next section we introduce

a new regular structure with better garbage characteristics; in fact, the amount of

garbage is theoretically minimal.

3.2 A New Structure: Reversible Cascades with Minimal
Garbage

3.2.1 Definition of the Model

We consider the set of model gates which is a generalization of the generalized Tof-

foli gate. We use the same pictorial representation, and use (n, n)-gates where each

horizontal line is one of the following 4 types (Fig. 3.2):

xi
Type 1.

xi
Type 2.

xi
Type 3.

xi
Type 4.

Figure 3.2: Horizontal line types.

1. Target line. Each gate should have only one target line appearing at some position

j.

32



Chapter 3. Reversible Cascades with Minimal Garbage

2. Positive control line. If the input on this line is zero, the value of the target

line will not change. If the input is one, the other positive/negative control lines

determine whether the value on the target line is negated.

3. Negative control line. If the input on this line is one, the value of the target line

will not change. If the input is zero, the remaining positive/negative control lines

determine whether the value on the target line is negated.

4. Don’t care line. The value on this line does not affect any output.

The vertical line intersects horizontal lines of types 1-3. In other words, for the given set

of inputs {x1, x2, ..., xn}, the subset of variables {xi1 , xi2 , ..., xik}, integer j ∈ {1, 2, ..., n},

j 6= i1, j 6= i2, ..., j 6= ik and set of 1 ≤ k < n Boolean numbers {σ1, σ2, ..., σk} the family

consists of gates that leave all the bits unchanged, except for the j-th bit, whose value

is xj ⊕ xσ1
i1

xσ2
i2

...xσk
ik

. If the term xσ1
i1

xσ2
i2

...xσk
ik

consists of zero variables, we assign it a

value of 1.

The graphical representation of a gate is shown in Fig. 3.3.

... ...

x
x
x
x
x

xi

i

i1

4

i

i

i

2

3

5

Type 4.

n

Type 4.
Type 2.

Type 3.

Type 4.

Type 1.

Figure 3.3: A single gate

The network we want to build is a cascade consisting of the set of described gates.

33



Chapter 3. Reversible Cascades with Minimal Garbage

Example 6. Take a reversible function (x1, x2, x3) → (x1⊕ x̄2x3, x̄2, x1⊕x2x3) (output

is written as a set of minimal length EXOR polynomials). The fact that the function is

reversible is easy to see from its truth table below. A possible implementation is shown

x1 x2 x3 f1 f2 f3

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 0 0

Table 3.2: Truth table

in (Fig. 3.4).

.
.
.

x

x

x

1

2

3

Q QQ 4,1,4 2,4,11,3,2

Figure 3.4: Circuit

Further, we refer to this model as RCMG (Reversible Cascades with Minimal Garbage).

34



Chapter 3. Reversible Cascades with Minimal Garbage

3.2.2 Quantum Cost Analysis

Quantum technology is one of several technologies that uses reversible gates and com-

putations. So, it is interesting to analyze the quantum cost of the introduced model to

see whether and how it differs from the costs of the gates used by other models.

Quantum transformations are necessarily reversible, this follows from the only condition

used to determine whether a transformation can be accomplished: it must be a unitary

operator on the set of quantum state amplitudes [56]. This condition does not mention

how difficult it is to realize a given unitary transformation; it only states the theoretical

possibility.

In conjunction with reversible logic synthesis, the following transformations can be

realized as one gate with unit cost:

• NOT gate (also known as quantum X gate). For Boolean entities it acts as the

conventional NOT gate.

• CNOT gate, which acts as TOF (x1; x2). In other words, in the Boolean case it

flips x2 iff x1 = 1.

The set of gates NOT, CNOT is not complete since they only realize linear functions.

Thus, in order to make the set complete (as a set of Boolean functions), the Toffoli

gate [82], TOF (x1, x2; x3) was added. Unfortunately, this gate cannot be realized as a

single elementary quantum operation. Quantum realization of a minimal cost of 5 was

found, and it seems likely that this is the minimum. The more controls a generalized

Toffoli gate has, the larger its cost in terms of the number of elementary quantum

transformations required.

35



Chapter 3. Reversible Cascades with Minimal Garbage

The problem of building quantum blocks to realize Toffoli gates was investigated by

many authors. For a comparison of quantum costs of Toffoli and RCMG model gates

we will use results of [4]. For other implementations the costs can easily be recalculated.

Definition 6. The quantum cost of a gate G, |G| is the number of elementary quantum

operations required to realize the function given by G.

No particular realization of a gate (for most of the gates) was proven to be optimal, so

the numeric value of the quantum cost may change as soon as better gate realizations

are proposed.

To analyze the quantum cost of an RCMG model gate, we should start with its simpli-

fication, and then compare its cost to the cost of a generalized Toffoli gate. Note that

an RCMG model gate can be considered as a generalized Toffoli gate and a set of NOT

operations. First, we should try to minimize the number of NOTs in the circuit.

The following method of eliminating NOT gates from the structure can be used. In some

designs, like the one shown in Fig. 3.3, two NOT gates may be adjacent. Therefore,

they are redundant. For the example from Fig. 3.4, pruning such a NOT gate gives

the design shown in Fig. 3.5. In general, we divide any gate from the set Q into three

.
.
.

x

x

x

1

2

3

Figure 3.5: Pruned circuit

36



Chapter 3. Reversible Cascades with Minimal Garbage

logical parts:

• First NOT array: the set of all NOT gates before the vertical line.

• AND-EXOR array (generalized Toffoli gate): the set of all AND and EXOR gates

on the vertical line.

• Last NOT array: the set of all remaining NOT gates.

The general rule for pruning NOT gates is as follows:

1. Define TEMP array as an array of NOT gates of length n, such that there is at

most one NOT gate at each place. Initially no NOT gate is present in the TEMP

array.

2. Starting from the beginning of a particular network, keep NOTs from the first

NOT array of a first Q1 ∈ Q gate together with the next AND-EXOR array and

call this structure a block. The last NOT array of gate Q1 is called TEMP. If Q1

was one of x̄1, x̄2, ..., x̄n, add it to TEMP.

3. Take the next gate Q2 ∈ Q from the network. If Q2 6∈ {x̄1, x̄2, ..., x̄n} update the

TEMP array by computing its exclusive or with the first NOT array of Q2 that

is, keep the modulo-2 sum of number of NOTs at each wire. If the NOT gate

from the TEMP array meets a target line or a “don’t care” line, it can be passed

through the gate, so delete these occurrences from the TEMP array and add them

to the output array of the Q2 gate. Unite the TEMP array with the AND-EXOR

array (create a new block), let Q1 := Q2 and go to step 2. If the Q2 gate was

one of gates x̄1, x̄2, ..., x̄n, update TEMP array by computing the “exclusive or”

of TEMP with Q2, let Q1 := Q2 and go to step 2.

37



Chapter 3. Reversible Cascades with Minimal Garbage

4. When the network is over, create the last block by putting the TEMP array into

it.

It is easy to see that the network consisting of the described blocks is equivalent to

the network built from the gates Q. The number of blocks of the pruned network is

the number of gates of the initial Q-network minus the number of gates from the set

{x̄1, x̄2, ..., x̄n} of this Q-network plus the TEMP array. Therefore, both the set of NOT

gates and the length of the structure can only be decreased.

The new gate will consist of the NOT array in front of the Toffoli gate, where the NOTs

may appear only in front of the control lines, which makes it easy to compare the costs.

The result of this comparison is summarized in Table 3.3. It is important to notice that

the cost of the gate in the new model differs from the cost of the widely used generalized

Toffoli gate only marginally. For example, the quantum cost of a Khan gate [28, 27]

with k controls is equivalent to the cost of the two Toffoli gates, which, in a rough

calculation, should multiply the cost of a circuit by 2 when compared to the synthesis

results of RCMG model.

Note that the NOT pruning procedure is a post processing, which does not affect the

way the synthesis will be done.

3.2.3 Theoretical Synthesis

In order to formulate and prove some results we need to enumerate the set of all gates

considered in the structure. Every gate can be uniquely specified by describing the

set of horizontal lines. From now on, we will use the notation Qa1,a2,...,an for the gate

consisting of wire types a1, a2, ..., an in order of appearance from top to bottom.

38



Chapter 3. Reversible Cascades with Minimal Garbage

Number of garbage Toffoli RCMG gate Relative Average

controls gate cost cost ≤ cost ≤ rel. cost

2 0 5 7 1.4 1.2

3 0 13 16 1.231 1.115

4 0 29 33 1.138 1.069

5 0 61 66 1.082 1.041

6 0 125 131 1.048 1.024

6 4 112 118 1.054 1.027

7 0 253 260 1.028 1.014

7 3 124 131 1.056 1.028

8 0 509 517 1.016 1.008

8 4 172 180 1.047 1.023

Table 3.3: Gate cost comparison

Lemma 2. The set of all possible gates in the proposed structure consists of n ∗ 3n−1

elements.

Proof. Distribute lines among the n places we have to fill in order to define a gate.

Initially, there are n places for the target line; after assigning it, there are (n−1) places

left to be occupied by positive, negative and “don’t care” lines to be placed in any

combination. The number of ways to put them, therefore, is 3n−1. This gives a total of

n ∗ 3n−1 different gates. ¥

39



Chapter 3. Reversible Cascades with Minimal Garbage

Theorem 2. (lower bound) There exists a reversible function that requires at least

2n

ln 3 + o(2n) gates.

Proof. The number of all reversible functions of n variables is 2n! (as the number of

permutations of 2n elements). The number of different gates is n3n−1. Assuming that

taking some of the gates and building networks with different orders produces different

reversible functions (which is not always true, since, for instance, the gate Q1,4,4,...,4, or

x̄1 placed two times at a row does nothing), we get a complexity for the hardest function

of logn3n−1(2n!). This means that there exists a reversible function which can be realized

with a complexity not less than logn3n−1(2n!). Using the formula ln(k!) = k ln k−k+o(k)

(which can be derived from Stirling’s formula) for k = 2n write:

logn3n−1(2n!) =
ln(2n!)

ln(n3n−1)
=

2n ln 2n − 2n + o(2n)
ln(3n−1) + ln(n)

=
n2n − 2n + o(2n)

(n − 1) ln 3 + ln(n)

=
(n − 1)2n + o(2n)
(n − 1) ln 3 + ln(n)

=
2n + o(2n/n)

ln 3 +
ln(n)
n − 1

=
2n

ln 3
+ o(2n).

¥

Theorem 3. (upper bound) Every reversible function can be realized with no more

than n2n gates.

Proof. We use an idea similar to bubble sorting in our constructive proof.

First, note that the set of gates that do not have a “don’t care” line, i.e. the set

Q′ = {qa1,a2,...,an |a1, a2, ..., an ∈ {1, 2, 3}, and there exists a unique ai = 1} interchange

the two output strings (3− a1, 3− a2, ..., 3− ai−1, x, 3− ai+1, ..., 3− an) and (3− a1, 3−

a2, ..., 3−ai−1, x̄, 3−ai+1, ..., 3−an) in the right part of the truth table (natural numbers

40



Chapter 3. Reversible Cascades with Minimal Garbage

0 and 1 should be treated as Boolean 0 and 1 respectively). This also means that a

single gate changes the two Hamming distance-one strings in the output part of the

truth table.

Second, we define a special total order on the set Q′ of gates. In this order:

• strings with a fewer number of ones precede (denoted as ≺) those with a larger

number of ones;

• strings with an equal number of ones are arranged in lexicographical order.

In other words, the order is as follows: (0, ..., 0, 0) ≺ (0, ..., 0, 1) ≺ (0, ..., 0, 1, 0) ≺

... ≺ (1, 0, ..., 0, 0) ≺ (0, ..., 0, 1, 1) ≺ (0, ..., 0, 1, 0, 1) ≺ ... ≺ (1, 0, ..., 0, 1) ≺ ... ≺

(1, 1, ..., 1, 0) ≺ (1, ..., 1, 1). We will also use standard order on Boolean constants:

0 ≺ 1.

The method is to copy the first part of the truth table to the second, which corresponds

to the situation when no network is built yet, therefore the output is equal to the input.

Then, apply operations defined by the gates from the set Q′ to bring each string to its

place, starting from the string with the lowest order and finishing with the string with

the highest order.

Take any string (a1, a2, ..., an) and bring it to its place. If the string is already at its place,

we are done. If it is not, then since we are moving the strings in ascending order, its place

is occupied by a string of higher order. This is true, since by induction the strings of

lower order are already at their places and no string is repeated. Therefore, the place of

(a1, a2, ..., an) is occupied by a (b1, b2, ..., bn). Compose string (a1∨b1, a2∨b2, ..., an∨bn).

41



Chapter 3. Reversible Cascades with Minimal Garbage

Step 1: increase the order of the target. Take the string (b1, b2, ..., bn), find

minimal i, such that ai = 1 and bi = 0 and exchange distance-one strings (b1, b2, ..., bn)

and (a1 ∨ b1, a2 ∨ b2, ..., ai ∨ bi, bi+1, ..., bn). Now, the place where we wanted to see

(a1, a2, ..., an) is occupied by Inc1 = (a1 ∨ b1, a2 ∨ b2, ..., ai ∨ bi, bi+1, ..., bn). Now search

for the smallest j such that j > i, aj = 1 and bj = 0 and when it is found, exchange

Inc1 = (a1 ∨ b1, a2 ∨ b2, ..., ai ∨ bi, bi+1, ..., bn) with higher order string Inc2 = (a1 ∨

b1, a2 ∨ b2, ..., aj ∨ bj , bj+1, ..., bn). Continue these changes until we have string Inck =

(a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn) at the desired position of (a1, a2, ..., an).

Step 2: decrease the order of the source. Take string (a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn),

find minimal i, such that ai = 0 and ai ∨ bi = 1 and exchange distance-one strings

(a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn) and (a1, a2, ..., ai, ai+1 ∨ bi+1, ..., an ∨ bn). If the strings

Dec1 = (a1, a2, ..., ai, ai+1 ∨ bi+1, ..., an ∨ bn) and (a1, a2, ..., an) are not equal (otherwise

we are done), (a1, a2, ..., an) ≺ Dec1 and there exists j > i, such that aj = 0 and

aj ∨ bj = 1. In this case exchange strings (a1, a2, ..., ai, ai+1 ∨ bi+1, ..., an ∨ bn) and

(a1, a2, ..., ai, aj+1 ∨ bj+1, ..., an ∨ bn) and call last Dec2. Again, in case if Dec2 6=

(a1, a2, ..., an), keep decreasing the order by the suggested method until we get Decs =

(a1, a2, ..., an) and then we are done - (a1, a2, ..., an) is at its place.

Note that in order to bring (a1, a2, ..., an) to its place, we did not touch strings with

lower order, so they will stay at their correct places. Second, the number of steps (gates)

required to bring any (a1, a2, ..., an) to its correct place equals the sum of the “increase

order” and “decrease order” steps done, which is not more than n. There are 2n binary

strings, so the method requires at most n ∗ 2n steps. ¥

42



Chapter 3. Reversible Cascades with Minimal Garbage

Note that the constructive proof of this theorem also provides the following statement:

any reversible function can be realized in terms of cascades of the gates from set Q.

Since the functions are reversible, the suggested method can be used in both directions:

• forward: as it is described in the theorem;

• backwards: start with the output part of the truth table and, using the same

method, bring it to the first part (where all the Binary n-tuples are ordered lexi-

cographically). The resulting network in this case will realize the inverse permu-

tation f−1. But, in order to get a network for the function f , it is enough to run

the obtained network for f−1 in reverse direction.

Example 7. We illustrate the proof of the theorem on a (3, 3) function f with the output

vector (0, 1, 2, 4, 3, 5, 6, 7). This function was introduced by Miller and Perkowski, and

is used in [49] as benchmark function. Later on, it was named the Miller gate. Here we

use the backwards method.

000
001
010

011
100

101
110
111

Increase
order.

000
001
010

011

100

101
110

111

Decrease
order.

000
001
010

011

100
101

110
111

Decrease
order.

000
001
010

011

101
100

110
111

Increase
order.

000
001
010

011

111
100

110
101

Decrease
order.

000
001
010

111

011
100

110
101

Figure 3.6: Building a network

• The first three outputs (0, 0, 0), (0, 0, 1), and (0, 1, 0) are at the correct place.

43



Chapter 3. Reversible Cascades with Minimal Garbage

• Output (1, 0, 0) (color it gray), which is not in its place, which is occupied by

(0, 1, 1) (where the left arrow shows). In order to bring (1, 0, 0) to its place, run

steps 1 and 2 from the algorithm.

– Increase order: interchange (0, 1, 1) with (1, 1, 1) (shown by an arrow from

left side).

– Decrease order: interchange (1, 1, 1) with (1, 0, 1).

– Decrease order: now we can bring (1, 0, 0) to its place by changing it with

(1, 0, 1).

Note that in order to bring (1, 0, 0) to its place we touched strings with the higher

order only ((0, 1, 1), (1, 1, 1) and (1, 0, 1)).

• Take the next element, (0, 1, 1). It is not in its place, so we color it gray, find its

desired place and put an arrow from right pointing the target place.

– Increase order: interchange (1, 0, 1) with (1, 1, 1) (shown by an arrow from

left side).

– Decrease order: interchange (1, 1, 1) with (0, 1, 1) to put the output string on

its place.

Again, no lower order strings were used: (0, 1, 1) ≺ (1, 0, 1) ≺ (1, 1, 1).

• Strings (1, 0, 1), (1, 1, 0) and (1, 1, 1) are at their place, so the network is complete.

In this case the method gave an optimal network. However, we would not expect this in

general, since this method only uses a small subset of the gates available and the used

gates perform a “small” change (thus, such an “easy” transformation like NOT will be

44



Chapter 3. Reversible Cascades with Minimal Garbage

realized by a large circuit). In addition, the theoretical method uses very wide gates,

thus the quantum complexity of the resulting circuit is expected to be very high. To

build a better circuits than the theoretical algorithm possibly can, we use a different

synthesis approach.

3.3 Heuristic Synthesis

Let Q be the set of all possible gates with n inputs. We have shown that |Q| = n3n−1.

Given the model for function implementation, the problem of synthesis is to write a

function in terms of a sequence of gates from the set Q.

We solve this problem using an incremental approach. That is, we repeatedly choose a

gate that will bring us closer to the desired function. In order to do this we need to be

able to measure how close two functions are, and we call this the distance between two

functions. We then choose the gate that will decrease the distance between the realized

function and the target function. We continue to do this until the distance is zero.

To give a formal definition of the distance, we need the following:

Definition 7. A partial realization of f is any function f ′ of the same set of variables.

Definition 8. The distance between a reversible function f and its partial realization

f ′ is the Hamming distance between the output parts of their truth tables.

Definition 9. The error of the function f is its distance to the identity function.

45



Chapter 3. Reversible Cascades with Minimal Garbage

Example 8. The reversible function f(x1, x2, x3) = (x1 ⊕ x̄2x3, x̄2, x1 ⊕ x2x3) whose

truth table is shown in Table 3.4 has 14 errors (shown in bold.)

x1 x2 x3 f1 f2 f3

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 0 0

Table 3.4: Truth table of f(x1, x2, x3) = (x1 ⊕ x̄2x3, x̄2, x1 ⊕ x2x3)

Example 9. A partial realization f ′(x1, x2, x3) = (x1 ⊕ x̄2x3, x2, x3) of the reversible

function from the previous example is at distance 12 from the target function f (see

Table 3.5.)

The previous two examples had an even number of error bits, and the number of error

1-bits was equal to the number of error 0-bits. This result holds in general as shown in

the following lemma.

Lemma 3. The error of a reversible function is even. Among the error bits the number

of those equal to one is the same as the number equal to zero.

Proof. To see that this is correct, we can write down the truth table of a reversible

46



Chapter 3. Reversible Cascades with Minimal Garbage

f1 f2 f3 f ′
1 f ′

2 f ′
3

0 1 0 0 0 0

1 1 0 1 0 1

0 0 0 0 1 0

0 0 1 0 1 1

1 1 1 1 0 0

0 1 1 0 0 1

1 0 1 1 1 0

1 0 0 1 1 1

Table 3.5: Distance between f and its partial realization

function and consider a column in the output part. Suppose the error in this column

occurs in k 0 bits and s 1 bits. Since the function is reversible, each column of the

output part of the truth table contains 2n−1 zero bits and 2n−1 one bits. Therefore, the

chosen column has (2n−1 − k) zeros and (2n−1 − s) ones. Now, if we flip all the error

bits of the function, it is the n-bit identity function (which also is reversible). From

the point of view of number of zeros and ones, this operation adds s zeros and k ones

in the considered column. In the modified truth table, the numbers of zeros and ones

become (2n−1 − k + s) and (2n−1 − s + k) respectively. Since the function is reversible,

the number of zeros as well as the number of ones should remain 2n−1, which gives the

following set of equations:

2n−1 − s + k = 2n−1 − k + s = 2n−1

for which the only solution is k = s. Therefore, the total number of errors in this column

47



Chapter 3. Reversible Cascades with Minimal Garbage

is 2k, an even number. The same proof can be given for each of n output columns, thus

the total error is an even number. ¥

Note that we actually proved a stronger statement, namely: the error is an even number

in every output column. The other consequence we can derive is that the distance

between a function and its partial implementation is always an even number. It is also

not hard to see that the number of ones that are out of place is the same as the number

of zeros that are out of place.

