
Using the Multi-Valued Functional Decomposition to 
Evaluate Error in Machine Learning 

 
Katja B. Rangelov1 

 
Abstract – Learning from data is the central theme of 

Knowledge Discovery in Databases (KDD) and Machine 
Learning (ML) community. The increase of data volume is 
caused greater difficulties to extract useful information for 
decision support or different analysis tasks. While functional 
decomposition was originally created for the minimization of 
logic circuits can be used successfully in the concept of learning 
in ML, by reducing the complexity of a given data set. The main 
difference is that machine learning problem have a large 
number of output don’t cares. The purpose of this paper is to 
demonstrate the applicability functional decomposition in 
reduc ed the resulting error of the functional decomposer, where 
the error is a measure of how well a machine learning algorithm 
approximated the true function. 

 
Key words  - functional decomposition, multiple –valued 

function, machine learning, knowledge, data discovery,  
inductive learning. 

 
1. INTRODUCTION 

 
Many people are inclined to associate artificial intelligence 

(AI) with the attempt to replicate human intelligence. While 
this is a valid long-term goal, most work in AI are concerned 
highly restricted tasks, often of practical importance, with the 
intention of developing heuristic methods for accomplishing 
them. 

Machine learning is a sub field of AI that addresses the 
formulation and modification of theories as a result of 
observations. Learning is diverse, e ncompassing activities like 
explanation-based  learning (where an existing theory is 
tweaked, often to make it more efficient, in the light of a 
single new fact), empirical learning (which develops a theory 
from scratch, guided by a substantial number of observations), 
and learning theory (which identifies classes of theories that 
are easy or difficult to learn and quantities interrelationships 
among learning variables such as learning time, accuracy, and 
the number of observations) [11, 12]. 

Rather than discuss AI and learning in the abstract, this 
paper illustrates some important ideas in the context of a 
particular task of machine learning.  

When dealing with a complex problem, a good strategy is 
to decompose it to less complex and more manageable sub-
problems.  

Functional decomposition of binary function was proposed 
by Ashenhurst [18] in the beginning 1950s, as a method of 
Boolean logic minimization. While this process has been 
known for many years, it could not be utilized because of the 
large complexity computation procedures that are required. In 
the late 1980s, functional decomposition was re-introduced as 

 
1Katja B. Rangelov is with the Technical University of Sofia, the 

Faculty of Computer Systems and Control, 1756 Sofia, Bulgaria, E-
mail: krang@tu-sofia.bg ,  krang@abv.bg, 

an application to Field Programmable Gate Array’s (FPGA) 
design synthesis [19].  

Since then decomposition has been applied to many 
aspects of Boolean and multiple-valued logic synthesis [8, 
17]. 

The relationship between machine learning and logic 
synthesis is based on the similarities between realising 
circuits with low complexity (smaller size, simpler 
description) and natural assumption of Occams’Razor [15]. 
In logic synthesis, the result of synthesis is a circuit designed 
with respect to the minimal number of gates, inputs, literals, 
or product terms. In the case of machine learning, the goal is 
a reduction of an instance space (compressing sets of 
examples, attributes and attributes-value triples in a technique 
called a partition triple). The problems are analogues. In 
machine learning, we have a database with fields and records. 
A set of records defines the concept. In logic synthesis, the 
fields are binary variables (inputs) of the circuit and each 
record is a specification. The entire set of these records 
defines the circuits.  

Using Occam’s Razor, which is a principle in machine 
learning that states that if several theories explain all the facts 
that the simplest theory is the best, does this. 

 
2. MACHINE LEARNING 

 
In machine learning the idea is to find patterns in the data, 

such that the data can be partitioned into smaller concepts 
(data blocks), which correspond to the sub -blocks of the 
decomposition. The principle of using decomposition in 
machine learning is to reduce a given function specified by a 
set of care minterms (samples or examples) to a composition 
of smaller function (concepts). 