Consider the following simple idea for a synthesis method, which it will be used later as

a basis for the heuristic synthesis algorithm we build: start with identity function, find

a gate from the set Q such that when added to the partial realization f ′ will decrease

the distance to f . Sometimes there is no gate that decreases the distance to f . But at

any time, it is possible to choose a gate that at least does not increase the distance to

f . For an illustration see Example 10.

Example 10. A reversible function with specification (x, y) → (ȳ, x̄) and the identity

function, have this property: no gate will improve the distance function.

We use the word step to denote the addition of a gate to a cascade network. Therefore,

the number of steps made is the number of gates in the network. A step is called

positive (negative) if the distance increases (decreases).

Lemma 4. (existence of non-positive step) If the distance between f and f ′ is

greater than zero (the partial realization f ′ is not the function f itself yet), there exists

a gate in Q that transforms f ′ to f ′′ such that the distance between f and f ′′ is less

48



Chapter 3. Reversible Cascades with Minimal Garbage

than or equal to the distance between f and f ′.

Proof. Let (a1, a2, ..., an−1, X) be a string in the output part of the truth table of

some partial realization with an error in bit X (which is assumed to be on the n-th place

without loss of generality). Interchange it with the distance-1 string (a1, a2, ..., an−1, an),

where an = X̄. To do so use the gate made of line types 3 − a1, 3 − a2, ..., 3 − an−1, 1

correspondingly, where the Boolean numbers a1, a2, ..., an−1 are treated as natural num-

bers. It is easy to see that the gate with this specification exchanges the named strings

and does nothing to all others. Errors in the first (n-1) bits stay the same, but for the

last bit the following table shows all the possible ways this interchange could happen

(Table 3.6). So, we get a zero step or a negative step. ¥

X value an value an was correct? error was error becomes step is

0 1 Y 1 1 0

1 0 Y 1 1 0

0 1 N 2 0 -2

1 0 N 2 0 -2

Table 3.6: Effect of changing one bit

Here the question arises: is it possible to realize the function without positive steps?

The answer is yes, and the design method is given in Theorem 3. The proof for this

theorem is constructive and suggests a design procedure. The only thing that is left to

prove is that the steps “Increase order” and “Decrease order” are non-positive. Indeed,

the essence of each of these steps is to put a correct bit (0 for “Increase order” and 1 for

49



Chapter 3. Reversible Cascades with Minimal Garbage

“Decrease order” steps) in its place. The Lemma above states that each of these steps

are non-positive. This fact allows us to formulate the following result and use it as a

core to create a synthesis algorithm.

Theorem 4. There exists a synthesis method that adds a gate only if it performs a

non-positive change to the distance function. Such a method converges for any reversible

function.

3.3.1 The Algorithm

The actual implementation of the algorithm works as follows:

1. Define the number MaxMoves (which in actual implementations was taken in the

range of 50-500).

2. While the distance is greater than zero from among all Q gates, find the best

MaxMoves steps. For each of them, find the best second step. After this step

there are MaxMoves pairs of gates in the list. Search for the sequence of 2 gates

that maximally improves (minimizes) the distance between the existing partial

realization and the function itself. If such a pair is unique, attach the first gate to

the cascade and go back to 2.

3. If two or more pairs of gates produce the same improvement to the distance,

activate TieBreaker. TieBreaker is the function that finds the third best gate

for each pair, and if one of the pairs has a better third gate (that minimizes the

distance function), chooses this pair. Then, attach the first gate of the chosen pair

to the cascade and go to 2.

50



Chapter 3. Reversible Cascades with Minimal Garbage

4. If TieBreaker was not able to find a pair where the third step gives a better

improvement, then take the pair that gives the best improvement for the first

gate. Go to 2.

5. If the gate to be assigned is not chosen yet, take the first pair of the gates among

those that give the best improvement (from the list produced at step 2). Go to 2.

Theorem 4 states that the distance will not be increased, because there is always a zero

step available. In general such a method is not guaranteed to converge, although it does

converge for every function we tried. We use this algorithm instead of the theoretical

one that is guaranteed to converge, since the latter is likely to give a larger number of

steps, because the distance can only decrease by at most two.

An (n, n) reversible function (f1, f2, ..., fn) in general can be realized by one of the n!

possible designs. This happens if we assume that the order of the output functions does

not matter. We can enumerate the outputs in any order, and thusly realize different

functions. In our case, for the larger functions (starting from (7,7) functions and larger)

we used a heuristic for the output permutation: we took the output permutation that

gave the smallest error for the function or its complement. For the functions with a

smaller number of variables, we are able to run all the possible permutations and choose

the best result.

Example 11. Consider the function with specification (x, y) → (ȳ, x̄) from Example 10.

Without the output permutation it will take us at least three gates to build a network

for it: the first step is a zero step, as was shown in the previous example. Then, we

have 2 errors in each of two output bits. This will require at least 2 more gates, since

51



Chapter 3. Reversible Cascades with Minimal Garbage

each of them in the best case scenario can take care of at most one output bit at a time.

So, the theoretical minimum is 3 gates (in fact, our algorithm terminates in 3 steps). A

function (x, y) → (ȳ, x̄) with permuted outputs (that is, (x, y) → (x̄, ȳ)) can be easily

realized with two steps, namely a negation of first and second input bits.

3.3.2 Multiple Output Functions

Using the results of Theorem 1 we are able to add the minimal number of garbage bits

in order to make a multiple output function reversible. The benefit in realization of a

multiple output function is that we do not care about some of the outputs; the actual

values of the garbage bits are of no interest. This allows us to:

1. Have a smaller error and therefore, in general, have less steps to make in order to

create a network.

2. Have more freedom in changing “don’t care” outputs. There is no risk in adding

an error to a “don’t care” output. We minimize the distance to the target outputs

only.

3.3.3 Benchmarks

Due to the similarity of gates in the set Q and the generalized Toffoli gates, we introduce

the following notation. The gate Qa1,a2,...,an is denoted as TOF(xσ1
i1

, xσ2
i2

, ..., x
σs−1

is−1
; y),

which is constructed as follows:

• Write “TOF(”.

• For each ai

– if ai = 2 write “xi”;

52



Chapter 3. Reversible Cascades with Minimal Garbage

– if ai = 3 write “x̄i”;

– otherwise do nothing.

Separate different entities with commas.

• Write “; xj” at the very end, where j is defined such that aj = 1. By the definition

of Q gate such j will be unique. Finish with the closing bracket “)”.

For example, gate Q3,1,4,2,4 can also be written as TOF(x̄1, x4; x2). This form of writing

the gate is better for application use since it makes sense out of the structure of a gate.

The old form was used for the simplicity of formulas in mathematical proofs.

In this section we compare our algorithm to the previous algorithms. Unfortunately,

some authors do not give enough information to allow us to do so. For example, authors

of [29] suggest an approach for reversible cascade synthesis of one output functions.

They do not provide the experimental results, nor the algorithm, therefore we can not

compare those results to ours. Shende et al. [74, 75] provide the optimal synthesis

method for the (3, 3) reversible functions only. Work [60] is concentrated on reversible

synthesis of symmetric functions, which is less general than our approach. Iwama et al.

[22] base their method on circuit transforms, but they do not provide any experimental

data.

We compare our results with those of three systematic methods: one by Miller [49],

another by Mishchenko and Perkowski [54], and a third by Khan and Perkowski [28, 27].

Miller [49] suggests a reversible function synthesis that starts with a reversible specifi-

cation only. He uses a spectral technique to find the best gate to be added in terms of

53



Chapter 3. Reversible Cascades with Minimal Garbage

gates (NOT, CNOT, Toffoli3, and Toffoli4) and adds the gate in a cascade-like manner.

This method has been modified in [50] to synthesize networks of the presented RCMG

model. In his method the output function is required to appear as a set of actual outputs

or their negations. Miller also used a postprocessing process to simplify the network

(the results of simplification are given in brackets for the cases for which the process

was done). The results from all examples in [49] compared to ours are summarized in

Table 3.7, where name is the name of the benchmark function, in/out is the number

of its inputs/outputs, Miller is the number of gates for Miller’s method, and We is the

number of gates for the proposed synthesis method.

name in/out Miller We

ex1 3 3 3

ex2 3 5 5

ex3 4 7 7

ex4 3 4 3

ex5 4 5 4

ex6 4 12(10) 7

ex7 4 9(7) 7

Table 3.7: Comparison with Miller’s results

Example 12. Since our method gives a better result for ex4, here follows our net-

work for this function. Ex4 is a (4, 4) reversible function, given as the truth vec-

tor [3, 11, 2, 10, 0, 7, 1, 6, 15, 8, 14, 9, 13, 5, 12, 4] whose binary representation gives the ac-

tual Boolean values. Using the output permutation (2, 1, 3, 4), the scheme consists of

54



Chapter 3. Reversible Cascades with Minimal Garbage

the following seven gates: TOF(b) TOF(c̄, d; a) TOF(a, d; c) TOF(a, c̄; d) TOF(c̄, d̄; a)

TOF(ā, d̄; c) TOF(ā, c̄; b) for the names of variables a, b, c and d. In comparison, Miller’s

synthesized network is: TOF(d) TOF(b) TOF(b, c; d) TOF(b) TOF(a, c; d) TOF(c)

TOF(a, b; d) TOF(a; c) TOF(b, c; a) TOF(b; c) TOF(a; c) TOF(a; b). This network was

transformed to the following: TOF(d) TOF(b) TOF(b, c; d) TOF(b) TOF(a, c; d) TOF(c)

TOF(a, b; d) FRE(b, c; a) TOF(b; c) TOF(a; b), where FRE(b, c; a) is the Fredkin gate.

Mishchenko and Perkowski [54] suggest a reversible wave cascade method and evaluate

the complexity of some benchmark functions in terms of the number of these cascades.

They do not provide the actual design for the described method, but instead they give

upper bounds. We compare their results to ours and summarize the comparison in Table

3.8. Although our results are not always better than those of Mishchenko and Perkowski

in terms of the total complexity, the important factor, the number of garbage bits, is

definitely improved using our approach. We were not able to compare the results for

functions with a larger number of inputs/outputs due to the huge amount of work our

algorithm needs to find a network representing such a function. In this table, the first

Function Garbage Cost

name in out Mishchenko, Perkowski We Mishchenko, Perkowski We

5xp1 7 10 38 0 31 43

9sym 9 1 56 9 52 60

rd53 5 3 19 4 14 13

rd73 7 3 43 6 36 36

Table 3.8: Comparison with Perkowski’s results

55



Chapter 3. Reversible Cascades with Minimal Garbage

three columns describe the function: the name, number of input bits, and number of out-

put bits of a benchmark function. First pair of columns Mishchenko-Perkowski and

We lists the number of garbage outputs from the result of Mishchenko and Perkowski’s

method and our method; the remaining pair of columns compares the numbers of gates

in designs of the benchmark functions for Mishchenko and Perkowski’s method and our

proposed design respectively. Our method does not always find the realization with the

minimum number of gates, but if we consider the cost of a benchmark function to be

the sum of the number of gates and the garbage, then our method gives a better result.

Results shown by Khan [28, 27] are weaker (although newer) than the results in [54], but

for the sake of completeness, we show the comparison in the table below. Note that our

results are better in all cases except for the 9sym function. However, this is a weakness

of the synthesis method we have, not the model, since every single output non-balanced

function can be realized with the cost of the number of terms in its minimal EXOR

polynomial as is shown in Section 3.4 of this chapter.

Function Garbage Cost

name in out Khan We Khan We

5xp1 7 10 63 0 56 49

9sym 9 1 60 9 52 56

rd53 5 3 19 4 17 13

rd73 7 3 47 6 43 36

Table 3.9: Comparison with Khan’s results

56



Chapter 3. Reversible Cascades with Minimal Garbage

It is also interesting to notice that the benchmark rd53 can be realized in terms of

an ESOP with 14 terms as the result of Perkowski and Mishchenko states. For our

method this number is 13, which shows that the proposed method can do better than

EXOR minimization can. The following example contains one more function for which

our method is more efficient, compared to the standard non-reversible technological

realization of ESOP, the EXOR PLA.

Example 13. The (5, 1)-function 2of5 whose output is 1 if and only if exactly two of

the input variables are 1 in terms of ESOP can be realized with 8 terms. Our synthesis

method is capable of creating a network (for the proposed structure) with 7 gates only.

The function 2of5 is not balanced, therefore the minimal garbage for it is 5. Thus,

the (5, 1)-function becomes a (6, 6) reversible function. We used the last output to

realize the function, and named the inputs as a, b, c, d, e, and f , where the last input

is a constant 0. The network structure is as follows: TOF(a, d̄, e, f̄ ; c) TOF(b̄, c, d̄; f)

TOF(ā, c, ē; f) TOF(ā, b, d, ē; f) TOF(ā, f̄ ; e) TOF(b̄, c̄, d, ē; f) TOF(b, c̄, d̄, ē; f).

Some of the actual circuit designs that we discussed in this chapter can be viewed

at http : //www.cs.unb.ca/profs/gdueck/quantum/ [44]. It also happens that the

synthesis in RCMG model is beneficial to the synthesis of ESOPs, which is shown in

the following section.

3.4 RCMG and ESOP Comparison

To exploit the similarity between the two chosen models, note that each of the terms in

the ESOP can be treated as a separate gate. All the terms are arranged in the form of a

cascade, namely a string that is the EXOR of terms which builds the ESOP polynomial.

57



Chapter 3. Reversible Cascades with Minimal Garbage

The following summarizes the similarities and differences between the two models.

• Both models use the same operations, namely, AND, EXOR, and negation.

• The gates are similar. Each gate acts as an EXOR of the term built from the

input variables. The difference is that in ESOP the set of input variables is not

changing while passing through the gates, where for RCMG this is not true.

• The number of distinct gates is comparable: n ∗ 3n−1 for RCMG and 3n for the

ESOP.

• The gates are in a linear order. The terms being “exored” form a string, and

generalized Toffoli gates form a cascade. The difference between them is in whether

the order matters. The order of terms in a polynomial does not matter, whereas

the order of reversible gates in our model does.

Lemma 5. By adding a constant input it is possible to use the results of an ESOP

minimization to build a reversible network for a single output Boolean function.

Proof. Take an n-input Boolean function and create a zero constant on the input

line xn+1. This may result in non-optimality of the garbage. Transform each term

xσ1
i1

xσ2
i2

...xσk
ik

to the gate TOF (xσ1
i1

, xσ2
i2

, ..., xσk
ik

; xn+1). Such a transformation of each of

the terms in the ESOP results in the set of gates of the RCMG; when arranged in a

cascade, they form a reversible network for the function. ¥

The more interesting question is if the RCMG model is sufficiently efficient in comparison

to the ESOP. The answer for this question is “yes”, and the following set of Boolean

functions grows polynomially for the RCMG and exponentially for the ESOP.

58



Chapter 3. Reversible Cascades with Minimal Garbage

Definition 10. For every even integer n, a Boolean function exphardn(x1, x2, ..., xn) is

defined as (x1 ⊕ x2)(x3 ⊕ x4)...(xn−1 ⊕ xn).

Lemma 6. Function exphardn can be realized with cost 1 + n
2 in terms of the RCMG

model.

Proof. The cascade of gates TOF (x1; x2) TOF (x3; x4) . . . TOF (xn−1; xn)

TOF (x2, x4, ..., xn−1; xn) defines the structure of the network (Figure 3.7A). ¥

x

x

x

x

x

1

2

3

4

n-1

xn

0
A.

length = 1+n/2

x

x

x

x

x

1

2

3

4

n-1

xn

0
B.

length = 2

......

Figure 3.7: Reversible design structure.

Note that in the actual implementation the first n/2 gates TOF (x1; x2), TOF (x3; x4),

..., TOF (xn−1; xn) form a single layer. The remaining gate, TOF(x2, x4, ..., xn) forms

the second layer. Thus, the total length of the network becomes a constant, namely 2

(Figure 3.7B).

59



Chapter 3. Reversible Cascades with Minimal Garbage

To show that no ESOP shorter than an ESOP with exponential length can represent

function exphardn, we need the following Lemmas:

Lemma 7. Every term in an optimal ESOP for g(x1, x2, ..., xn, y) = yf(x1, x2, ..., xn),

where y 6∈ {x1, x2, ..., xn}, contains variable y and contains it without negation.

Proof. Let M be an optimal ESOP for the function g(x1, x2, ..., xn, y). Write it as

M = yM ′
1 ⊕ M ′

2 ⊕ ȳM ′
3 = y(M ′

1 ⊕ M ′
3) ⊕ (M ′

2 ⊕ M ′
3), (3.1)

where M ′
1, M

′
2 and M ′

3 do not contain y. The total cost of this ESOP is the sum of the

number of terms in M ′
1, M

′
2 and M ′

3, which is |M ′
1| + |M ′

2| + |M ′
3|. Let N be an ESOP

for f . Then yN forms an ESOP for yf . Add yN and M :

0 = yf ⊕ yf = yN ⊕ M = y(M ′
1 ⊕ M ′

3 ⊕ N) ⊕ (M ′
2 ⊕ M ′

3).

If we write it by components, we have:

M ′
1 ⊕ M ′

3 ⊕ N = 0, M ′
2 ⊕ M ′

3 = 0. (3.2)

Use this last equality to continue from equation (3.1):

yf = M = y(M ′
1 ⊕ M ′

3) ⊕ (M ′
2 ⊕ M ′

3)

= y(M ′
1 ⊕ M ′

3) ⊕ 0

= y(M ′
1 ⊕ M ′

3)

= yM ′
1 ⊕ yM ′

3.

This ESOP has |M ′
1| + |M ′

3| terms. Since M is minimal, the number of terms of M ′
2 is

zero. Therefore, the number of terms of M ′
3 is also zero, which can be seen from the

second equation in (3.2). In other words, M = yM ′
1. ¥

60



Chapter 3. Reversible Cascades with Minimal Garbage

Lemma 8. Any optimal ESOP for g(x1, x2, ..., xn, y) = yf(x1, x2, ..., xn), where y 6∈

{x1, x2, ..., xn}, has the same complexity as an optimal ESOP for f(x1, x2, ..., xn).

Proof. Lemma 7 enables us to factor variable y out of an optimal ESOP M for the

function g(x1, x2, ..., xn, y): M = yM ′, where M ′ is an ESOP that does not contain y in

any form. Let y = 1. Then, M ′ = (yM ′)|y=1 = M |y=1 = (yf(x1, x2, ..., xn))|y=1 =

f(x1, x2, ..., xn). In other words, M ′ has the complexity of a minimal ESOP for

f(x1, x2, ..., xn), so the ESOP M does also. ¥

Lemma 9. A minimal ESOP for the function g(x1, x2, ..., xn, y, z) = yf(x1, x2, ..., xn)⊕

zf(x1, x2, ..., xn), where y, z are variables and y, z 6∈ {x1, x2, ..., xn}, consists of at least

3|f |
2 terms, where |f | is the number of terms in a minimal ESOP for f .

Proof. We can take a minimal ESOP M of the function g(x1, x2, ..., xn, y, z) and write

it as M = yM1 ⊕ M2 ⊕ ȳM3, where M1, M2 and M3 are ESOPs that do not contain

the variable y in either term. Such a decomposition is unique. Notice that the sets of

terms in each of M1, M2 and M3 do not intersect:

• M1 ∩ M2 = ∅;

• M1 ∩ M3 = ∅;

• M2 ∩ M3 = ∅.

Otherwise, suppose that M1 ∩M2 6= ∅. Then, there exists a term t ∈ (M1 ∩M2). Since

yt ⊕ t = ȳt, by deleting these two terms from ESOPs M1 and M2 and adding it to

M3 we get an ESOP that has complexity (that is, the number of terms in an ESOP)

61



Chapter 3. Reversible Cascades with Minimal Garbage

one less than the optimal ESOP M . This contradicts the optimality of M . Therefore,

M1 ∩ M2 = ∅. The other two set intersections can be proven to be empty similarly.

Let y = 0 in the ESOP M = yM1 ⊕M2 ⊕ ȳM3 for the function yf ⊕ zf . This results in

(yf ⊕ zf)|y=0 = (yM1 ⊕ M2 ⊕ ȳM3)|y=0

and

zf = M2 ⊕ M3. (3.3)

Similarly, assigning y = 1 leads to

z̄f = M1 ⊕ M2. (3.4)

Adding (3.3) and (3.4) produces

f = M1 ⊕ M3. (3.5)

By Lemma 8, we conclude that each of the ESOPs in (3.3) and (3.4) has at least |f |

terms. So does the ESOP from (3.5).

As we proved before, the sets of terms in M1, M2 and M3 do not intersect, so based on

Lemma 8, (3.3), (3.4), and (3.5), the following system can be written:



|M2 ⊕ M3| = |M2| + |M3| ≥ |f |

|M1 ⊕ M2| = |M1| + |M2| ≥ |f |

|M1 ⊕ M3| = |M1| + |M3| ≥ |f |

.

Since

|M | = |yM1 ⊕ M2 ⊕ ȳM3| = |M1| + |M2| + |M3|,

62



Chapter 3. Reversible Cascades with Minimal Garbage

the problem of finding the number of terms in a minimal ESOP for (yf⊕zf) is bounded

by the solution of the following linear optimization problem: minimize (|M1| + |M2| +

|M3|) subject to 


|M2| + |M3| ≥ |f |

|M1| + |M2| ≥ |f |

|M1| + |M3| ≥ |f |

which is given by the expression 3|f |
2 . ¥

The proof of the following statement allows us to derive the exact number of terms in

a minimal ESOP for exphardn.

Conjecture. The minimal ESOP for the function g(x1, x2, ..., xn, y, z) = yf(x1, x2, ..., xn)⊕

zf(x1, x2, ..., xn), where y, z are variables and y, z 6∈ {x1, x2, ..., xn}, consists of 2|f |

terms.

Theorem 5. A minimal ESOP for the function exphardn has at least
(

3
2

)n
2 terms.

Proof. This result is easily proven by induction using Lemma 9. ¥

A better lower bound can be achieved for the best ESOP complexity of the exphardn

function by saying that every time we apply Lemma 9, the actual ESOP lower bound is⌈
3|f |
2

⌉
(as a natural number, greater than 3|f |

2 ), which brings a larger bound into the

next step. The final formula for this observation will look like:

|M | ≥
⌈⌈⌈

3
2

⌉
∗ 3

2

⌉
∗ ... ∗ 3

2

⌉
(3.6)

Table 3.10 summarizes the results for the function exphardn. The first column, n, shows

the number of inputs. The second column is the number of gates needed for the model

63



Chapter 3. Reversible Cascades with Minimal Garbage

RCMG to realize the function. The third column shows the cost for the application

of the RCMG model. We used the Exorcism-4 [78, 53] program to calculate the near

minimal ESOP for the exphardn function. The results of this program are summarized

in the fourth column. Note, that this column supports the conjecture. The fifth column

shows the theoretically proven lower bound on the minimal ESOP, given by formula

(3.6).

n RCMG NRA RCMG Exorcism-4 ESOP min

2 2 2 2 2

4 3 2 4 3

6 4 2 8 5

8 5 2 16 8

10 6 2 32 12

12 7 2 64 18

14 8 2 128 27

16 9 2 256 41

18 10 2 512 62

20 11 2 1024 93

22 12 2 2048 140

24 13 2 4096 210

Table 3.10: Complexity of the function exphardn.

64



Chapter 3. Reversible Cascades with Minimal Garbage

3.4.1 Multiple Output Functions

One of the reasons that ESOPs are used is their ability to share terms. The RCMG

model does not have this property. However, the RCMG model can be united with the

mEXOR model introduced in Chapter 6 to form a new hybrid model. This will allow the

use of multiple EXOR output Toffoli gates with the same control, which is equivalent

to term sharing in the non-reversible ESOP model. It can be shown by examining the

gate that the quantum realization of such a hybrid gate has a cost that differs from the

cost of the original Toffoli gate only marginally, e.g. around 10%. The result of Lemma

5 will now hold for any multiple output Boolean function.

3.5 Conclusions

In this chapter we introduced the synthesis model and the synthesis procedure which

allows us to minimize the most important factor of the reversible circuit cost (for in-

stance, for quantum NMR technology) — its garbage. We showed that the new gates

differ from the generalized Toffoli gates only marginally. We synthesized the benchmark

functions and achieved good results in comparison to the previously shown results: in

some cases our method requires less gates, and in all cases our garbage is theoretically

minimal. Finally, the synthesis in the RCMG model was shown to be better in compar-

ison to the synthesis of conventional ESOPs in the sense that no RCMG representation

of a function requires more gates than the number of terms in a minimal ESOP. On the

other hand, there exists a class of polynomial complexity functions in terms of RCMG

which can be realized as an ESOP with exponential cost only.

65



Chapter 4
Toffoli Synthesis

The RCMG model from the previous section has used complex gates, which essentially

consist of three logical parts: NOT gate preprocessing, a generalized Toffoli gate, and

NOT gate postprocessing. One of the unavoidable problems of this theoretical algo-

rithm discussed in the previous chapter, and a reason to create a different heuristic

procedure, is the number and size of the gates needed for the computation. Clearly, it

is better to have fewer gates of a smaller size. In this chapter this problem is solved by

considering Toffoli gates and an updated synthesis procedure, which tries to use narrow

(with less controls) gates. This new synthesis algorithm keeps the key idea presented

in the previous section; initially the cascade is built from the outputs to the inputs,

by bringing patterns to their places without changing patterns which are already at

their place. Furthermore, a generalized version of this algorithm, a bidirectional modi-

fication, is developed. When the algorithm terminates and an initial circuit is created,

local transformations, called template simplification tools, are applied. In this chapter

we do not concentrate on results, since in Chapter 5, the algorithm and template tools

are generalized to handle Toffoli and Fredkin gates, so the results of this chapter will

be covered by newer results in Chapter 5. Toffoli templates are of interest as they are

easier to analyze, and develop our intuition for a more generalized set of templates.

66



Chapter 4. Toffoli Synthesis

4.1 The Algorithm

Applying a Toffoli gate to the inputs or outputs of a reversible function always yields a

reversible function. The synthesis problem is to find a sequence of Toffoli gates which

transforms a given reversible function to the identity function. As gates can be applied

either to the inputs or outputs, the synthesis can proceed from outputs to inputs, from

inputs to outputs or, as we show in Subsection 4.1.2, in both directions simultaneously.

4.1.1 Basic Algorithm

To begin, we present a basic naive and greedy algorithm which identifies Toffoli gates

only on the output side of the specification.

Consider a reversible function specified as a mapping over {0, 1, ..., 2n − 1}; in other

words, a truth vector.

Basic Algorithm

Step 0: If f(0) 6= 0, invert the outputs corresponding to 1-bits in f(0). Each inversion

requires a NOT gate. The transformed function f+ has f+(0) = 0.

Step i: Consider each i in turn for 1 ≤ i < 2n − 1 letting f+ denote the current

reversible specification. If f+(i) = i, no transformation and hence no Toffoli gate is

required for this i. Otherwise, gates are required to transform the specification to a new

specification with f++(i) = i. The required gates must map f+(i) → i.

Let p be the bit string with 1s in all positions where the binary expansion of i is 1 while

the expansion of f+(i) is 0. These are the 1 bits that must be added in transforming

67



Chapter 4. Toffoli Synthesis

f+(i) → i. Conversely, let q be the bit string with 1s in all positions where the expansion

of i is 0 while the expansion of f+(i) is 1. q identifies the bits to be removed in the

transformation.

For each pj = 1, apply the Toffoli gate with control lines corresponding to all outputs

in positions where the expansion of i is 1 and whose target line is the output in position

j. Then, for each qk = 1, apply the Toffoli gate with control lines corresponding to

all outputs in positions where the expansion of f+(i) is 1 and whose target line is the

output in position k.

For each 1 ≤ i < 2n−1, Step 2 transforms f+(i) → i by applying the specified sequence

of Toffoli gates. Since we consider the i values in order, and step 1 handles the case

for 0, we know that f+(j) = j, 0 ≤ j < i. The importance of this is that it shows

that none of the Toffoli gates generated in Step 2 affect f+(j), j < i. In other words,

once a row of the specification is transformed to the correct value, it will remain at

that value regardless of the transforms required for later rows. Clearly, the final row of

the specification never requires a transformation as it is correct by virtue of the correct

placement of the preceding 2n − 1 values.

Table 4.1 illustrates the application of the basic algorithm. (i) is the given specification.

Step 1 identifies the application of TOF (a0) giving (ii). At this point f+(i), 0 ≤ i ≤ 4

are as required. Mapping f+(5) → 5 requires TOF (c1, b1; a1) to change the rightmost

bit to 1 (iii) and TOF (c2, a2; b2) to remove the center 1 (iv). Lastly, TOF (c3, b3; a3) is

again required, this time to map f+(6) → 6. Note that the gates are identified in order

from the output side to the input side. The corresponding circuit is shown in Figure

68



Chapter 4. Toffoli Synthesis

(i) (ii) (iii) (iv) (v)

cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000

001 000 001 001 001 001

010 011 010 010 010 010

011 010 011 011 011 011

100 101 100 100 100 100

101 111 110 111 101 101

110 100 101 101 111 110

111 110 111 110 110 111

Table 4.1: Example of applying the basic algorithm.

a
b
c

a
b
c

0

0

0

Figure 4.1: Circuit for the function shown in Table 4.1.

4.1.

The basic algorithm is straightforward and easily implemented. It is also easily seen

that it will always terminate successfully with a circuit for the given specification.

Theorem 6. The above algorithm successfully terminates with a circuit of size less than

or equal to (n − 1)2n + 1.

Proof. Note that each gate application brings at least one bit to its correct place,

69



Chapter 4. Toffoli Synthesis

therefore the algorithm will definitely terminate after n2n steps. In order to prove a

lower bound, we build the worst case scenario for this algorithm. The first output

pattern will require the maximum number of gates (n) to bring it to the form of the

first input pattern, 0, if it is its bitwise negation, (2n − 1). When the n corresponding

gates of the algorithm are applied, assign the second output pattern so that it becomes

the bitwise negation of the second input pattern 1, which is (2n − 2). At the second

step of the algorithm n gates are needed again. Keep specifying the output pattern as

the negation of the input for each step, which can be done until step (2n−1 − 1) of the

algorithm is completed. At this point, the first 2n−1 input patterns match the input, so

the first bit of the whole structure was already brought to its place (when 2n−1 zeros

are in the upper part, the remaining 2n−1 should be in the lower part). Therefore,

starting from this step, the first bit is completely specified, and we cannot negate it to

create a desired hard pattern. Starting from this step, negate only the remaining (n−1)

unspecified bits of the output. Similarly, at the step 2n−1 + 2n−2 of the algorithm the

second bit will be completely specified. In general, at step 2n−1 + 2n−2 + ... + 2n−k,

the first k bits are completely specified. Thus, the maximum number of steps for the

algorithm becomes

n2n−1 + (n − 1)2n−2 + (n − 2)2n−3 + ... + 2 ∗ 2n−n+1 + 1 ∗ 2n−n =

= nxn−1 + (n − 1)xn−2 + (n − 2)xn−3 + ... + 2 ∗ x1 + 1 ∗ x0|x=2

= (xn + xn−1 + xn−2 + ... + x2 + x + 1)′|x=2

=
(

xn+1−1
x−1

)′∣∣∣
x=2

70



Chapter 4. Toffoli Synthesis

=
(

(n+1)xn(x−1)−xn+1+1
(x−1)2

)∣∣∣
x=2

=
(

(n+1)2n(2−1)−2n+1+1
(2−1)2

)

= (n + 1)2n − 2n+1 + 1 = (n − 1)2n + 1.

¥

Using the procedure from Theorem 6, it is possible to construct a (unique) function

for any n that requires (n − 1)2n + 1 gates. Therefore, the upper bound is tight.

For n = 3, this function has the truth vector [7, 1, 4, 3, 0, 2, 6, 5] and will be further

referred as 3 17. Using Theorem 6, it can be calculated that its cost is (3 − 1)23 + 1 =

2 ∗ 8 + 1 = 17, which explains the given name: 3 represents the size and 17 represents

the algorithm cost. Analogously, 4 49 is a size 4 hard function, whose truth vector is

[15, 1, 12, 3, 5, 6, 8, 7, 0, 10, 13, 9, 2, 4, 14, 11]. Functions with a larger number of variables

can be built. We will simplify the networks further and consider these functions to

measure how good the simplification is.

We next consider a bidirectional algorithm, which usually produces smaller circuits.

4.1.2 Bidirectional Algorithm

As described so far, the algorithm produces the circuit by selecting the Toffoli gates

that manipulate only the output side of the specification. Since the specification is

reversible, one could consider the inverse specification, derive a reverse circuit, and then

choose whichever is smaller. A better approach is to apply the method in both directions

simultaneously choosing to add gates at the input side or the output side.

71



Chapter 4. Toffoli Synthesis

a
b
c

,
(a) (b)

0

0

0

a
b
c

a
b
c

0

0

0

a
b
c

Figure 4.2: Circuits for the function shown in Table 4.2

To see how this works, consider the initial reversible specification in Table 4.2, column

(i). The basic algorithm would require that we invert each of a0, b0 and c0 to make

f+(0) = 0. The alternative is to invert a, i.e. to apply the gate TOF (a) to the input

side. Applying this gate, and then reordering the specification so that the input side

is again in standard truth-table order yields the specification in (ii). From the output

side, we would next have to map f+(1) = 7 → 1. However, from the input side we can

accomplish what is required by interchanging rows 1 and 3, which is done by applying

the gate TOF (a; b). Doing so, and reordering the input side into standard order, yields

the specification in (iii). At this point, selection from the output side and the input side

identify the same gate TOF (a, b; c) (when expressed in terms of the input lines) and

the circuit is done (iv). The result uses three gates (shown in Figure 4.2(a)), whereas

approaching the problem from the output side alone requires three NOT gates just to

handle f(0) and seven gates in total (shown in Figure 4.2(b)).

In general, when f+(i) 6= i, the choice is (a) to apply Toffoli gates to the outputs to map

f+(i) → i, or (b) to apply Toffoli gates to the inputs to map j → i where j is such that

f+(j) = i. Since we consider the i in order, there must always be a j such that j > i.

Also, the same rules for identifying the control lines, including the reduction described

above apply. Let the bidirectional algorithm choose (a) if H(i, f+(i)) ≤ H(i, j), and

72



Chapter 4. Toffoli Synthesis

(i) (ii) (iii) (iv)

cba c0b0a0 c1b1a1 c2b2a2 c3b3a3

000 111 000 000 000

001 000 111 001 001

010 001 010 010 010

011 010 001 111 011

100 011 100 100 100

101 100 011 101 101

110 101 110 110 110

111 110 101 011 111

Table 4.2: Example of applying the bidirectional algorithm.

(b) otherwise (where H(•, •) is the Hamming distance). We thus base the choice on the

number of gates required and not their width or how closely they map the specification

to the identity.

4.2 Templates

Idea of local transformations as a tool of reversible network simplification is not new.

It is important to notice that application local transformations does not guarantee

finding an optimal result, since the optimization procedures usually stuck in a local

minimum. No good practical results on how far up one should go to be able to bring

a circuit to its optimal form are known. However, local transformations stay a useful

simplification procedure both in conventional (for example, [7, 78]) and reversible case

73



Chapter 4. Toffoli Synthesis

[22, 74, 42, 51, 75, 43, 41].

Several authors considered reversible network transformations. Shende et. al [74, 75]

used several 4-bit circuit equivalences to be able to rewrite gates in a different order.

Iwama, Kambayashi, and Yamashita [22] introduced some circuit transformation rules,

which mainly served to bring a network to a canonical form and thus, stating that the

set of transforms is complete. One of the transforms in [22] was proposed for circuit

simplification, but the actual application procedure was not described.

In [51], templates were introduced as a tool for network simplification. In that work, a

template consists of two sequences of gates which realize the same function. The first

sequence of gates is to be matched to a part of the circuit being simplified and the

second sequence is to be substituted when a match is found. The templates in Figure

4.3 were identified and classified based on their similarity: the first number in the figure

shows which class the given template belongs to, the second identifies ordinal number

of the template in its class.

In [51], the template matching procedure looks for the first set of gates, including the

initial match to the widest gate, across the entire circuit. If all target gates are found,

it attempts to make them adjacent using the moving rule: gate TOF (C1, t1) can be

interchanged with gate TOF (C2, t2) if, and only if, C1∩t2 = ∅ and C2∩t1 = ∅. Adjacent

gates can match the template in the forward or reverse direction. The matched gates

are replaced with the new gates specified by the template. For a reverse match, the

new gates are substituted in reverse order. Finally, if at any time two adjacent gates

are equal, they can be deleted, (deletion rule).

74



Chapter 4. Toffoli Synthesis

4.6

4.1 4.2

4.5

4.3

4.4

,

,,

,

,,

,

,

3.1

2.1

1.1

3.2

2.2

1.2

3.3

5.1

Figure 4.3: Templates with 2 or 3 inputs.

75



Chapter 4. Toffoli Synthesis

In this section, we give a formal classification of the templates used in [51]. However,

for a better understanding of template classes, we introduce the following notation.

• the left hand side has a sequence of gates that is to be replaced with the sequence

given on the right hand side;

• the controls of the gates are coded by sets Ci, each of which represents a set (which

may be empty) of lines;

• the target sets ti each contain a single line.

All sets are disjoint: Ci ∩ Cj = ∅, Ci ∩ tk = ∅, tl ∩ tk = ∅ ∀i, j, k, l.

Using this notation, a class of templates can be defined as a set of templates which can

be described by one formula. A first attempt to classify the templates results in the

classes listed below:

Class 1. This class unites and generalizes the templates 2.2, 4.1-4.3 (Figure 4.3) into

a class (Figure 4.4) with the formula:

TOF (C1 + C2 + t2, t1) TOF (C1 + C3, t2) TOF (C1 + C2 + t2, t1)

= TOF (C1 + C3, t2) TOF (C1 + C2 + C3, t1) (4.1)

Class 2. This class consists of templates 4.4-4.6 (Figure 4.3) and their generalizations.

The class is illustrated in Figure 4.4 and can be written as the following formula:

TOF (C1 + C2, t2) TOF (C1 + C3 + t2, t1) TOF (C1 + C2, t2)

= TOF (C1 + C3 + t2, t1) TOF (C1 + C2 + C3, t1) (4.2)

76



Chapter 4. Toffoli Synthesis

Class 3. This class (Figure 4.4) includes templates 2.1, 3.1-3.3 (Figure 4.3) and can be

described by the formula:

TOF (C1 + C2 + t2, t1) TOF (C1 + C2 + C3, t1) TOF (C1 + C3, t2)

= TOF (C1 + C3, t2) TOF (C1 + C2 + t2, t1) (4.3)

,C
C
t
t

1

2

3

1

2

,

Class 1.

C

Class 2. Class 3.

C
C
t
t

1

2

3

1

2

C

Figure 4.4: Toffoli templates.

Template 5.1 can be generalized, but this generalization is not considered here since

template 5.1 does not decrease the number of gates in a network. However, the use of a

generalization of this template may be beneficial since it introduces smaller gates that

can be used by other templates. Even if they are not used, it is beneficial to have gates

with fewer controls, since for some technologies their costs are lower. For instance, in

quantum technology the cost of a Toffoli gate is 5 times higher than that of a CNOT

gate. As the number of controls of the Toffoli gate grows, the relation between the costs

of generalized Toffoli and CNOT gates grows quadratically if no additional garbage is

allowed and linearly if additional garbage is allowed [4].

The correctness of formulas (4.1)-(4.3) is easily proven. A more interesting question is

whether the set of these three classes of templates together with the two rules (moving

rule, deletion rule) is a complete set of simplification rules for a sequence of three

generalized Toffoli gates over n lines. To check this, we wrote and ran a program which

77



Chapter 4. Toffoli Synthesis

exhaustively searches all sequences of three gates built on four lines to check whether

the sequence can be reduced by means of templates from the three classes and the two

rules. This program found no new templates. Thus, we conclude that the three classes

together with moving and deletion rules form the complete simplification tool for any

Toffoli network with up to three gates.