The result is a set of expression that describes suitable 
intermediate concepts. Each of these intermediate concepts 
can then be decomposed further, leading to expressions that 
form a more comprehensible description of the learned 
concepts. The advantage of using decomposition to obtain 
useful intermediate concepts is that it leads to a result 
specified as a hierarchy of compositions. The produces the 
description of the original function as a hierarchy of sub-
functions and variables [5, 6, 7, 13], which leads to learning 
that is faster, involves smaller error and gives better 
explanation of the learned concepts. 

The term machine learning is defined as a process by 
which a machine gains the capability to solve problem by 
examining examples  or data. Machine learning is a process 
called inductive learning [3, 5, 7], which uses empirical 
evidence, in the form in examples, to derive rules for the 
given data. This system is used automated inductive inference 
(in the machine learning paradigm) to give rules or meaning 
to the data (known as classification). Rules are operations on 



variables, such as the average function, addition, subtraction, 
etc. Finding rules on variables is a process of discovering 
patterns and relations that exist between variable 
combinations. Machine learning is not en exact methodology, 
but is an attempt of learning based on heuristics and 
probabilities. This way of learning is becoming more and 
more important as computers provide relatively inexpensive 
means to collect and store data. The traditional methods, such 
as manual data analysis, are insufficient to fully evaluate a 
given data set. Instead, a new method called Knowledge 
Discovery in Databases (KDD) [3, 7] is being used to analyse 
data using analytical tools from statistics, pattern recognition, 
and artificial intelligence.  

In other words, learning is done by using all the known 
outputs of a given function to help in the determination of 
value for all don’t knows in the output of the given function. 
By treating examples as cares and considering function with 
many don’t cares, a machine learning problem can be directly 
converted to a logic synthesis problem.  

The setting of unknown values to known values is done by 
creating a network of multi-valued input and multi-valued 
output blocks by decomposing the original function into a 
hierarchical network of multi-levelled blocks (intermediate 
concepts). The machine learning algorithm is evaluated on its 
learning effectiveness by how it reduces the error of the 
resulting network. Error is how well the algorithm in 
question sets don’t know terms to care terms. A common 
method for evaluating a machine learning algorithm is to 
select a training set , which is a random sampling of the 
original known values from the test function. The result of 
learning the training set is then compared to the original test 
function. If the expression has a high error rate then it does 
not approximate the test function well and is not a useful way 
to describe the function.  

Given that induction is a method of extrapolating samples 
of a function, the extrapolating process is very complex unless 
some reasonable simplification assumptions are used. For a 
Boolean function over n n-attributes, the function has a truth 
table with 2n  rows. Any truth table with 22n  rows can represent 
22n different functions. Because of the large number of 
possible functions, it is difficult to find a hypothesis function 
g  that approximates f  given a small set of examples of f . 

To allow reasonable results in the extrapolation process for 
finding g, assumptions must be used. The assumption that is 
generally made is the one of low complexity, as in Occam’s 
Razor (also known as Ockham’s Razor). In Occam’s Razor 
the most likely hypothesis is the simplest one that is consistent 
with all observations.  

The logic circuit and machine learning are similar, but there 
are some significant differences. The biggest difference is that 
most circuit – related multi-valued logic problems are nearly 
completely specified, while functions in machine learning 
tend to be 99.9% unspecified in their respective learning 
domain.  

 
3. MULTI-VALUED FUNCTIONAL DECOMPOSITION 
 

This section considers the basic principles of the 
decomposition of multi-  valued function. Decomposition of 

multi-valued function is an extension of the decomposition of 
Boolean functions [1, 2, 4].  
 
Definition 1: Given a multiple-valued variable x i , the set of 
values that x i  may assume is Cj  = {0, 1, …, cj  –1 }. Then an n-
input, m-output, multi-valued function is defined as the 
mapping: f(x 0, x 1, …, x n-1) = C 0 x C1 x …x Cn-1 → D0 x D1 x … 
x D m-1, where Dj  = {0, 1, ..., (p-1), -}, with p equal to the 
number of output values represented in the p-valued logic and 
“-“ represented a don’t care values. 
 