4.2.1 Unification of Class 1 and Class 2 Templates

Classes 1 and 2, as illustrated in Fig. 4.4, look similar. This similarity results in the

following description of the two classes as a single class:

• the first part of the template has 3 gates of the form ABA, i.e. the first and the

third gates are the same;

• if the following algorithm produces a valid network, the template exists, otherwise

it does not (correctness can be easily proven):

– Take the second gate and put it first in the second part of the template.

– On each line, there may be a logical AND connection (•), an EXOR (⊕), or

no connection with the vertical line (denoted ¤). We build the second gate

of the right hand side of the template by taking values from Table 4.3 using

the symbols on that line from A and B (since the table is symmetric, there

is no need to specify which argument is A and which is B).

– If the symbol E occurs during the building process, the template cannot be

built. It is easy to see why, since if all ⊕ are on the same line the moving

rule is applicable; the network can be changed to the form AAB, after which

an application of the deletion rule transforms the network to the form B.

78



Chapter 4. Toffoli Synthesis

¤ • ⊕

¤ ¤ • ⊕

• • • ¤

⊕ ⊕ ¤ E

Table 4.3: Second gate building process

– In other cases, for TOF(t1 + t2, t3) TOF(t1 + t3, t2) TOF(t1 + t2, t3) for ex-

ample, the algorithm produces a logical AND on the first line and nothing at

all on the other lines. This makes no sense. That is, no reduction is possible

for this sequence of gates.

4.3 Templates - a New Approach

We further generalize the template tool, but assume the following limitation: the model

gates should necessarily be self-inverses. This limits the generality of a template, but

for the goals of the generalized Toffoli gate synthesis this does not change the essence,

since a generalized Toffoli gate is a self-inverse. Note that Fredkin and Miller gates are

also self-inverses, thus, their addition to the model would be “legal” from the point of

view of the templates.

Although the template description in Section 4.2 is formal and shorter (3 classes and

2 rules in comparison to 14 templates with 2 rules as used before), it can be simplified

even further. For this we need a new understanding of templates.

Let a size m template be a sequence of m gates (a circuit) which realizes the identity

function. Any template of size m must be independent of templates of smaller size, i.e.

79



Chapter 4. Toffoli Synthesis

for a given template size m no application of any set of templates of smaller size can

decrease the number gates. The template G0 G1... Gm−1 (Gi is a reversible gate) can

be applied in two directions:

1. Forward application: A piece of the network that matches the sequence of

gates Gi G(i+1) mod m... G(i+k−1) mod m of the template G0 G1... Gm−1 exactly,

is replaced with the sequence G(i−1) mod m G(i−2) mod m... G(i+k) mod m without

changing the network’s output, where parameter k ∈ N, k ≥ m
2 .

2. Backward application: A piece of the network that matches the sequence of

gates Gi G(i−1) mod m... G(i−k+1) mod m exactly, is replaced with the sequence

G(i+1) mod m G(i+2) mod m . . . G(i−k) mod m without changing the network output,

where parameter k ∈ N, k ≥ m
2 .

These definitions of template application need a correctness proof that the network

output should not change for each of the listed operations. Correctness can be verified

as follows. Note that a reversible cascade that realizes a function f read in reverse (from

the outputs to the inputs) realizes f−1, its inverse.

First, we prove the correctness of the forward application of a template starting with

element G0. The operation for this case requires the substitution of G0 G1... Gk−1 with

Gm−1 Gm−2... Gk. Since G0 G1... Gm−1 realizes the identity function, Gk Gk+1... Gm−1

realizes the inverse of the function realized by G0 G1... Gk−1. Therefore, if we read in

the reverse order, Gk Gk+1... Gm−1 realizes the inverse of the inverse, i.e. the function

itself. Thus, the function realized by G0 G1... Gk−1 was substituted by itself, which

does not change the output of the network. The correctness of the remaining forward

80



Chapter 4. Toffoli Synthesis

applications can be proven by using Lemma 10.

The correctness of all reverse applications follows from the proof above and from the

observation that the inverse of the identity function is the identity function.

Next, we observe that a template can be used in both directions, forward and backward

as the formulas show. Also, we can start using it from any element. Thus, it is better to

think of a template as a cyclic sequence. The Toffoli templates that are classified below

are shown in a donut shape form in Fig.4.6. The correctness of viewing a template as

a cyclic sequence is proven by the following Lemma.

Lemma 10. If a network G0 G1... Gm−1 realizes the identity function, then for any

k-shift, Gk G(k+1) mod m... G(k−1) mod m realizes the identity.

Proof. We prove the Lemma for the 1-shift, G1 G2... Gm−1 G0. Then all k-shifts can

be proven by applying the 1-shift k times. The proof for a 1-shift follows from:

Id = G0 G1... Gm−1

G0 Id = G0 G0 G1... Gm−1

G0 = G1 G2... Gm−1

Id = G0 G0 = G1 G2... Gm−1 G0.

¥

The condition k ≥ m
2 is used as we do not want to increase the number of gates when

a template is applied and equality yields a simpler classification scheme.

The following is a classification of templates up to size 7. We use the notation introduced

81



Chapter 4. Toffoli Synthesis

in the previous subsection.

• m=1. Size 1 templates do not exist, since each generalized Toffoli gate produces

a change in its input.

• m=2. There is one class of templates of size 2 (Figure 4.5a), and it is the deletion

rule which is described by the sequence AA, where A = TOF (C1, t1).

• m=3. There are no templates of size 3.

• m=4. There is one class of templates (Figure 4.5b), the moving rule from the pre-

vious section, which can be written as the formula ABAB, where A = TOF (C1 +

C2, C4+C5) and B = TOF (C1+C3, C4+C6). The set notation is used to describe

the targets since they may intersect or not, which is impossible to describe in one

formula using the ti notation for the targets. The upper template in Figure 4.5b

has |C4| = 0 which results in |C5| = 1 and |C6| = 1, when the lower has |C4| = 1

resulting in |C5| = 0 and |C6| = 0.

• m=5. Surprisingly, there is only class of template of size 5 (Figure 4.5c), which

unites the three earlier classes 1-3 and includes templates 2.1-2.2, 3.1- 3.3 and 4.1-

4.6 from Figure 4.3. The class can be written as ABABC, where A = TOF (C1 +

C2 + t2, t1), B = TOF (C1 + C3, t2), and C = TOF (C1 + C2 + C3, t1).

• m=6. There are two classes here (Figure 4.5d), and they are described by formulas

ABACBC with A = TOF (C1 + t2, t1), B = TOF (C1 + C2 + C3 + t1, t2), and

C = TOF (C1 + C2 + t2, t1); and ABACDC with A = TOF (C1 + t2, t1), B =

TOF (C1 + C2 + C3 + t1, t2), C = TOF (C1 + C2 + t1, t2), and D = TOF (C1 +

C2 +C3 + t2, t1). Note that the two formulas for the classes look very similar, and,

82



Chapter 4. Toffoli Synthesis

C
C
t
t

1

2

3

1

2

C

C
C
t

1

2

3

1

C
C
C
t
t

1

2

3

1

2

C

C
t

1

1

C
C
t
t

1

2

3

1

2

C

C
C
t
t

1

2

3

1

2

C

(a)

(b)
(c)

(d)

Figure 4.5: All templates for m ≤ 7.

using Fredkin gates, they can be generalized to form one very simple template

FRE(C1 + C2 + C3, t1 + t2) FRE(C1 + C2 + C3, t1 + t2) (where FRE(C, t1 + t2)

is a gate which swaps values of bits t1 and t2 if, and only if, set C has all ones

on its lines), but we do not pursue this here as we are restricting our attention to

generalized Toffoli gates.

• m=7. There are no templates of size 7.

The described templates are also shown as cyclic circuits in Fig.4.6.

To verify the correctness of the above classification, we must show that no template of

larger size can be reduced to a template of smaller size.

• – The size 4 template is independent of the size 2 template, since no adjacent

gates are equal.

• – The size 5 template is independent of the size 2 template, since no adjacent

83



Chapter 4. Toffoli Synthesis

C1
t1

C
C
t
t

1

2

3

1

2

C

C
C1

2

3C

t1

C
C1

2

3C

t1

t2
(a) n=2.

(b) n=4. (c) n=5.

C
C
t
t

1

2

3

1

2

C

C
C
t
t

1

2

3

1

2

C

(d) n=6.

Figure 4.6: All templates for m ≤ 7 depicted as donuts.

gates are equal.

– The size 4 template can be applied to move gate C anywhere in a template,

but it does not allow any simplification of a size 5 template by smaller tem-

plates.

• – Size 6 templates are independent of the size 2 template, since no adjacent

gates are equal.

– A size 4 template can be applied to interchange gates A and C of template

ABACBC only and does not lead to any simplification.

– The size 5 template matches at most 2 gates of template ABACBC, and

therefore can not be applied.

84



Chapter 4. Toffoli Synthesis

4.3.1 Completeness

First of all, we wrote a program which builds all the 4-input 4-output circuits of size 7

that realize the identity function and tries to apply the templates. The program result

shows that the set of our 5 templates (AA, ABAB, ABABC, ABACBC, ABACDC) is

the complete set of templates of size 7 or less for 4 inputs and less.

The mathematical proof of completeness of this set for any number of inputs is harder.

For templates of size 2 it can be done by hand, since there are few choices to consider.

For templates of size 4 and 5 the following lemmas are useful.

Lemma 11. A size m template has at most bm
2 c different lines with EXOR signs.

Proof. Proof by contradiction. Suppose there are bn
2 c + 1 or more lines which contain

an EXOR sign. Then, by the pigeonhole principle, there will be one line with a single

EXOR sign only. Cut the cycle so that the gate with this EXOR, TOF (C, t) comes

first. Now, if we assign 1 to all xj ∈ C, the value of t changes to t̄ as the signal is

propagated in the template. Thus, the template does not realize the identity function,

which contradicts its definition. ¥

Lemma 12. If a size m template has only a single line with EXOR signs, m is even and

all the gates in it can be grouped as pairs of equal gates.

Proof. Proof by contradiction. Suppose not all the gates can be paired or the number

m is odd. Apply passing and duplication deletion rules to delete all the paired gates

from the template. The remaining circuit still realizes the identity since all the applied

operations did not change the circuit output. When we propagate the signal in the

85



Chapter 4. Toffoli Synthesis

network, the output on the line with EXOR (for instance, xn) becomes a polynomial

of positive polarity on the remaining variables (for instance, x1, x2, ...xn−1). In other

words, the Zhegalkin polynomial on the set of variables {x1, x2, ...xn−1} was added to

the input xn. Since no non-zero Zhegalkin polynomial equals zero, the output on the

n-th line will differ from its input. This contradicts the definition of a template since it

is supposed to realize the identity function. ¥

Using Lemma 11 allows us to say that all templates of size 4 have EXOR signs on either

two lines (two signs on one and two on the other) or 1 line (all 4 on 1 line). In the

last case we use Lemma 12. Thus, an exhaustive search proof becomes reasonable. For

the size 5 templates we can guarantee that they all will have exactly two lines with

EXOR. Note that Lemma 12 proves that the only two templates which have only one

line affected with EXOR are the duplication deletion rule and the passing rule; all other

identities of this type are applications of the above rules.

4.4 Experimental Results

We wrote programs to implement the algorithm, build the new templates and apply

them. Several results are discussed below.

The program which simplifies the networks works as follows. First, we found that

it is convenient to store template ABAB as a separate rule which helps to bring the

gates together to match a template. Then, the circuit is simplified as follows. For the

template order AA Â ABABC Â ABACBC Â ABACDC, we try to match as many

gates of a template as possible by looking ahead in the network and using the moving

rule. If a template can be applied, we apply it for the greatest number of gates matched

86



Chapter 4. Toffoli Synthesis

k possible. After applying any template, we start trying to apply the templates in

hierarchical order from the very beginning. If none of the templates can be applied, the

simplification process is finished.

Such order for the template application was chosen based on the following observation.

The larger size templates are independent of the smaller size templates, therefore the

smaller size templates describe simpler or more general circuit simplifications when

larger templates describe more specific and less general circuit simplifications.

Example 14. We synthesized a network for the 3-bit adder (Figure 4.7) and applied our

template tool to simplify the circuit. The algorithm creates a circuit with 5 gates 4.7(a).

a

b

c

       d
(constant 0)

garbage

carry

sum

propogate

(a) (b) (c)

Figure 4.7: Optimal circuit for a full adder.

The template simplification part of the program used a size 5 template and matched 3

gates (highlighted grey in 4.7(b)). Thus, they were substituted by the remaining 2 gates

of the template, read in reverse order. The circuit 4.7(c) is optimal, since no further

reduction is possible. Suppose an adder can be realized with 3 gates or less. Then the

addition of these gates to the end of the built size 4 cascade results in a new template

which was proven (by enumeration) not to exist for size 7 and less and four inputs. The

presented circuit for the 3-bit full adder is better than the one given in [8], a circuit

consisting of 5 Fredkin gates (as opposed to 4 Toffoli gates for our circuit) and having

87



Chapter 4. Toffoli Synthesis

a
b
c
d
e

f (=0)
g(=0)

h
h
h

0

1

2

a
b
c
d

'
'

'
'

Figure 4.8: Circuit for rd53.

4 garbage bits (as opposed to 1 garbage bit for our circuit).

Example 15. As a second example we consider the benchmark function rd53. This

function has 5 inputs and 3 outputs. The outputs are the binary encoding of the weight

of the input pattern i.e. the number of 1s in the input pattern. For example, input

00000 yields output 000, input 00100 yields output 001 and input 11111 yields output

101. The maximum output pattern multiplicity is 10, so at least 4 garbage outputs

must be added giving a total of at least 7 outputs. That in turn requires two inputs be

added. Initially the reversible specification given in [50] was used. The garbage outputs

were subsequently modified to remove unnecessary gates. Our algorithm produces a

circuit with 12 gates in 1.84 seconds of CPU time. This is better than the circuit with

14 gates proposed in [54]. It is also better than 13 gates, the result from the previous

chapter.

The larger the set of templates, the more reductions can be done. For instance, if

for some natural number k, k-optimality is defined as the impossibility of simplify-

ing a network with templates of size (2k − 1) and less, then all the templates of size

(n−1)∗2n+1+1 and less form the complete simplification tool for the presented synthesis

88



Chapter 4. Toffoli Synthesis

algorithm.

89



Chapter 5
Toffoli-Fredkin Synthesis

5.1 How Useful Are Fredkin Gates?

In this chapter it is shown how to use Fredkin gates in conjunction with Toffoli gates

to produce a smaller network. An important question which arises as soon as the

“Toffoli-Fredkin Synthesis” is proposed is, how useful are Fredkin gates, if they are

useful at all? To answer this question, we wrote a program to calculate the optimal

circuits for all 3-input 3-output reversible functions in terms of the cascades of Toffoli

and Fredkin gates and compared them to previously reported results on the optimal

Toffoli synthesis [74, 75] in Table 5.1. The table shows how many functions of size 3 can

be realized with k = 0, 1, ..., 8 gates in optimal synthesis using NOT, CNOT and Toffoli

gates (NCT column, calculated in [74, 75]), NOT, CNOT, Toffoli, and SWAP gates

(NCTS column, calculated in [74, 75]), and NOT, CNOT, Toffoli, SWAP, and Fredkin

gates (NCTSF column, calculated by us). The “Total:” row of the Table shows how

many different functions in total are presented in the column (to make sure we have all

40320 reversible functions of size 3); the “WA:” row shows the weighted average cost of

a reversible function in terms of the corresponding model. Analysis of this table shows

that the average cost in NCTSF is approximately 0.732 gates lower than the one in

NCT. The maximum cost drops from 8 to 7. The NCTS column looks odd, since the

90



Chapter 5. Toffoli-Fredkin Synthesis

Size NCT NCTS NCTSF

0 1 1 1

1 12 15 18

2 102 134 184

3 625 844 1318

4 2780 3752 6474

5 8921 11194 17695

6 17049 17531 14134

7 10253 6817 496

8 577 32 0

Total: 40320 40320 40320

WA: 5.866 5.629 5.134

Table 5.1: Optimal synthesis of all 3-input 3-output functions

SWAP gate is a gate of a different nature (Fredkin-like structure), but it is presented

in this table to reflect the calculation from [74, 75].

5.2 Box Gate

Observe that Toffoli and Fredkin gates are closely related. In fact, they can be written

as one general gate G(S; B). Later on in Section 5.4, we will see how useful it is to unite

these two gates together. The uniform way of writing Toffoli and Fredkin gates will be

captured in the definition of a box gate G(S; B), which for |B| = 1 is the TOF (S; B)

gate and for |B| = 2 is FRE(S; B). Such a way of writing the gates is needed when

91



Chapter 5. Toffoli-Fredkin Synthesis

?
x1

x
x

x

2

3

...
k+2

x1

x
x

x

2

3

...
k+2

x

x

3

...
k+2

B

(a) (b) (c)

Figure 5.1: Toffoli, Fredkin and box gates.

we consider a general gate from the Fredkin-Toffoli family and do not want to specify

which gate it is. So, if the size of the set B is not specified, it can be either 1 or 2. The

gate shown in Fig.5.1c is G(C; B), where the set B is not specified. If a box gate is

found in a network, the following rules help to decide which one of two possible gates

(Toffoli or Fredkin) it represents and the way the network assigns EXOR or SWAP to

the box.

• If the EXOR operation is assigned to a box symbol, all the boxes on this line

become EXORs and nothing else changes.

• If the SWAP operation is assigned to a box symbol, all the boxes on this line are

changed to SWAPs. SWAPs require two lines to be properly written, therefore,

we add one line so that the two lines with the newly built SWAP have controls

everywhere the line with the box had, and only there.

• In a correctly built circuit a box symbol will never be on the same line with EXOR

or SWAP symbols.

Further, if the setting for the box (Toffoli or Fredkin) is not specified, the box can be

assigned to either Toffoli or Fredkin according to the above rules.

92



Chapter 5. Toffoli-Fredkin Synthesis

5.2.1 A Note on Similarity of Fredkin And Toffoli Gates

Fredkin gates alone do not form a complete set. Fredkin gates act as controlled SWAPs

which do not change the number of ones in the pattern (like the structure proposed in

[33] and [72], where gates that do not change the number of ones were considered). For

example, the set of all Fredkin gates is not sufficient if the NOT operation is needed.

Will the set of NOT and all Fredkin gates be complete? Given a network of Toffoli gates

is it possible and easy to find a transformation to the NOT-Fredkin network which will

compute the same function (assuming garbage is unlimited)? A positive answer for the

second question implies a positive answer on the first question, since the set of Toffoli

gates is complete (shown constructively in Chapter 4). Here we answer the second

question: given a circuit with Toffoli gates, we can build a circuit with NOT-Fredkin

gates. The construction is as follows.

• Code each Boolean pattern 0 with the pair of Boolean values (1, 0) and each

Boolean pattern 1 with (0, 1).

• Given a Toffoli circuit, split each horizontal line into two. If the splitting line had

no symbol on it, do not put any symbol on the resulting two lines. If the splitting

line had ⊕ sign on it, substitute it with SWAP (which is possible to do after the

line was split). If the line was a control (•), after splitting substitute the first line

with a line of the form NOT-•-NOT, and second line with the control only (•).

• After these transformations are done, the circuit will consist of the NOT and

Fredkin gates only, since all the occurrences of ⊕ were replaced with SWAP.

93



Chapter 5. Toffoli-Fredkin Synthesis

x
y
z

a
b
c

a

b

c

a

b

c

x

y

z

x

y

z

Figure 5.2: Transformation of a Toffoli circuit to a NOT-Fredkin circuit.

For an example of this circuit transformation, see Fig. 5.2. The NOT-Fredkin circuit

has several nice properties. The Boolean inputs of the function to be calculated are on

even lines, and the corresponding Boolean outputs are even outputs. The second circuit

computes both a function and its negation simultaneously (which in practice may not

be that useful). An interesting observation is that if the inputs and outputs of the

resulting circuit are (naturally) paired and a pair of equal outputs is found, it can be

concluded that at least one of the gates malfunctioned. This property may be useful in

a design-for-testability.

5.3 The algorithm

In this section we consider several Fredkin-Toffoli family synthesis problems: synthesis

of reversible functions, synthesis of multiple output functions, and synthesis of incom-

pletely specified multiple output functions.

The algorithm to be presented is a modified version of the algorithm from Chapter 4.

As usual, the function is specified as a truth table, which contains input patterns on

the left, and output patterns on the right side. All the Boolean patterns are considered

to be arranged in lexicographical order.

94



Chapter 5. Toffoli-Fredkin Synthesis

Start with the basic algorithm which works with completely specified reversible functions

only. The synthesis procedure will start with the empty circuit which realizes the

identity function. At every step of the synthesis algorithm we add a few of gates from

the Fredkin-Toffoli family to the end of the cascade already constructed. Since the

reversible cascade can be built from either end, we have to agree on where to start. For

the basic algorithm it is better to start synthesizing the function from the outputs and

working towards the inputs, so that the cascade is to be read in reverse order.

Basic algorithm.

Step 0. Idea: take the narrowest gates and arrange them in a cascade so that they

bring the first output pattern to the first input pattern.

The first pattern of truth table is the lowest in the order sequence (0, 0, ..., 0), while

the first pattern in the output part is, in general, an unknown pattern (b1, b2, ..., bn).

To bring it to the form (0, 0, ..., 0), we use gates TOF (xi) for every i such that bi 6= 0.

When the first gates are added to the cascade, we update the output part of the table

to see that the pattern (b1, b2, ..., bn) was transformed to the desired form (0, 0, ..., 0).

Step S. Idea: without influencing the patterns of the lower order that were put at their

desired places in the previous steps of the algorithm, use the least number of the nar-

rowest gates to bring the output pattern to the form of the corresponding input pattern.

The input pattern of the table, (a1, a2, ..., an) is the binary representation of the nat-

ural number (S+1). The pattern in the last update of the output part is any pattern

(b1, b2, ..., bn) of higher order. If the order is the same, the patterns are equal, and there

95



Chapter 5. Toffoli-Fredkin Synthesis

is nothing left to do at this step. The order of (b1, b2, ..., bn) cannot be less than the

order of (a1, a2, ..., an) since all such patterns were put to their places in the previous

steps of the algorithm.

For the pattern (b1, b2, ..., bn) to be transformed to (a1, a2, ..., an), note that each ap-

plication of a Toffoli gate is capable of flipping one bit of the pattern (b1, b2, ..., bn),

and each Fredkin gate is capable of permuting a pair of unequal Boolean values. Now,

the problem can be formulated as follows: using the two operations “flip” and “swap”,

bring a Boolean pattern (b1, b2, ..., bn) Â (a1, a2, ..., an) to the form (a1, a2, ..., an) so that

all intermediate Boolean patterns are greater than (a1, a2, ..., an). The controls for the

corresponding gates will be assigned later. The solution is as follows.

• If the number of ones in (b1, b2, ..., bn) is less than the number of ones in (a1, a2, ..., an)

try to apply as many “swaps” as we can and then flip the remaining zero bits to

one. Use “swaps” so that the order of each intermediate pattern (x1, x2, ..., xn) is

less than the order of (a1, a2, ..., an), and define the set of controls as a minimal

subset of unit values of (x1, x2, ..., xn), such that this subset forms a Boolean pat-

tern of an order higher than (a1, a2, ..., an). This can be easily done if “swaps” are

done on the lower end of the pattern first. Note that in this case the initial pat-

tern (b1, b2, ..., bn) was greater than (a1, a2, ..., an), so the most significant binary

digit of (b1, b2, ..., bn) equal to one was greater than the most significant digit of

(a1, a2, ..., an) equal to 1. Thus, this digit will be taken as the control (when a

control is needed) for all corresponding Fredkin and Toffoli gates except the last

Toffoli gate, for which the control will consist of all digits of (a1, a2, ..., an) that

are equal to 1.

96



Chapter 5. Toffoli-Fredkin Synthesis

• If the number of ones in (b1, b2, ..., bn) is equal to the number of ones in (a1, a2, ..., an),

then it is possible to transform one pattern into other using “swap” operation only.

Controls are then found by the procedure described in the above case.

• If the number of ones in (b1, b2, ..., bn) is greater than the number of ones in

(a1, a2, ..., an), then apply “swaps” starting from the end of the pattern (b1, b2, ..., bn)

and then apply necessary Toffoli gates. All the necessary controls can be found

using the procedure from the first case.

Step 2n − 1. When all (2n − 1) previous patterns are in their places, the last patterns

will automatically match.

Motivation. In technology it usually happens that the narrower the gate, the lower its

cost, and thus we try to use the narrowest gates. However, choosing the narrowest gates

at each step may lead to larger initial circuits which might not be simplified enough

by the template tool. Therefore, in the actual implementation of this algorithm we

define which gate to take by choosing the one producing a circuit whose output has the

shortest Hamming distance to the desired input pattern we are attempting to match.

Such a method of choosing a gate has no theory behind it, but we use it because it

makes sense. It also happens that the template simplification tool is sensitive to the

width of the gates, so we prepare the circuit for better template reduction by taking

narrow gates.

Bidirectional modification. The basic algorithm works from the output to input by

adding the gates in one direction starting from the end of desired cascade and ending at

its beginning. What if we were able to understand what happens if during the procedure

97



Chapter 5. Toffoli-Fredkin Synthesis

a gate is added to the beginning of cascade? Then we would be able to construct the

network from the two ends simultaneously by growing the number of gates from the

two sides. The idea of the method stays the same; by applying the gates, we bring the

input and output parts of the truth table to each other by assuring that at each step

of the calculation we put at least one pattern at its place. It makes sense that such

a bidirectional algorithm in average will converge faster. We next take any function

written as a truth table, apply a gate and see what change it makes in the output part

of the truth table.

• Toffoli gate application. Without loss of generality we apply gate TOF (C; xk+1),

C = {x1, x2, ..., xk} with the controls on first k variables and target on the (k +1)

variable (all other generalized Toffoli gates have permuted set of controls and,

maybe, a different target). Then, in the input part of the truth table the patterns

(1, 1, ..., 1, x0
k+1, x

0
k+2, ..., x

0
n) will interchange with patterns (1, 1, ..., 1, x̄0

k+1, x
0
k+2, ..., x

0
n).

In terms of our understanding, this is the same as permuting the output patterns

in front of the (1, 1, ..., 1, x0
k+1, x

0
k+2, ..., x

0
n) and (1, 1, ..., 1, x̄0

k+1, x
0
k+2, ..., x

0
n) input

patterns without changing the input part. This procedure is easier to visualize,

since the matched patterns do not get mixed up in the middle of the truth table,

which would make it hard to track a pattern. For the program implementation,

the input part may be changed (from the point of view of the computer this does

not confuse any patterns).

• Fredkin gate application. We apply a Fredkin gate FRE(C; xk+1, xk+2), C =

{x1, x2, ..., xk}. This results in the following change of all patterns in the in-

put part of the table: (1, 1, ..., 1, x0
k+1, x

0
k+2, x

0
k+3, ..., x

0
n) is interchanged with

98



Chapter 5. Toffoli-Fredkin Synthesis

(1, 1, ..., 1, x0
k+2, x

0
k+1, x

0
k+3, ..., x

0
n). If we want to keep the conventional form of

the input part of the truth table when patterns are arranged lexicographically,

this operation is the same as interchanging the output patterns of the truth table

which stay in front of the input patterns (1, 1, ..., 1, x0
k+1, x

0
k+2, x

0
k+3, ..., x

0
n) and

(1, 1, ..., 1, x0
k+2, x

0
k+1, x

0
k+3, ..., x

0
n).

The bidirectional algorithm thus has the same number of steps, where at each step it

tries to change the output pattern so that it matches the input pattern by applying the

least number of the narrowest gates assigned at either side of the cascade.

The presented algorithm is an improved version of the algorithm suggested in Chapter

4, since the new algorithm uses the Fredkin gates.

Function 3 17 introduced in Chapter 4 had the cost of 17 when realized as a Toffoli

cascade. Now, it will serve as a good example of how helpful it is to use the Fredkin

gates.

Example 16. We apply the basic method for the 3 17 function, shown in the truth table

in Table 5.2.

• Step 0. The output pattern corresponding to the input pattern (0, 0, 0) is (1, 1, 1).

In order to bring it to the form (0, 0, 0) we use 3 NOTs: TOF (a), TOF (b) and

TOF (c). Not, that this is not a unique way of changing the output pattern to

make it match the input, since, for instance, TOF (b, c; a), TOF (c; b) and TOF (c)

would do the same. Thus, the program realization may branch or use a heuristic to

choose the gates, although, for this case the sequence of 3 NOTs defines the unique

way of transforming the output pattern so that the least number of controls is

99



Chapter 5. Toffoli-Fredkin Synthesis

used. An update in the table (Tab.5.2 S1) illustrates that the new output pattern

matches the new input pattern.

• Step 1. For input pattern (0, 0, 1) we have the output pattern (1, 1, 0). In order

to bring the last to the form of input, we swap bits b and c by FRE(b, c) and

then use TOF (c, a) to bring the “swapped” pattern (1, 0, 1) to the form (0, 0, 1).

Neither of the used gates changes anything in the order less than (0, 0, 1). Also

note that this is not a unique way of changing the output pattern to match the

input pattern even for the smallest set of controls: FRE(a, c), TOF (c; b) would

do the same job. Again, this is a place for a program to make a good choice.

• Step 2. The next input pattern, (0, 1, 0), does not match the corresponding output

pattern, (1, 1, 1) (Tab.5.2 S2). We apply the gates TOF (b; c), TOF (b; a) to make

the match.

• Step 3. We apply TOF (a; c) and FRE(c; a, b) to match the output pattern (1, 0, 0)

of Tab.5.2 S2 to the desired input pattern (0, 1, 1).

• Step 4. We use TOF (a; c) and TOF (a; b) to bring (1, 1, 1) (Tab.5.2 S4) to the

form (1, 0, 0).

• Step 5. Finally, we use the FRE(a; b, c) to transform (1, 1, 0) from Tab.5.2 S5 to

(1, 0, 1).

• Steps 6,7 are empty since the output completely matches the input at the previous

step (Tab.5.2 S6).

The resulting circuit has 12 gates, as opposed to 17 for the basic approach in a model

when only Toffoli gates are used. The circuit is illustrated in Fig. 5.3(a).

100



Chapter 5. Toffoli-Fredkin Synthesis

In Out S0 S1 S2 S3 S4 S5

000 111 000 000 000 000 000 000

001 001 110 001 001 001 001 001

010 100 011 111 010 010 010 010

011 011 100 100 100 011 011 011

100 000 111 011 110 111 100 100

101 010 101 110 011 101 110 101

110 110 001 010 111 110 101 110

111 101 010 101 101 100 111 111

apply T (a) F (b, c) T (b; c) T (a; c) T (a; c) F (a; b, c)

gates: T (b) T (c; a) T (b; a) F (c; a, b) T (a; b)

T (c)

∗ Toffoli gates are coded with letter “T”, and Fredkin with “F”.

Table 5.2: Basic approach synthesis.

Example 17. We use the bidirectional algorithm to build a circuit for 3 17.

• Step 0. To match the output pattern (1, 1, 1) with the input pattern (0, 0, 0), the

basic algorithm required 3 steps. Here, we can do it with one step only by assigning

TOF (a) to the beginning of the cascade. This transformation interchanges the

output patterns in front of input patterns (0, α, β) and (1, α, β) resulting in the

output transformation shown in Table 17 S1.

• Step 1. To change (0, 1, 0) to the form (0, 0, 1), we swap the last two bits (using

FRE(b, c)) in the end of cascade.

101



Chapter 5. Toffoli-Fredkin Synthesis

• Step 2. To change (1, 0, 1) in Table 17 S2 to the form (0, 1, 0), one gate is not

enough. Several choices are possible at this step, and so we demonstrate using

only one of them. We apply gates FRE(a; b) and TOF (b; c), both at the end of

the cascade.

• Step 3. The two gates FRE(b; a, c) assigned at the beginning of the network and

TOF (b, c; a) are making exactly the same change, and both bring target pattern

(1, 1, 1) of Table 17 S3 to the desired form (0, 1, 1). We pick one, and assign

FRE(b, ac) to the beginning of the cascade.

• Step 4. Pattern (1, 1, 0) can be brought to the form (1, 0, 0) by using the gate

TOF (a; b) in the end of cascade.

• Step 5. Gate FRE(a; b, c) assigned to the end of cascade or to the beginning of

cascade makes the same change; it brings (1, 1, 0) to the desired form (1, 0, 1).

Since this step is the last (column S6 matches the input column exactly), this

equivalence of assigning a gate to the end of cascade and its beginning makes

sense: in a circuit the last element of a part built from the beginning is the first

element of the cascade part built from its end. In other words, the two parts of

the cascade meet at gate FRE(a; b, c).

• Steps 6,7 are empty.

The cascade consists of 7 gates, and the circuit is shown in Fig.5.3(b).

102



Chapter 5. Toffoli-Fredkin Synthesis

In Out S0 S1 S2 S3 S4 S5

000 111 000 000 000 000 000 000

001 001 010 001 001 001 001 001

010 100 110 101 010 010 010 010

011 011 101 110 111 011 011 011

100 000 111 111 110 110 100 100

101 010 001 010 100 100 110 101

110 110 100 100 011 111 101 110

111 101 011 011 101 101 111 111

apply →T (a) ←F (b, c) ←F (a, b) →F (b; a, c) ←T (a; b) →F (a; b, c)

gates: ←T (b; c)

∗ Toffoli gates are coded with letter “T”, and Fredkin with “F”.

Table 5.3: Bidirectional approach synthesis.

5.3.1 Handling permutations

By permuting the output patterns, one can achieve a reduced cost for the resulting

circuit. The output pattern permutation is the result of applying a certain number

of SWAPs to the end of the cascade, thus, to achieve a fair comparison of the costs of

circuits built with and without output permutations, the corresponding number of swaps

should be added to the cost of a circuit built with output permutations. Currently, we

have no rule for choosing the best permutation, and so for small functions we try all

possibilities.

103



Chapter 5. Toffoli-Fredkin Synthesis

a
b
c

a
b
c

(a) (b)

Figure 5.3: Circuits.

5.3.2 Multiple output and incompletely specified functions

For multiple output functions there are two ways of creating a reversible circuit. First,

make the function reversible using Theorem 1, and then run the bidirectional algorithm.

Second, find the minimum amount of garbage and add garbage outputs without speci-

fying them. Then, take this incompletely specified reversible function and start running

the forward method by specifying the output patterns as soon as we want to assign a

gate in a way which produces the minimum cost circuit possible. Actual procedures of

assigning the output patterns so that it minimizes the network cost are currently under

investigation.

The following a rough idea on how the computation can be performed; the actual

implementation is currently under investigation and is not part of the presented thesis.

5.4 Template simplification tool

We keep the same definition of a template as the one introduced in Section 4.3. Namely,

let a size m template be a sequence of m gates (a circuit) which realizes the identity

function.

The set of Toffoli and Fredkin gates is more complicated than the set of Toffoli gates

only, therefore we redefine the notion of a class of templates.

104



Chapter 5. Toffoli-Fredkin Synthesis

Definition 11. A class of templates of size m is a circuit G(S1; B1) G(S2; B2)...

G(Sm; Bm) with the set of logical conditions on sets S1, B1, S2, B2, ..., Sm, Bm. When a

class is mentioned, it may be written as Gi1 Gi2 ... Gim , where ik = ij iff Sk = Sj and

Bk = Bj .

This approach to defining a class is useful for its short classification, but it is difficult

to visualize. Thus, we introduce the following notation.

Definition 12. A class can be written as a set of disjoint formulas G1(S1, B1) G2(S2, B2)

...Gm(Sm, Bm), where:

• according to the number of elements in Bi, Gi is written as TOF (|Bi| = 1) or

FRE(|Bi| = 2);

• Si is written as a union of sets (Cik) and single variables (tij ) each of which is a

set of one variable only: Si = Ci1 + Ci2 + ... + Cik + ti1 + ti2 + ... + tij ;

• if |Bi| = 1, it is written as single variable, tj ; if |Bi| = 1 it is written as union

tj + tk;

• all the sets are disjoint: Ci ∩ Cj = ∅, Cj ∩ tk = ∅, tk ∩ tl = ∅.

In order to classify templates, we need to discuss the box notation in more detail. If

a box is found in a network, there are certain rules of changing the network when the

operation EXOR or SWAP is assigned to the box.

• If the assignment was EXOR, then the box is substituted with the EXOR symbol.

If the line with the box assigned EXOR contains other box symbols, they are all

105



Chapter 5. Toffoli-Fredkin Synthesis

C
t

C
t
t1

2
1

1

1 ?

C
B

1

1 ?
, =

Figure 5.4: Class AA.

substituted with EXOR.

• If the assignment was SWAP, the line with the box becomes two lines where the

symbol SWAP is placed. Every occurrence of a control on the line with this box

is substituted with two lines and two controls on them, and every occurrence of

other box symbols is substituted with SWAP. The EXOR symbol cannot appear

on this line, since (by the first item) had it been there, all the boxes would be

substituted with EXOR; thus a SWAP substitution would be incorrect initially.

Further, if a box symbol in a circuit is not specified, it can be either EXOR or SWAP,

which are substituted into the circuit by the above rules.

m=1. There are no templates of size 1, since every gate changes at least two input

patterns.

m=2. There is one class of templates of size 2, the duplication deletion rule, AA,

which is defined as G(S1, B1) G(S1, B1). This class is a generalization of the duplication

deletion rule and it is truth for any two (Toffoli-Fredkin) gates. In disjoint notations this

class can be written as two formulas, one for two Toffoli gates and one for two Fredkin

gates: TOF (C1, t1) TOF (C1, t1) and FRE(C1, t1 + t2) FRE(C1, t1 + t2) as shown in

Fig. 5.4.

m=3. There are no templates of size 3.

106



Chapter 5. Toffoli-Fredkin Synthesis

?C1 ?

C2

C3

C4

? ?
?C1

?C2

C3

C4

?
?

C5

C1

C2

C3

1

2t
t

C1

C2

C3

1

2t
t

? ?

C4

? ?

C4

Figure 5.5: Class ABAB.

m=4. There are several classes of size 4 templates.

• A very important class is the passing rule, a class ABAB G(S1; B1) G(S2; B2)

G(S1; B1) G(S2; B2) with conditions: (S2 ∩ B1 = ∅, S1 ∩ B2 = ∅, B1 = B2) OR

(S2 ∩B1 = ∅, S1 ∩B2 = ∅, B1 ∩B2 = ∅) OR (|B1| = 2, B1 ⊆ S2). There can be a

shorter but less formal condition: the template G(S1, B1) G(S2, B2) G(S1, B1) G(S2, B2)

exists if for the first (if there are two with this property) line containing a control

(dot) and a BOX, the BOX is SWAP, and sets B1, B2 either disjoint or equal.

All the cases are shown in Fig.5.5. The first part of the OR condition covers the

first picture, the second OR condition describes the second. The third and fourth

pictures illustrate the case when the third condition holds.

There is a regular procedure for finding all templates of the form ABAB. Since

ABAB is the identity, the circuit produced by the sequence of gates AB should be

a self-inverse permutation. The search for templates of the form ABAB becomes

equivalent to the search for self-inverse permutations that can be realized as a set

of two different gates.

• The following sets of templates can be treated as one, two or even three classes,

depending on one’s view of the templates. The sets are:

107



Chapter 5. Toffoli-Fredkin Synthesis

– Semi-passing rule: a group FAFB of gates FRE(S1; B1) G(S2; B2) FRE(S1; B1)

G(S3; B3) with conditions S1 ⊆ S2, B2 6⊆ S1, and the gate G(S3; B3) is the

gate G(S2; B2) with controls and targets permuted according to the swap

operation defined by the 2-bit set B1. This description clarifies the name of

the group; if the template is applied for parameter k = 2, the change of the

network that we see can be described as: gates FRE(S1; B1) and G(S2; B2)

are interchanged, but gate G(S2; B2) may be slightly changed. The above

group of gates has a non-empty intersection with the passing rule class. For

example, the second template in Fig. 5.5, where the first box is Fredkin and

the second is Toffoli and the set C4 is empty, is a template of a semi-passing

group. The new templates added by this group are shown in Fig. 5.6. Note

that some of the semi-passes leave the gate G(S2; B2) unchanged. Also, if

we take the set of all semi-passing group templates and subtract the set of

all templates of the passing rule group, the resulting set will have the semi-

passing group templates where the second gate always changes.

– A group which can be treated as a definition of the Fredkin gate in terms

of Toffoli gate networks, TTTF , TOF (S1; B1) TOF (S2; B2) TOF (S1; B1)

FRE(S3; B3) with conditions B1 ⊆ S2, B2 ⊆ S1, B1 6= B2, (S1 \ B1) ⊆

(S2 \B2), S3 = S2 \ (B1∪B2), B3 = B1∪B2. Pictorial representation of this

class can be found in Fig.5.7.