Definition 2: A function f(x0, x 1, …, xn-1) is decomposable 
under bound set {x0, …, x i-l} and  free set {x i-1, …, x n-1}, 0<i<n, 
0 �! l if and only if f can be represented as the composite 
function F(G0(x0, …, x i -1), …, Gj -1(x0, …, x i -1), x i -1, …, x n-1), 
where 0<j<i-l. If l equal 0 then f is called disjunctively 
decomposable, otherwise, it is known as non-disjunctively 
decomposable.  
 

 
Fig.1:The Decomposition in general 

 
The principle idea of the decomposition using the notation 

from Definition 2 is shown in Fig. 1. Note that the function is 
decomposable under a given bound set, the function can be 
separated into two new functions. This is known as a simple 
decomposition because one decomposition was done on the 
function. To find fully decompose the function, is used the 
iterative process. First the function is decomposed, then the 
sub-function that are created from the first decomposition are 
decomposed. This iterative process continues until a given 
function cannot be decomposed further under given 
complexity measure.  

For an n-input function, the number of simple disjunctive 
decomposition  is 2n, while the number of simple non-
disjunctive decomposition  is 3n. Thus, evaluating all possible 
partitions is a NP-complete problem when trying to find fully 
decompose the function, because of the exponential size of 
simple non-disjunctive decomposition . It is needed to use 
some heuristics methods to reduce the search complexities  
finding partitions in decomposition, but this does not exactly 
means that the problem of finding non-disjunctive 
decomposition is become trivial.  

 
Definition3: Given a k -valued, completely specified function 
f , with bound set  B and free set  A, then for the partition A �� B, 
a partition matrix representation of f  is defined as a 
rectangular array, where the column  correspond to the 
variables in the bound set  and the row  correspond to the 
variables in the free set . 
 

There are the following statement, using the Definition 2 
and Definition 3:  



 
1.The array has k ��B� columns and k �A� rows. 
 
2. Given a k -valued function f, with a bound set B, then the 
corresponding partition matrix has l distinct columns, where l 
is called the Column Multiplicity of a partition.  
 
3. The Column Multiplicity [17] for the function can be 
reduced if the function is incompletely specified, by finding 
columns that are compatible and combing the two column by 
setting don’t’care  values. By compatible, for every row, the 
possible output value-sets of the first column (a number or a 
don’t care) intersect the non-empty sets of the corresponding 
output value-sets of the second column. 
 
4. Thus, the represent f as a composite function in the form: 
f = F ( G0 (), …,Gj -1 (), x i, …, xn-1), where each G function has 
inputs (x0, …, xi -1) then j = |log kl|, G  functions are needed.. 
 
This concept of decomposition, which is explained, is general 
and because is general it can be applied to any type of logic 
elements or structures. Decomposition has the advantage that 
it is not based on a set of operators or gates (in contrast to all 
other logic synthesis methods). This is especially notable in 
the case of multiple-valued logic, where the number of 
operators can increase as the value of the logic grows. 
Decomposition is not constrained by a technology or a pre-
selected single theory. This has wide applications in both 
logic synthesis and machine learning.  
 
4. PARTITION SELECTING USING REDUCTING AND 

EVALUATED ERROR  
 
The biggest difference between logic synthesis and machine 
learning is the difference in the number of care terms in logic 
synthesis versus the number of care terms in machine learning 
problem. The don’t  cares in the machine learning problems 
should be considered as don’t know. By dont’ know it means 
that the value is not known and the caution must be used in 
setting don’t know to a value.  

With this concept of a don’t known, it is possible to find the 
method for selecting partitions for machine learning based 
functional decomposition.  

If the function is completely specified, the only way that 
two column can be compatible is if for every row, the output 
of the first column is equal to the output value of the second 
column (in the same row). If the function is p-valued, 
completely specified, and each value is equally likely, then for 
every row the probability of matching one column to another 
is 1/p. 

For a column with B rows, the probability of finding a pair 
of compatible columns is (1/p)B = 1/pB . The result is that the 
more row in a column, the less likely it is to find a 
compatibility between two columns. The problem is that it 
doesn’t take don’t cares into consideration and the fact that 
machine learning data set are 99% unspecified. 