– As a link between the semi-passing rule and Fredkin definition groups, we

have the group of templates FFFF, FRE(S1; B1) FRE(S2; B2) FRE(S1; B1)

FRE(S3; B3) with conditions: |S1 ∩ S2| = 1, S1 ∩ B2 6= ∅, S1 ∩ B2 6=

108



Chapter 5. Toffoli-Fredkin Synthesis

t

1

C1

C2

t
t

2

3 t

1

C1

C2

t
t

2

3

C
C
t
t

1

2

1

2

t

C
C

t
t

1

2

3

1

2

C
C
t
t

1

2

1

2

t

C
C

t
t

1

2

3

1

2

t

C
C

t
t

1

2

3

1

2

C
C1

2

t
t
t

3

1

2

t4

Figure 5.6: A group of semi passes.

C
C
t
t

1

2

1

2

Figure 5.7: Fredkin definition group.

109



Chapter 5. Toffoli-Fredkin Synthesis

t

C
C

t
t

1

2

3

1

2

Figure 5.8: Link group.

∅, (S1 ∪ B1) ⊆ (S2 ∪ B2) and FRE(S3; B3) is the gate FRE(S1; B1) with

the controls and targets permuted by the swap defined by the set B1 (Fig.

5.8). This group is not a part of the semi-passing rule, since, for instance,

condition S1 ∈ S2 does not hold, but essentially it is doing the same thing.

For a certain configuration of the first two gates, it allows passing of one gate

through the other by permuting the elements of one gate. From the other

point of view, this group is similar to the Fredkin definition group in the sense

that if we cut out line t2 and each occurrence of half of the SWAP (which

requires two lines, so the half is one line) changes with an EXOR symbol, it

results in the Fredkin definition group.

Given these three groups, the classification is not unique. We suggest unifying the

semi-passing group with the link group under the name of semi-passing class

and leaving the Fredkin definition group as a separate Fredkin definition class.

Other classifications are possible, with the only condition that the semi-passing

and Fredkin definition groups can be in the same class only if the link group is a

part of it.

m=5. Amazingly, there is only one class of templates of size 5. Class ATATB,

G(S1; B1) TOF (S2; B2) G(S1; B1) TOF (S2; B2) G(S3; B3) has conditions B2 ⊆ S1, B1 6⊆

110



Chapter 5. Toffoli-Fredkin Synthesis

?

C2

C3

? ?

t
C1

1

C4

Figure 5.9: Class ATATB.

S2, S3 = (S1 ∪ S2) \ B2, B3 = B1. Although this is the largest class we have, and one

would expect to see fewer applications of larger classes, since it is harder to match them

then to match smaller classes, in practice this class is the most useful. The pictorial

representation of this class is shown in Fig.5.9.

m=6. Using the idea of regular search for the ABAB type templates, it was possi-

ble to find and generalize a template of size 6 of the form ABCABC, where ABC is a

self-inverse permutation. Using this idea, we have the template FTTFTT of the form

FRE(S1; B1) TOF (S2; B2) TOF (S3; B3) FRE(S1; B1) TOF (S2; B2) TOF (S3; B3) with

conditions B2 ⊆ B1, S2 ∩ B1 = ∅, B3 ⊆ B1, B2 6= B1, S3 ∩ B1 = ∅, (S2 4 S3) ⊆ S1.

This class is illustrated in Fig. 5.10. The program which searches for the self dual func-

tions of size three has found only those functions that are described by the presented

template or circuits which can be simplified by other templates. Thus, we conclude that

we have found all the size 3 templates of the form ABCABC.

5.5 Results

We wrote a program which synthesizes a circuit using the bidirectional algorithm and

then uses the template tool as a primary circuit simplification procedure. Logically, it

consists of the following parts.

111



Chapter 5. Toffoli-Fredkin Synthesis

C1

C2

C3

1

2t
t

C4

C5

Figure 5.10: Class FTTFTT .

1. Synthesize the initial circuit by the bidirectional algorithm.

2. Apply templates. Currently, the template application part looks for a sequence of

gates which matches the first k elements of each template, read in both directions

starting from each gate. When a gate in the circuit is matched to a gate of a

template, the program tries to move it using the moving rule and semi-passing

group template application. The gate is moved unchanged (which is a simplifica-

tion from the point of view of the program implementation, that is, probably not

optimal from the point of view of circuit simplification). When and if k gates for

k ≥ m
2 are found and moved together, the template is applied. Such a procedure

is used in both directions for one circuit, forward and backward.

3. Functions which are different output permutations of the function to be realized

are synthesized and run through the template simplification procedure.

4. For the second test, a minimal circuit out of the circuit for the function itself and

a reverse circuit for the inverse of the function is chosen (see Lemma 1 for the

explanation of the correctness of such operation).

112



Chapter 5. Toffoli-Fredkin Synthesis

a
b
c

a
b
c

(a) (b)

Figure 5.11: Simplified networks.

As the first test for our program, we apply the template tool to simplify the circuits

from Fig. 5.3, which results in the circuits given in Fig. 5.11. It can be observed that

the template application drops the cost of the first circuit from 12 to 7 and the cost

of the second from 7 to 6. The produced circuits realize the same function, but one is

smaller than the other. This happens because of the template application parameter

restriction k ≥ m
2 . This way, a template application does not increase the number of

gates in the circuit (which is much easier to program), but there may be cases when

such a template application does not “notice” a better simplification, and this is the

exact case. The first circuit of Fig. 5.11 can be transformed to the form of the second,

if the template application parameter k is allowed to be less than half of the template

size. The procedure which brings the first circuit to the form of the second is illustrated

in Fig. 5.12. First, we apply template size 5 for 2 highlighted gates CNOT and NOT.

This creates 2 NOTs followed by CNOT. Next, we match template size 6 and apply it

for the parameter k = 4 (highlighted gates). This replaces the 4 gates with two: NOT

and Fredkin. Next, we use the moving rule to pass NOT backwards through SWAP

(highlighted gates). Finally, we use the Fredkin definition group with parameter k = 2

to bring the circuit to the form equivalent to shown in Fig. 5.11b.

113



Chapter 5. Toffoli-Fredkin Synthesis

Figure 5.12: Simplifying one network into the other.

As a second experiment we ran our program exhaustively for all reversible functions of 3

variables and compared the results of our algorithm to the results of optimal synthesis.

Table 5.4 shows how many functions of size 3 can be realized with k = 0..10 gates

in optimal synthesis with the model gates NOT, CNOT, Toffoli, SWAP and Fredkin,

optimal synthesis with the model gates NOT, CNOT and Toffoli (calculated in [74, 75]),

optimal synthesis with the model gates NOT, CNOT, Toffoli and SWAP (calculated in

[74, 75]), our previous results of the heuristic synthesis presented in [12] and for the

presented algorithm realization. WA shows the weighted average of the circuit size

of a three variable reversible function. Note that our algorithm produces the circuits

which on average are 105.9% of the optimal size, which in comparison with the previous

realization (111.5%) is almost twice as close to the optimal. The 105.9% difference from

the optimal circuit allows us to say that our algorithm produces near optimal circuits

for reversible functions of a small number of variables. Also note that even the heuristic

synthesis of Toffoli/Fredkin networks (Algorithm column) produces a better weighted

average than the synthesis of Toffoli networks (NCT column) only.

114



Chapter 5. Toffoli-Fredkin Synthesis

Size Optimal NCT NCTS CCECE Algorithm

0 1 1 1 1 1

1 18 12 15 18 18

2 184 102 134 175 184

3 1318 625 844 1105 1290

4 6474 2780 3752 4437 5680

5 17695 8921 11194 10595 13209

6 14134 17049 17531 13606 13914

7 496 10253 6817 8419 5503

8 0 577 32 1877 512

9 0 0 0 86 9

10 0 0 0 1 0

WA: 5.134 5.866 5.629 5.724 5.437

Table 5.4: Results

5.6 Conclusion

The chapter starts with an observation that the usage of Fredkin gates is often beneficial.

Thus, we generalized the algorithm from the previous chapter to use both Toffoli and

Fredkin gates. When the circuit is created, the template tool is applied to simplify

it. Again, templates based on the Toffoli gates give only a small part of the possible

simplification. Therefore, templates with Toffoli and Fredkin gates were found, classified

and applied. Note that the set of model gates is large, therefore a new definition of a class

was chosen to keep the number of classes small and be able to unite similar templates

115



Chapter 5. Toffoli-Fredkin Synthesis

into one class. The results that we obtain for the heuristic synthesis of Toffoli-Fredkin

family are competitive with other methods. They are only 105.9% higher than the

optimal results for Toffoli-Fredkin synthesis and better than the optimal results for

Toffoli synthesis (for number of variables n = 3).

116



Chapter 6
Asymptotically Optimal Regular
Synthesis

The synthesis algorithm introduced in Chapter 3 was later transformed into an algorithm

to synthesize Toffoli networks in Chapter 4, and modified one more time in Chapter 5

to use Fredkin gates. It is hard to recognize the old algorithm in it, but historically

the Toffoli synthesis algorithm arrived as a modification of the theoretical synthesis

algorithm for RCMG model. Further modification of this algorithm (an algorithm which

will handle “don’t cares”) is under investigation. The Miller gate is known to have a cost

of 7 in quantum technology, which is comparable to the costs of well-known Toffoli and

Fredkin gates. It also happens that the Miller gate can be nicely used by the algorithm.

The work on the incorporation of the Miller gate into the algorithm refers to my further

research. In this chapter we develop another modification of the algorithm, which is

asymptotically optimal (from the point of view of gate count).

To our best knowledge, not much has been done in regular reversible logic synthesis

of a multiple output Boolean function. Authors of [45, 11, 51, 74, 75] suggest regular

synthesis methods, but they usually produce large networks when applied as formulated

and are not asymptotically optimal. Although asymptotic optimality does not mean

117



Chapter 6. Asymptotically Optimal Regular Synthesis

absolute minimality of the circuit produced by a method, the results of asymptotically

minimal methods can be used to synthesize “hard” functions.

As an illustration of usefulness of the asymptotically optimal algorithms, note that

throughout the history of computer circuit synthesis, examples of manufactured circuits

with cost higher than the corresponding proven asymptotic upper bound was found.

Since the current versions of the algorithm work with Toffoli and Fredkin gates only

and are not asymptotically optimal, a new set of gates for which the modification will

be built are needed.

Definition 13. An mEXOR gate TOF (C, T ), where C∩T = ∅ and T = {xj1 , xj1 , ..., xjm}

is a single gate that is equivalent to the network TOF (C, xj1) TOF (C, xj2)... TOF (C, xjm).

We assume that the reversible cost of a single mEXOR gate is one. A pictorial repre-

sentation of a mEXOR gate is shown in Figure 6.1. The notation does not reflect the

actual structure of the gate, which is discussed in Section 6.1. In several sources (for

example, [56, 67, 79]) a CNOT gate with multiple EXOR signs was used as a notation

for a cascade of CNOTs with the same control and different targets. The gate that we

propose in this section is a separate and general object. Its structure is analyzed in the

following section.

6.1 Quantum Cost of the mEXOR gate

Quantum cost differs from the defined reversible cost, since it refers to how hard it

is to realize a gate with an existing technology (in this case quantum). It would be

interesting to analyze the quantum cost of the introduced gates in comparison to the

118



Chapter 6. Asymptotically Optimal Regular Synthesis

x
x
x
x
x

1

2

3

4

5

Figure 6.1: Example of a mEXOR Toffoli gate.

quantum cost of the known gates. We choose generalized Toffoli gates for the quantum

cost comparison, since the introduced gates appear to be their natural generalization.

The problem of building quantum blocks to realize Toffoli gates was investigated by

many authors. For the comparison of quantum cost of Toffoli and mEXOR Toffoli

gates we will use results from [4]. For other implementations the costs can easily be

recalculated.

Theorem 7. The quantum cost for a mEXOR gate TOF (C; T ), T = {xj1 , xj1 , ..., xjm}

is |TOF (C, t)| + 2(m − 1), where TOF (C, t) is a Toffoli gate with a single target.

Proof. The picture in Figure 6.2 illustrates the construction of a circuit for TOF (C, T )

given a circuit for a generalized Toffoli gate, shown as a box. Sometimes, a Toffoli gate

realization requires additional garbage bits to produce a smaller network. These bits

are used in the box, but the initial states of the bits do not have to be set to 0 first,

and the output on these bits is reset to the initial input values (as it is done in [4]). For

example, the generalized Toffoli gate with 8 controls can be realized with cost 509 if no

garbage bits are used, or with a cost of 172 elementary quantum operations if 4 garbage

bits are allowed as shown in Table 6.1.

119



Chapter 6. Asymptotically Optimal Regular Synthesis

=

controls

garbage for Toffoli
realization

targets

Figure 6.2: Construction of a single mEXOR gate.

The procedure of building an mEXOR gate TOF (C, T ) does not require any additional

garbage bits and uses 2(m − 1) CNOT gates. The procedure also does not require the

pre-setting of garbage bits and returns them unchanged (according to computations

done in [4]). ¥

Table 6.1 shows the cost comparison for Toffoli and mEXOR gates using the above

theorem as a basis for the calculations. The quantum cost of Toffoli gates is calculated

based on [4]. The absolute quantum complexities of Toffoli and 2-target, 4-target and

8-target mEXOR gates with the same number of controls are given in columns Toffoli,

2, 4 and 8. The relative values of mEXOR gate complexities with respect to the cost

of the corresponding Toffoli gate are shown in columns Rel 2, Rel 4 and Rel 8. The

cost of mEXOR gates with zero or one control is m, since it can be implemented with

m NOT or CNOT gates (each has a cost of one).

The following examples illustrate how Theorem 7 can be used to calculate the quantum

costs of mEXOR gates.

Example 18. The mEXOR gate shown in Figure 6.1 has 3 controls and 2 targets. Thus,

120



Chapter 6. Asymptotically Optimal Regular Synthesis

#of controls garbage Toffoli 2 4 8 Rel 2 Rel 4 Rel 8

2 0 7 9 13 21 1.286 1.857 3

3 0 13 15 19 27 1.154 1.462 2.077

4 0 29 31 35 43 1.069 1.207 1.483

5 0 61 63 67 75 1.033 1.098 1.23

6 0 125 127 131 139 1.016 1.048 1.112

6 4 112 114 118 126 1.018 1.054 1.125

7 0 253 255 259 267 1.008 1.024 1.055

7 3 124 126 130 138 1.016 1.048 1.113

8 0 509 511 515 523 1.004 1.012 1.028

8 4 172 174 178 186 1.012 1.035 1.081

Table 6.1: Cost comparison.

its quantum cost is 15, which is approximately 1.154 of the cost of a Toffoli gate with

the same number of controls. The straightforward realization of this mEXOR gate as a

set of two Toffoli gates would have cost 2 ∗ 13 = 26, which is approximately 1.733 times

higher than the cost in the suggested approach.

Example 19. The higher the number of controls, the more optimistic the results of the

comparison. For an mEXOR gate with 10 controls and 10 targets its cost would be 286,

which is approximately 1.067 of the cost of the corresponding Toffoli gate, and almost

10 (9.37) times better than the straightforward realization.

121



Chapter 6. Asymptotically Optimal Regular Synthesis

6.2 Asymptotically Optimal Reversible Synthesis Method

The organization of this section is as follows: we describe the reversible synthesis

method, then define the Shannon function and prove that its lower boundary has the

same cost order as the upper boundary for the cost of the algorithm. This allows us to

say that the reversible synthesis algorithm is asymptotically optimal.

The following algorithm is very similar to the modifications discussed earlier. The idea

is the usage of the Toffoli gate algorithm modification from the Chapter 4 where the

Toffoli gates with the same set of controls are united to form one mEXOR gate.

Step 0. The top part of the left side of the truth table consists of the input pattern with

the lowest order, (0, 0, ..., 0) which represents the integer 0 as a binary expression. The

corresponding pattern in the output side, (b1, b2, ..., bn) does not necessarily consist of

all zeros, therefore it must be brought to a form such that it is equal to the input part.

To do so we use one mEXOR gate, TOF (∅; bi1 , bi2 , ..., bik), where {bi1 , bi2 , ..., bik} =

{bj |bj = 1, 1 ≤ j ≤ n}.

Step k. The input part of the truth table has the pattern (a1, a2, ..., an), which

represents the binary expansion of the integer k. The output part has the pattern

(b1, b2, ..., bn) which, in general, differs from (a1, a2, ..., an). For any Boolean pattern

(x1, x2, ..., xn) we define the set X1 = {xj |xj = 1, 1 ≤ j ≤ n}, a pattern consisting of all

1-bits of (x1, x2, ..., xn). In order to bring (b1, b2, ..., bn) to the form (a1, a2, ..., an), we

need at most two mEXOR gates:

1. Increase ones. We apply mEXOR gate TOF (B1; A1 \B1) to bring (b1, b2, ..., bn)

122



Chapter 6. Asymptotically Optimal Regular Synthesis

to the form (c1, c2, ..., cn) = (a1∨b1, a2∨b2, ..., an∨bn); we change the output part

of the truth table as dictated by the gate.

2. Decrease ones. We apply mEXOR gate TOF (A1; C1\A1) to bring (c1, c2, ..., cn)

to the form (a1, a2, ..., an); we change the output part of the truth table as dictated

by the gate.

Note that during this step all the patterns previously put at their places were not altered:

• (b1, b2, ..., bn) º (a1, a2, ..., an) since all the patterns in the order less than (a1, a2, ..., an)

are already at their correct places in the upper part of the truth table.

• It follows from the definition of (c1, c2, ..., cn), (c1, c2, ..., cn) º (b1, b2, ..., bn) º

(a1, a2, ..., an) ⇒ (c1, c2, ..., cn) º (a1, a2, ..., an).

Step 2n − 1. Actually, there are no operations at the last step, since if all of the

2n − 1 patterns with lower order are on their places, there is automatically only one

spot available for the last pattern, (1, 1, ..., 1).

Complexity analysis. An upper bound on the complexity of the presented algorithm’s

output is given by the formula 2n+1 − 4. Since there are 2n steps, and each requires

at most 2 gates to be added to the network, the total cost is 2 ∗ 2n. A more accurate

analysis shows that the first step adds at most one gate, the last step never adds a gate,

and the step before last uses at most one gate (similarly to what we had in the first

step), therefore the complexity decreases to 2n+1 − 4. This bound is reachable, so it

cannot be any smaller.

Example 20. We take a reversible function given as a truth table (columns Input and

Output of the Table 6.2) with the variables named x1, x2, x3, and x4. Its output is the

123



Chapter 6. Asymptotically Optimal Regular Synthesis

input with permuted pattern 0011 and 1100.

The algorithm proceeds as follows:

• Steps 0-2. Since the patterns match, we do nothing.

• Step 3. Input pattern 0011 does not match output pattern 1100.

– Increase ones. We apply mEXOR gate TOF (x1, x2; x3, x4) to bring pattern

1100 to the form 1111. The result is shown in column 3I.

– Decrease ones. We apply mEXOR gate TOF (x3, x4; x1, x2) to bring pattern

1111 to the desired form of 0011. The result is shown in column 3D.

• Steps 4-6. We do nothing, since everything matches.

• Step 7. Pattern 1011 does not match the desired 0111.

– Increase ones. We apply mEXOR gate TOF (x1, x3, x4; x2). The result is

shown in 7I.

– Decrease ones. We apply mEXOR gate TOF (x2, x3, x4; x1); see column 7D.

• Step 11. 1111 does not match the desired 1011. We decrease the ones by applying

TOF (x1, x3, x4; x2). The result of operation is shown in 11D.

• Step 12. Finally, we match the last pattern by applying mEXOR gate TOF (x1, x2; x3, x4).

The 6 gates obtained above are shown as a network in Figure 6.3. Note that the gates

are in reverse order.

In quantum technology the cost of Toffoli and mEXOR gates grows quadratically with

the number of controls when no garbage is allowed, and linearly as 48n−212(n ≥ 7) if a

124



Chapter 6. Asymptotically Optimal Regular Synthesis

x
x
x
x

1

2

3

4

Figure 6.3: mEXOR gate network.

certain amount of garbage is permitted [4]. It is clearly beneficial to have fewer controls.

In the following we provide a modification of the algorithm which favors smaller gates.

Quantum modification. We update the “increase ones” step as follows. We apply

mEXOR gate TOF (D1; B1 \ A1) to bring (b1, b2, ..., bn) to the form (c1, c2, ..., cn) =

(a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn). Where the set D1 is defined as follows: D = min{D =

(d1, d2, ..., dn)|D1 ⊆ B1, (d1, d2, ..., dn) º (a1, a2, ..., an)}.

The above simplification procedure allows us to choose a smaller gate for the “increase

ones” step. Although it does not necessarily mean that the cost of the network will

decrease, it may decrease if the operation is used wisely. Some other modifications

of the algorithm, when not necessarily minimal subsets D are chosen, may lead to a

simpler network, but it is hard to specify which set D to choose. Exhaustive search is

almost impossible, since the branching factor will be too high, so we propose a heuristics

approach for further modifications.

We illustrate the algorithm and its quantum modification with an example where the

usage of quantum modification is beneficial. Examples where it will not be beneficial

also exist. We take the function specified by the truth table in Input-Output columns,

with the names of variables a, b, c written left-to-right (see Table 6.3).

125



Chapter 6. Asymptotically Optimal Regular Synthesis

For the basic approach, we find the first pattern of the output part of the truth table

which differs from the corresponding input pattern. It is 101. We increase the ones by

applying TOF (a, c; b) (result is shown in column BI), so the pattern becomes 111. We

next decrease the ones by applying TOF (b, c; a) and update the information (column

BD1). Finally, we decrease the ones of 111 to the desired input pattern 011 by applying

TOF (a, c; b).

For the quantum modification, we select the smaller gate (first step), TOF (a; b), to

increase the ones of 101 (column QI). At the second step we decrease the ones of 111

by applying TOF (b, c; a) (result is shown in QD1 column). Finally, we use TOF (a; b)

to decrease the ones of 110 to match input pattern 100.

Quantum cost analysis: the basic approach uses 3 Toffoli gates, which results in the

total cost of 21, whereas the quantum modification has cost 9.

Note that the function given in the above example can be realized with one gate, namely

the Fredkin gate.

Definition 14. The Shannon function L(n) is the maximal number of gates required

to realize a reversible function of n variables with an optimal network.

We have just proved an upper bound L(n) ≤ 2n+1 − 4, which is L(n) ∈ O(2n). We next

prove a lower bound L(n) ≥ C ∗ 2n for a positive constant C.

Lemma 13. The number of distinct mEXOR gates with n variables is (3n − 2n).

Proof. Each of the variables may participate in a gate as a control or target, or may

126



Chapter 6. Asymptotically Optimal Regular Synthesis

not be a part of a gate. This gives the possibility of 3n gates. However, among those

3n some will not contain any target bits, and therefore will not be a mEXOR gate. The

number of these last will be 2n (each bit is allowed to be either in control or is not

present). Thus, the answer is given by the formula (3n − 2n). ¥

It is interesting to note that an mEXOR gate with zero controls is used at most once in

the algorithm (Step 0), but the number of them is exponential, namely 2n. It happens

that considering these gates as a set of NOTs does not lead to a change of asymptotic

behavior, which is the focus of this section.

Theorem 8. L(n) ≥ 2n

ln 3 + o(2n).

Proof. The number of all reversible functions of n variables is 2n! (as the number of

permutations of 2n elements). The total number of mEXOR gates is 3n−2n. Supposing

that by taking all the possible cascades of mEXOR gates we get different functions

(which is, of course, not true), the complexity of the hardest to realize function is given

by the formula log(3n−2n)(2n!). Since some cascades built during such process will give

equal functions, the expression log(3n−2n)(2n!) gives a lower bound for the cost of the

most expensive to build reversible function. This expression can be simplified using

Stirling’s formula to the form 2n

ln 3 + o(2n). ¥

6.3 Conclusion

In this chapter the first asymptotically optimal algorithm in reversible logic synthe-

sis theory was presented. The results of this section are mostly theoretical, although

they may be used in applications. This is the first (in literature) result on asymptotic

127



Chapter 6. Asymptotically Optimal Regular Synthesis

optimality of the gate count in a reversible synthesis procedure.

128



Chapter 6. Asymptotically Optimal Regular Synthesis

Input Output 3I 3D 7I 7D 11D 12D

0000 0000 0000 0000 0000 0000 0000 0000

0001 0001 0001 0001 0001 0001 0001 0001

0010 0010 0010 0010 0010 0010 0010 0010

0011 1100 1111 0011 0011 0011 0011 0011

0100 0100 0100 0100 0100 0100 0100 0100

0101 0101 0101 0101 0101 0101 0101 0101

0110 0110 0110 0110 0110 0110 0110 0110

0111 0111 0111 1011 1111 0111 0111 0111

1000 1000 1000 1000 1000 1000 1000 1000

1001 1001 1001 1001 1001 1001 1001 1001

1010 1010 1010 1010 1010 1010 1010 1010

1011 1011 1011 0111 0111 1111 1011 1011

1100 0011 0011 1111 1011 1011 1111 1100

1101 1101 1110 1110 1110 1110 1110 1101

1110 1110 1101 1101 1101 1101 1101 1110

1111 1111 1100 1100 1100 1100 1100 1111

Table 6.2: Circuit building process for a four variable function.

129



Chapter 6. Asymptotically Optimal Regular Synthesis

Input Output BI BD1 BD2 Input Output QI QD1 QD2

000 000 000 000 000 000 000 000 000 000

001 001 001 001 001 001 001 001 001 001

010 010 010 010 010 010 010 010 010 010

011 101 111 011 011 011 101 111 011 011

100 100 100 100 100 100 100 110 110 100

101 011 011 111 101 101 011 011 111 101

110 110 110 110 110 110 110 100 100 110

111 111 101 101 111 111 111 101 101 111

Table 6.3: Circuit for the basic approach.

130



Chapter 7
Dynamic Programming Algorithms as
Reversible Circuits: Symmetric
Function Realization

In this chapter we give a general idea of how to realize a dynamic programming algorithm

as a reversible circuit. This realization is not tied to a specific reversible design model

and technology or a class of dynamic algorithms; it shows an approach for such synthesis.

As an illustration of this approach, a class of all symmetric functions is realized in a

dynamic programming algorithm manner as a reversible circuit of Toffoli elements. The

garbage, quantum and reversible costs of the presented implementation are calculated

and compared to the costs of previously described reversible synthesis methods (both

the reversible synthesis methods presented in this thesis, as well as those presented in

works of other authors).

General recursion and dynamic programming algorithms [9, 17, 19] form a very impor-

tant class of algorithms. Many real-world problems can be solved by dynamic program-

ming algorithms: finding a value for a symmetric function, algorithms on strings, and

most approximation methods.

The main idea of a dynamic programming algorithm is the recursive decomposition of

131



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

the problem f into a set of other problems, where the answer for f can be found in terms

of a “simple” operation on the answers of subproblems. When the dynamic algorithm is

completely specified, a set of operations needed to make a step of the calculation, and a

set of subfunctions needed for the computation is defined. Further, to build a reversible

circuit we will realize each of the algorithm operations as a reversible cascade. But first,

we need to find the garbage cost of the implementation.

Given a problem (function) f with Boolean inputs (x1, x2, ..., xn) and a dynamic algo-

rithm that terminates after S steps of calculation, we first calculate the two numbers:

• M = maxs=1..S(ms), where ms is the number of Boolean values (intermediate

storage) needed in addition to the input values in order to complete the calculation

starting at step s. That is, M represents the maximum number of subfunction

values which are needed in order to complete the algorithm calculation starting

from step s. For simplicity assume that on each step of the algorithm only one

subfunction value is updated.

• Given a reversible design model and the set of all operations the dynamic algorithm

performs at one step, we find the number G = maxs=1..S(gs), where gs is the

minimal amount of garbage needed for the reversible implementation of the s-th

step of the algorithm in terms of the considered model.

When the two numbers are determined, the circuit is constructed as follows:

• We create the set of input constants size M + G and assign zero values to all

of them. M will be used to store intermediate results of the calculation and the

answer itself, and the G values are needed for the calculation.

132



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

• We use the reversible design model to create a circuit for each of the S steps of the

specified dynamic programming algorithm. The circuit changes one subfunction

value at a time.

When the circuit is built, the outputs which contain the answer are specified by the

dynamic algorithm.

The amount of the resulting reversible design garbage, as well as the final cost of the

network will depend on the design of the dynamic programming algorithm and strength

of the reversible design model.

Note that a benefit of using this method comes from the following consideration. If a

multiple output function to be realized has outputs for which the dynamic program-

ming algorithm is known and those for which the dynamic programming algorithm

is not known, the dynamic programming realizable outputs can be built first by the

suggested method. The resulting circuit passes the input values through unchanged.

Therefore, the remaining outputs can be built by any other procedure without any

special preprocessing.

7.1 Application: Multiple Output Symmetric Functions

To run the application, we need reversible logic gates (design model), a synthesis model,

and the dynamic programming algorithm. We define the model by taking the most

popular of reversible logic gates: TOF (a), TOF (a; b), and TOF (a, b; c). The set of

these gates was shown to be complete. This is a minimally complete set of gates in the

sense that excluding any one from this set will result in incompleteness if no garbage

133



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

addition is allowed. We do not choose any specific design procedure as it will be showed

that the implementation of a single step of the dynamic programming algorithm is very

simple.

To design a dynamic programming algorithm we need several definitions.

Definition 15. Multiple output symmetric Boolean function
−→
F (x1, x2, ..., xn) =

(y1, y2, ..., ym) is such a function that
−→
F (x1, x2, ..., xn) =

−→
F (π(x1, x2, ..., xn)), where π

is a permutation of n elements.

Definition 16. The σ-function σk
n(x1, x2, ..., xn) is defined as

⊕
{i1<i2<...<ik} xi1xi2 ...xik

for k = 0, 1, ..., n.

Lemma 14. Every symmetric function can be written as a linear combination (with

respect to operation EXOR) of not more than (n + 1) σ-functions.

Proof. There are (n+1) different σ-functions; all are linearly independent. In fact, their

kernels (set of inputs such that for each input the function is not equal to zero) do not

intersect, thus different linear combinations produce different functions. All σ-functions

are symmetric, and so are their linear combinations. The number of symmetric functions

of n variables is 2n+1, therefore the different linear combinations of σ-functions form

the set of all symmetric functions and each symmetric function has a unique linear form

made of σ-functions. ¥

Lemma 15. σk
n(x1, x2, ..., xn) = xnσk−1

n−1(x1, x2, ..., xn−1) ⊕ σk
n−1(x1, x2, ..., xn−1) for k ≥

2.

134



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

Proof. Observe that the first part of the right hand side has all the terms of degree

k which include variable xn as a multiple, while the second part has all the terms of

degree k which do not include the variable xn. Thus, the right hand side has all the

terms of degree k, which, by definition, forms the left hand side. ¥

Note that the statement of Lemma 15 holds for k = 1. The result for k = 1 will be used to

calculate σ1
n(x1, x2, ..., xn). Use Lemma 15 to form the dynamic programming algorithm

for calculating a symmetric function by saying that in order to build a multiple output

symmetric function, we first build the set of σ-functions recursively and then construct

the output vector as a linear combination of the outputs of dynamic programming

algorithm. Formally the algorithm works as follows:

1. create Boolean array sigma[1..n]=0;

2. for i=1 to n

3. for k=i down to 1

4. if k>1 sigma[k] = (sigma[k] + x[i]*sigma[k-1]) mod 2;

5. if k=1 sigma[k] = (sigma[k] + x[i]) mod 2;

6. end for;

7. end for.

We define the two numbers needed for calculation and build the circuit:

• In order to calculate σa
b (x1, x2, ..., xb) we need σa−1

b−1 (x1, x2, ..., xb−1) and σa
b−1(x1, x2, ..., xn),

and in order to continue and complete the calculations we will need σa−1
b−1 (x1, x2, ..., xb−1),

σa−2
b−1 (x1, x2, ..., xb−1), ..., σ1

b−1(x1, x2, ..., xb−1). If a = 1, we use the formula σ1
b (x1, x2, ..., xb) =

σ1
b−1(x1, x2, ..., xb−1)⊕xb. For a = 0 we do not create anything, since the addition

135



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

of a unit can be done in-place when the outputs are created by a single NOT gate.

Therefore, M = maxb=1,2,...,n(b) = n.

• For the intermediate calculations no garbage is needed, G=0. To calculate func-

tion σ1
b (x1, x2, ..., xb) we use the gate TOF (xb; σ1

b−1(x1, x2, ..., xb−1)) at line 4 of the

pseudocode. The function σ1
b−1(x1, x2, ..., xb−1) will not be used in further calcu-

lations, so we can overwrite it. To calculate σa
b (x1, x2, ..., xb), we use the gate

TOF (xb, σ
a
b−1(x1, x2, ..., xn);σa−1

b−1 (x1, x2, ..., xb−1)) at line 5 of the pseudocode.

Again, the function σa−1
b−1 (x1, x2, ..., xb−1) will not be used in further calculations,

so we can overwrite it.

When the dynamic programming part creates the set of outputs σk
n(x1, x2, ..., xn) for

k = 1, 2, .., n, we construct the output by including the needed σ-functions. Depending

on what the function is, we may or may not need to create the additional garbage

outputs. A greedy method may create m additional zero constants for the outputs. In

practice, a better solution is usually possible. The described synthesis algorithm allows

to formulate the following result.

Theorem 9. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym)

can be realized with the cost of:

• at most m NOT gates, at most n + mn CNOT gates, and n(n−1)
2 Toffoli gates;

• garbage of at most 2n bits.

Less garbage can be achieved if we notice that there is no need to create a special con-

stant line for σ1
b (x1, x2, ..., xb), which can be stored on the input line xb. This allows us to

136



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

decrease both garbage and reversible implementation costs by 1. Other garbage and cost

saving comes from the observation that if all the outputs can be composed of the first

k + 1 (2 ≤ k ≤ n) σ-functions σ0
n(x1, x2, ..., xn), σ1

n(x1, x2, ..., xn), ..., σk
n(x1, x2, ..., xn),

we do not need to run the dynamic programming algorithm to create the remaining

(n − k) σ-functions. These two observations allow us to formulate the following result:

Theorem 10. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym),

where a linear σ-function decomposition requires a function of maximal degree k

(2 ≤ k ≤ n) can be realized with the cost of:

• at most m NOT gates, at most n+mn−1 CNOT gates, and (2n−k)(k−1)
2 Toffoli

gates;

• garbage of at most n + k − 1 bits.

Another benefit of using this method comes from the following consideration. If a

multiple output function to be realized has both symmetric and non symmetric outputs,

the symmetric outputs can be realized first by the suggested method. Then, the set

of gates TOF (xn−1; xn) TOF (xn−2; xn−1) ... TOF (x2; x1) is applied to the end of the

cascade, which creates the whole set of unchanged inputs {x1, x2, ..., xn} on the first

n output lines of the cascade. Therefore, the remaining outputs can be built by any

other procedure. Such an operation adds (n− 1) gates to the cascade. If for the target

technology the cost of a single garbage bit is less than the cost of (n− 2) CNOT gates,

the very first approach when a special line is created for σ1(x1, x2, ..., xn) can be used.

Example 21. Take a multiple output function rd53.pla, which is the 5-input 3-output

symmetric function whose output is the binary representation of the number of ones in

137



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

x
x
x
x
x

s  =0
s  =0
s  =0

1

2

3

4

5

2

3

4

s =1

g

g
g
g
g1
2

3

4

5

1

2

3

y

y
y

Figure 7.1: Circuit for rd53

its input. First, find its σ-representation (σ4, σ2, σ1). Notice, that σ5-function must not

be built. Build the dynamic programming part. Observe, that the gates which affect a

garbage bit whose changed value is not used by the design afterwards (the gate colored

gray in Fig 7.1) can be deleted from the circuit without changing the output of the

target function. The resulting circuit will contain 12 gates only.

In all of our further designs, if a gate affects a garbage bit whose changed value is not

used by the circuit to affect output bits afterwards, it is deleted from the design. This

trivial procedure brings some simplification in almost every case.

The reversible Toffoli, CNOT and NOT gates can be implemented in quantum technol-

ogy with the costs 5, 1 and 1 respectively. Note, that the quantum cost of any sequence

of type TOF (a, b; c) TOF (a; b) (4 of those in the present circuit) is 4 [62], an imple-

mentation which was known to Peres [57], and its cost is one smaller than the quantum

cost of a single Toffoli gate (which is 5). Peres structure as a gate was not considered

separately in the literature, although it is clearly beneficial to do so.

138



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

These observations allow us to create the formula for the quantum cost of the method.

It can be easily shown that the quantum complexity of a symmetric multiple output

function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym) requiring σ-functions of maximal order k is

at most

m + n + mn − 1 +
5(2n − k)(k − 1)

2
− 2(n − 1) = mn + m − n + 1 +

5(2n − k)(k − 1)
2

.

7.2 Comparison of the Results

There were several design methods proposed in the literature for the reversible design

of multiple output Boolean functions. We would like to compare our results to the

results of RPGA method by Perkowski et al. [60] (the method designed to synthesize

the symmetric functions with reversible gates), reversible wave cascades [54], Khan

gate family synthesis [28],[27], generalized Toffoli gates family (from Chapter 3) and

design of the Toffoli circuits using the templates (from Chapter 4). The comparison

consists essentially of the three parts: comparison of the garbage, number of gates in

the reversible cascade and comparison of the quantum costs.

Unfortunately, [60] do not provide a table of results, which makes it hard to make

the precise comparison. The asymptotic reversible cost (number of gates) of the both

realizations are the same, namely O(n2). But, the RPGA method has excessive garbage,

n(n+1)
2 (calculated in [45]), when the presented method has the garbage of maximum

(2n − 1). A good quantum realization of the Kerntopf gates used in [60] was never

found, therefore we claim that from the point of view of quantum cost our method will

produce quantum circuits which will be constant (> 1) times cheaper. Comparison

to the reversible wave cascades [54] (RWC columns), Khan gate family synthesis [28]

139



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

function number of gates garbage

name in out RWC KGF GT We RWC KGF GT We

2of5 5 1 N/A N/A 7 12 N/A N/A 5 6

rd53 5 3 14 17 13 12 19 19 4 5

rd73 7 3 36 43 37 20 43 47 6 7

rd84 8 4 58 64 N/A 28 66 68 7 11

6sym 6 1 N/A N/A 13 20 N/A N/A 6 9

9sym 9 1 52 52 N/A 28 61 60 9 11

xor5 5 1 5 5 4 4 10 9 4 4

Table 7.1: Comparison of the results to RWC, KGF and GT

(KGF columns) and generalized Toffoli gates family [45],[11] (GT columns) reversible

synthesis results is summarized in Table 7.1. Actual circuits for the presented design

can be found in the Internet [44].

The presented comparison is not quite fair. From one side, the mentioned methods are

the general synthesis methods, which do not use special properties of functions such as

ability to be calculated as a dynamic programming algorithm. From the other side, the

cardinality of the set of gates of the mentioned methods is greater on the order than

the number of gates used by the presented method.

From the table it can be seen that our method starts producing better results for larger

functions both from the point of view of the reversible cost and garbage. The presented

method can never beat the generalized Toffoli gates family synthesis method in terms of

140



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

garbage, since the last has theoretically minimal garbage. But, the GT method scales

badly, it can produce the circuits for reversible functions with no more than 10 inputs.

The RWC and KGF are synthesized heuristically and they also scale much worse than

the presented method.

Quantum cost comparison can be done accurately but in this paper we just mention

that the quantum cost of RWC is at least n times reversible design cost, quantum cost

of KGF implementation is at least 2n times higher than its reversible cost and quantum

cost of GT is at least n times higher than its reversible cost, where n is the number of

inputs of a function. The quantum cost for our model is given in previous section, and

it cannot exceed 5 times the reversible cost. Clearly, the quantum cost of the presented

approach is much better.

To illustrate how good the quantum cost is, compare the results to the ones presented

in Chapter 4. This chapter provides an example of a circuit for rd53.pla function

which has a cost of 12 gates, which seem to be the best among all known in reversible

logic synthesis. The generalized Toffoli gates used in Chapter 4 are expensive (but no

more expensive than the gates in RWC, KGF and GT) and the quantum complexity

calculation based on results of [4] gives the quantum cost of 132 for that realization.

Although the realization of rd53.pla presented in this paper has 12 gates in the reversible

model, its quantum cost is only 36. Relation of the quantum costs 11:3 clearly shows

the benefits of using the dynamic algorithm reversible synthesis method even for small

functions. Since our method produces better results for larger functions, the quantum

cost comparison for them will be even more beneficial.