If it assumed the probability of having a don’t care is P(X) 
= 0.99, then the probability of having any other value is 
P(care) = (1-0.99)/ p = 0.01/p, given the function is p-valued 

and each value is equally likely. The only way to have 
incompatibility between two columns occurs only when, for a 
given row, the first column’s value is some value and the 
second column’s value is a value that is not equal to the first 
column’s value. Thus, the probability of having an 
incompatibility between two columns is 0.01 (p-1/p). 

If it is evaluated small bond set (small number of column 
and large number of row in partition table) may result in a 
larger probability of incompatible column. The basic 
assumption here is that by increasing the probability of 
incompatible columns, we have decreased the error in the 
resulting network, because the possibility of combing a don’t 
care with an incorrect care term is reduced. This is based on 
the probability of combining two columns is much smaller, 
and thus, the probability of combining a don’t care with 
values is also smaller. 

Another complexity that come up is determining column 
complexity. On of the most using methods for finding column 
complexity with many don’t cares is graph colouring. In 
general, graph colouring is NP-complete problem because it 
existed exponential in complexity. It is reasonable to assume 
that small bound set with small number of columns should 
have a much faster run time the medium-sized (half the 
variables in the bound set, the other half in the free set) bound 
sets. in the case of the medium or large bound sets, the 
probability of two column being incompatible is much samller 
than in the case of small bound set. But the number of 
compatible column can be very large. In fact, because there 
are so many possible colouring in the graph algorithm, 
selecting compatible column is done randomly with no basis 
on probabilities. In this case, having the medium or large 
bound set will result in great error. 

In domain of logic synthesis (the small percent of don’t 
cares) the possibility of finding the good decomposition with 
small bound sets would probably not work. But, from the 
previous assumption, the small bound set are the best way to 
decompose machine learning problems. 

 
5. DECOMPOSITION ALGORITHM  
 
5.1. DATA STRUCTURED THE FUNCTION  
 
The representation of a function is very important and there 

are the different types of the data structured. One of them is 
Binary Decision Diagrams (BDD), MDD, decision tree and 
others [9, 16]. 

 
5.2. INESENTIAL VARIABLES 
 
There are tree different classes of variables. A variable is 

essential , inessential or vacuous. Essential  or vacuous 
variables are easily defined as variables that have an impact 
on the output. An inessential variable is variable that by 
setting don’t cares in certain way, the variable either may 
become essential or vacuous. 

To determine which variables can be made vacuous is used 
the compatibility graph algorithm. Each node the graph 
represented inessential variable, each vertex between two 
nodes designates that the both variables can be forced vacuous 



in the same time. It is used maximum clique algorithm to 
determine which inessential variable can be forced to become 
vacuous. 

 
5.3. MACHINE LEARNING COMPLEXITY MEASURES 
 
The complexity measure, called Decomposition Functional 

Cardinality (DFC) [14] is the sum of the cardinalities of the 
component functions in a combinational representation, when 
the sum is minimized. Any function is allowed as a 
component, but its costs goes up with its cardinality. The 
cardinality of an n-input, m-output binary function is 2n * m.  

 
5.3. THE ALGORITHM 
 
The algorithm is divided into following parts [10]: 
 
1. Find all inessential variable (using a maximum clique 

algorithm [17]) and remove its from the function.  
 
2a. Determine if the current function’s DFC is larger than 

he best DFC found so far. If it is, then return ( not all function 
are decomposed). 

 
2b. Evaluated all two variable bound sets. 
 
2c. Determined the best partition to be used: evaluate the 

column multiplicity of each partition and selecting those with 
higher ranks. The partition with the smaller column 
multiplicity are ranked higher than those with higher column 
multiplicity. 

 
2d. From the list of possible partitions from 2b, 

decomposed each function f into sub -function F and Ö. 
Recursively repeat step 2 with F and Ö, separetly.  

 
4. CONCLUSION 

 
This method for functional decomposition is focused on 

the highly unspecified multi-valued function. It is allowed to 
reduce the error in a solution. From the data analysis, this 
method of functional decomposition did well on reducing and 
evaluated the error between the original function and the 
solution. 
 

REFERENCES 
 

 

[1]  C. M. Files, “New Functional Representation for the 
Decomposition of Machine