141



Chapter 7. Dynamic Programming Algorithms as Reversible Circuits: Symmetric Function Realization

Another interesting comparison can be made using 2of5.pla function. GT realization

claims 7 gates only in comparison to 12 in the presented paper. However, the quantum

cost of GT realization is 158 in comparison to 32 for our circuit with 12 gates.

7.3 Conclusion

In this chapter we presented a general approach to the synthesis of reversible circuits

for the dynamic programming problems. As an illustration of its efficiency we applied

it to the set of all multiple output symmetric functions and analyzed the three cost

factors: reversible model cost, garbage cost and quantum cost. We showed that almost

in every possible comparison our method produces better results (except for garbage

comparison with RCMG and Toffoli synthesis). The garbage in the presented method

is close to the theoretical minimum. The quantum cost of the circuits produced by the

new algorithm is always significantly better. Finally, due to the small size of the gates

used (maximum 3 inputs and 3 outputs), the levels of the network can be compressed

which will result in a further simplification. On the contrary, it is unlikely that the level

compression operation will give good results for models that use large gates.

142



Chapter 8
Summary

The thesis starts with analysis of garbage in existing reversible design models. My

first point is that excessive amounts of garbage are introduced by existing synthesis

approaches. Given that garbage is very expensive for some of the technologies that use

reversibility, a question arises: is it possible to synthesize functions with less garbage

(if not absolutely minimal) using gates of a reasonable technological cost and with

relatively small circuits? Chapter 3 provides a complete answer to this question. A new

structure, initially intended for reversible synthesis with theoretically minimal garbage

was created and the synthesis algorithm was developed. The cost of a single gate was

analyzed, and shown to be only marginally higher than the cost of the conventional

Toffoli gate. The heuristic synthesis of a new model produces results comparable to

the synthesis of other reversible circuits. The new RCMG model was shown to be

superior to the conventional non-reversible synthesis of EXOR PLAs both practically

and theoretically. The practical part has circuits for rd53.pla and a 3-bit full adder

that are smaller than the corresponding EXOR PLA realizations. The theoretical part

consists of two results. First, given an EXOR PLA, the RCMG circuit with the number

of gates equal to the number of terms of EXOR PLA was constructed. Second, a class

of exponentially hard to realize as EXOR PLAs functions was found. These functions

143



Chapter 8. Summary

can be realized with only a linear gate count (cost) by the RCMG model. Also, if the

technology allows compressing of levels, the cost becomes a constant(!).

Next, I tried a different approach, where a circuit is initially created by a regular syn-

thesis algorithm, and the created circuit is usually smaller than the one created by the

RCMG regular synthesis algorithm. Then, a template simplification tool was applied.

In this approach only Toffoli and Fredkin gates were used as the gates for which a good

implementation was found. In comparison to the results of RCMG synthesis I obtained

better circuits for the new reversible specifications. For small reversible functions our

algorithm behaves close to optimal by producing circuits that are only 105.9% more ex-

pensive than the optimal. Unfortunately, the new method does not handle “don’t cares”.

Currently, we are working on handling “don’t cares”, extending the set of model gates

and polishing up the template tool.

An interesting theoretical result would be an asymptotically optimal synthesis method.

Such a method was found, and the model gates for the synthesis of this method were

shown to be only marginally higher than the cost of Toffoli gates.

Finally, dynamic programming algorithms were realized in a reversible manner. Since

the set of all dynamic programming algorithms is complex, this section has only a the-

oretical method for a general solution. As an application I considered the class of all

multiple output symmetric functions, elements of which were shown to be dynamic pro-

gramming algorithms. This class was realized in a reversible manner and the results of

the circuit cost comparison to other synthesis methods showed that even a straightfor-

ward application of the theoretical algorithm produces the best known circuits.

144



Chapter 9
Further Research

Results of the presented thesis form the basis for further research. Currently, several

topics need more investigation.

1. The template tool can be applied to simplify the structure of an RCMG network.

Essentially, an RCMG gate is a Toffoli gate, for which a search of the templates

was done in Chapter 4. The results of this chapter can be taken as a start of the

search for more generalized templates. The same idea (a template simplification

tool) can be generalized to simplify the mEXOR gate network, as well as the

hybrid RCMG-mEXOR model.

2. In quantum technology there are essentially quantum gates, such as X (analogy of

Boolean NOT), Z and Hadamard gate, whose specification cannot be considered

from the point of view of Boolean logic only. However, these gates have the

property needed to use them in templates: they are all self-inverses. Rotation

gates are among the quantum gates that are not self inverses. However, they

can be incorporated into the template structure by generalizing the template as

follows (to be generalized). The generalized template of size m is the cascade

of gates G0 G1...Gm−1 which realizes the identity function. Any template of size

145



Chapter 9. Further Research

m should be independent of smaller size templates, i.e. application of smaller size

templates does not decrease the number of gates in a size m template. Given a

template G0 G1...Gm−1, its application for parameter k such that m/2 ≤ k ≤ m

and any i such that 0 ≤ i ≤ m is:

Gi G(i+1) mod m... G(i+k−1) mod m → G(i−1) mod m G(i−2) mod m... G(i+k) mod m

Such a template tool will allow simplification of any quantum network.

3. The synthesis algorithms in Chapters 4, 5, 6 do not use a look-ahead technique to

produce initially smaller circuits. It would be useful to investigate this modifica-

tion. One more modification is a one-directional synthesis with “don’t cares”. It

should be relatively easy to describe and test such an algorithm.

4. The Miller gate can be easily and naturally incorporated into the synthesis al-

gorithm of Chapter 5. The problems with the Miller gate will appear when new

templates will be needed; the new template classification may be harder.

5. The dynamic programming algorithm reversible circuits were built only for sym-

metric functions. It is worth looking at other important dynamic algorithms and

try to realize them as reversible circuits. The resulting circuits for this approach

are expected to scale well and be small due to their use of information on the

general structure of the target function.

6. Expansion of the table of optimal circuits for functions of 4 variables. This cannot

be done in a straightforward manner, a and classification of reversible functions

is required. Some other reductions should also be investigated. This may initially

sound a bit strange, as why would one be interested in all optimal size 4 reversible

146



Chapter 9. Further Research

functions from the point of view of possible applications? However, in addition to

a better understanding of reversible logic, this work will produce some applicable

results. For instance, cellular arrays require synthesis of size 4 reversible functions

only.

7. Synthesis procedures based on the truth table are limited to functions of, say, 30

inputs (if usage of modern computers for CAD is expected). Thus, a new design

procedures needed. It may be useful to search for synthesis procedures based on

the function factorization and theory of the group of permutations.

147



Bibliography

[1] IBM’s test-tube quantum computer makes history. Technical report,

http://researchweb.watson.ibm.com/resources/news/20011219 quantum.shtml,

Dec. 2001.

[2] A. Al-Rabadi. Novel Methods for Reversible Logic Synthesis and Their Application

to Quantum Computing. PhD thesis, Portland State University, Portland, Oregon,

USA, October 2002.

[3] W. C. Athas and L. J. Svensson. Reversible logic issues in adiabatic CMOS.

[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus, P. Shor,

T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum com-

putation. The American Physical Society, 52:3457–3467, 1995.

[5] C. H. Bennett. Logical reversibility of computation. IBM J. Research and Devel-

opment, 17:525–532, November 1973.

[6] C. H. Bennett. Notes on the history of reversible computation. IBM J. Research

and Development, 32(1):16–23, January 1988.

[7] D. Brand and T. Sasao. Minimization of AND-EXOR expressions using rewriting

rules. IEEE Transactions on Computers, 42(5):568–576, May 1993.

[8] J. W. Bruce, M. A. Thornton, L. Shivakumaraiah, P. S. Kokate, and X. Li. Efficient

adder circuits based on a conservative reversible logic gate. In IEEE Symposium

on VLSI, pages 83–88, April 2002.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT Press, Cambridge, Massachusetts, 1990.

[10] B. Desoete, A. De Vos, M. Sibinski, and T. Widerski. Feynman’s reversible gates

implemented in silicon. In 6th International Conference MIXDES, pages 496–502,

1999.

148



Bibliography

[11] G. W. Dueck and D. Maslov. Reversible function synthesis with minimum garbage

outputs. In 6th International Symposium on Representations and Methodology of

Future Computing Technologies, pages 154–161, March 2003.

[12] G. W. Dueck, D. Maslov, and D. M. Miller. Transformation-based synthesis of

networks of Toffoli/Fredkin gates. In IEEE Canadian Conference on Electrical

and Computer Engineering, Montreal, Canada, May 2003.

[13] R. Feynman. Quantum mechanical computers. Optic News, 11:11–20, 1985.

[14] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical

Physics, 21:219–253, 1982.

[15] A. Gaidukov. Algorithm to derive minimum ESOP for 6-variable function. In 5th

International Workshop on Boolean Problems, pages 141–148, September 2002.

[16] N. Gershenfeld and I. L. Chuang. Quantum computing with moleculas. Scientific

American, June 1998.

[17] M. T. Goodrich and R. Tamassia. Algorithm Design: foundations, analysis, and

Internet Examples. John Wiley & Sons, Inc., 2002.

[18] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-

sel. The microarchitecture of the Pentium 4 processor. Technical report, Intel

Technology Journal, 2001.

[19] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms/C++. Computer

Science Press, 1998.

[20] Richard J. Hughes. A technology roadmap for quantum computing and communi-

cations. In DAC, http://qist.lanl.gov/, June 2003.

[21] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Techniques in Digital Logic.

Academic Press, Orlando, Florida, 1985.

[22] K. Iwama, Y. Kambayashi, and S. Yamashita. Transformation rules for designing

CNOT-based quantum circuits. In Design Automation Conference, New Orleans,

Louisiana, USA, June 10-14 2002.

149



Bibliography

[23] P. Kerntopf. A comparison of logical efficiency of reversible and conventional gates.

In International Workshop on Logic Synthesis, pages 261–269, 2000.

[24] P. Kerntopf. Maximally efficient binary and multi-valued reversible gates. In Inter-

national Workshop on Post-Binary ULSI Systems, pages 55–58, Warsaw, Poland,

May 2001.

[25] P. Kerntopf. Synthesis of multipurpose reversible logic gates. In EUROMICRO

Symposium on Digital Systems Design, pages 259–266, 2002.

[26] R. W. Keyes and R. Landauer. Minimal energy dissipation in logic. IBM J. Research

and Development, pages 152–157, March 1970.

[27] M. H. A. Khan and M. Perkowski. Logic synthesis with cascades of new reversible

gate families. In 6th International Symposium on Representations and Methodology

of Future Computing Technology (Reed-Muller), pages 43–55, March 2003.

[28] M. H. A. Khan and M. Perkowski. Multi-output ESOP synthesis with cascades

of new reversible gate family. In 6th International Symposium on Representations

and Methodology of Future Computing Technologies, pages 144–153, March 2003.

[29] A. Khlopotine, M. Perkowski, and P. Kerntopf. Reversible logic synthesis by it-

erative compositions. International Workshop on Logic Synthesis, pages 261–266,

2002.

[30] J. Kim. A study on Ensemble Quantum Computers. PhD thesis, Korea Advanced

Institute of Science and Technology, Korea, May 2002.

[31] J. Kim, J.-S. Lee, and S. Lee. Implementation of the refined Deutsch-Jozsa algo-

rithm on a three-bit NMR quantum computer. Physical Review A, 62, 2000.

[32] J. Kim, J.-S. Lee, and S. Lee. Implementing unitary operators in quantum compu-

tation. Physical Review A, 62, 2000.

[33] K. Kinoshita, T. Sasao, and J. Matsuda. On magnetic bubble logic circuits. IEEE

Transactions on Comput., C-25(3):247–253, March 1976.

150



Bibliography

[34] R. Landauer. Irreversibility and heat generation in the computing process. IBM

J. Research and Development, 5:183–191, 1961.

[35] J.-S. Lee, Y. Chung, J. Kim, and S. Lee. A prectical method of constructing

quantum combinatorial logic circuits. Technical report, November 1999.

[36] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski. Automated synthesis

of generalized reversible cascades using genetic algorithms. In 5th International

Workshop on Boolean Problems, pages 33–45, Freiburg, Germany, September 2002.

[37] O. B. Lupanov. Schemes with the finite fan-outs. Problemy Kibernetiki. Fizmatgiz,

Moscow (in Russian).

[38] N. Margolus. Feynman and Computation, chapter Crystalline Computation.

Perseus Books, 1999.

[39] D. Maslov and G. Dueck. Asymptotically optimal regular synthesis of reversible

networks. In International Workshop on Logic Synthesis, pages 226–231, Laguna

Beach, CA, 2003.

[40] D. Maslov and G. Dueck. Complexity of reversible Toffoli cascades and EXOR

PLAs. In 12th International Workshop on Post-Binary ULSI Systems, pages 17–

20, Japan, May 2003.

[41] D. Maslov, G. Dueck, and M. Miller. Fredkin/Toffoli templates for reversible logic

synthesis. In International Conference on Computer Aided Design, November 2003.

[42] D. Maslov, G. Dueck, and M. Miller. Templates for Toffoli network synthesis. In

International Workshop on Logic Synthesis, pages 320–326, Laguna Beach, CA,

2003.

[43] D. Maslov, G. Dueck, and M.Miller. Simplification of Toffoli networks via tem-

plates. In Symposium on Integrated Circuits and System Design, September 2003.

[44] D. Maslov, G. Dueck, and N. Scott. Reversible logic synthesis benchmarks page.

Technical report, http://www.cs.unb.ca/profs/gdueck/quantum/, August 2003.

151



Bibliography

[45] D. Maslov and G. W. Dueck. Garbage in reversible design of multiple output

functions. In 6th International Symposium on Representations and Methodology of

Future Computing Technologies, pages 162–170, March 2003.

[46] R. C. Merkle. Reversible electronic logic using switches. Nanotechnology, 4:21–40,

1993.

[47] R. C. Merkle. Two types of mechanical reversible logic. Nanotechnology, 4:114–131,

1993.

[48] R. C. Merkle and K. E. Drexler. Helical logic. Nanotechnology, 7:325–339, 1996.

[49] D. M. Miller. Spectral and two-place decomposition techniques in reversible logic.

In Midwest Symposium on Circuits and Systems, Aug. 2002.

[50] D. M. Miller and G. W. Dueck. Spectral techniques for reversible logic synthesis.

In 6th International Symposium on Representations and Methodology of Future

Computing Technologies, pages 56–62, March 2003.

[51] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm

for reversible logic synthesis. In Proceedings of the Design Automation Conference,

pages 318–323, June 2003.

[52] A. Mischenko and M. Perkowski. Reversible maitra cascades for single output

functions. In International Workshop on Logic Synthesis, pages 197–202, 2002.

[53] A. Mishchenko and M. Perkowski. Fast heuristic minimization of exclusive sum-

of-products. In 5th International Reed-Muller Workshop, pages 242–250, August

2001.

[54] A. Mishchenko and M. Perkowski. Logic synthesis of reversible wave cascades. In

International Workshop on Logic Synthesis, pages 197–202, June 2002.

[55] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8), 1965.

[56] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 2000.

152



Bibliography

[57] A. Peres. Reversible logic and quantum computers. Physical Review A, 32:3266–

3276, 1985.

[58] M. Perkowski. Reversible computing for beginners. Lecture series, Portland State

University, http://www.ee.pdx.edu/˜mperkows/, 2000.

[59] M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-Rabadi, A. Cop-

pola, A. Buller, X. Song, M. M. H. A. Khan, S. Yanushkevich, V. Shmerko, and

M. Chrzanowska-Jeske. A general decomposition for reversible logic. In 5th Inter-

national Reed-Muller Workshop, pages 119–138, 2001.

[60] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko,

X. Song, A. Al-Rabadi, L. Joswiak, A. Coppola, and B. Massey. Regularity and

symmetry as a base for efficient realization of reversible logic circuits. In Interna-

tional Workshop on Logic Synthesis, pages 245–252, 2001.

[61] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko,

X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, and B. Massey. Regular real-

ization of symmetric functions using reversible logic. In EUROMICRO Symposium

on Digital Systems Design, pages 245–252, 2001.

[62] M. Perkowski, M. Lukac, M. Pivtoraiko, P. Kerntopf, M. Folgheraiter, D. Lee,

H. Kim, W. Hwangbo, J.-W. Kim, and Y. W. Choi. A hierarchical appoach to

computer-aided desin of quantum circuits. In 6th International Symposium on

Representations and Methodology of Future Computing Technologies, pages 201–

209, March 2003.

[63] P. Picton. Opoelectronic, multivalued, conservative logic. International Journal of

Optical Computing, 2:19–29, 1991.

[64] P. Picton. Modified Fredkin gates in logic design. Microelectronics Journal, 25:437–

441, 1994.

[65] P. Picton. A universal architecture for multiple-valued reversible logic. MVL

Jounal, 5:27–37, 2000.

153



Bibliography

[66] J. Preskill. Lecture notes in quantum computing. Technical report,

http://www.Theory.caltech.edu/˜preskill/ph229.

[67] J. Preskill. Fault-tolerant quantum computation. In H.-K. Lo, S. Popescu, and

T. Spiller, editors, Introduction to Quantum Computation and Information, pages

213–269. World Scientific Publishing, 1999.

[68] M. D. Price, S. S. Somaroo, A. E. Dunlop, T. F. Havel, and D. G. Cory. Gener-

alized methods for the development of quantum logic gates for an NMR quantum

information processor. Physical Review A, 60(4):2777–2780, October 1999.

[69] M. D. Price, S. S. Somaroo, C. H. Tseng, J. C. Core, A. H. Fahmy, T. F. Havel,

and D. G. Cory. Construction and implementation of NMR quantum logic gates

for two spin systems. Journal of Magnetic Resonance, 140:371–378, 1999.

[70] T. Sasao. Switching theory for logic synthesis. Kluwer Academic Publishers, Nor-

well, MA, 1999.

[71] T. Sasao. Cascade realizations of two-valued input multiple-valued output functions

using decomposition of group functions. In International Symposium on Multiple-

Valued Logic, pages 125–132, May 2003.

[72] T. Sasao and K. Kinoshita. Conservative logic elements and their universality.

IEEE Transactions on Computers, c-28(9):682–685, 1979.

[73] M. Schoenert. GAP. Computer Algebra Nederland Nieuwsbrief, 9:19–28, 1992.

[74] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible logic circuit

synthesis. In International Conference on Computer Aided Design, pages 125–132,

San Jose, California, USA, Nov 10-14 2002.

[75] V.V. Shende, A.K. Prasad, I.L. Markov, and J.P. Hayes. Synthesis of reversible

logic circuits. IEEE Transactions on CAD, 22(6):723–729, June 2003.

[76] N. R. S. Simons, M. Cuhari, N. Adnani, and G. E. Bridges. On the potential use

of cellular-automata machines for electronic field solution. Int. J. Numer. Model.

Electron., 8(3/4):301–312, 1995.

154



Bibliography

[77] J. A. Smolin and D. P. DiVincenzo. Five two-bit quantum gates are sufficient to

implement the quantum Fredkin gate. Physical Review A, (53):2855–2856, 1996.

[78] N. Song and M. Perkowski. Minimization of exclusive sum of products expressions

for multi-output multiple-valued input, incompletely specified functions. IEEE

Transactions on CAD, 15:385–395, April 1996.

[79] A. Steane. Quantum error correction. In H.-K. Lo, S. Popescu, and T. Spiller,

editors, Introduction to Quantum Computation and Information, pages 184–212.

World Scientific Publishing, 1999.

[80] J. Stinson and S. Rusu. A 1.5 GHz third generation Itanium 2 processor. In DAC,

pages 706–709, June 2003.

[81] L. Storme, A. De Vos, , and G. Jacobs. Group theoretical aspects of reversible logic

gates. Journal of Universal Computer Science, 5:307–321, 1999.

[82] T. Toffoli. Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for

Comp. Sci, 1980.

[83] A. De Vos. Towards reversible digital computers. In European Conference on

Circuit Theory and Design, pages 923–931, Budapest, Hungary, 1997.

[84] S. V. Yablonsky. Introduction into the Discrete Mathematics. Nauka, Moscow,

Russia, 1978.

[85] G. Yang, W. N. N. Hung, X. Song, and M. Perkowski. Majoity-based reversible

logic gate. In 6th International Symposium on Representations and Methodology of

Future Computing Technologies, pages 191–200, March 2003.

[86] S. G. Younis and T. F. Knight Jr. Asymptotically zero en-

ergy split-level charge recovery logic. Technical Report AITR-1500,

http://citeseer.nj.nec.com/younis94asymptotically.html, 1994.

155


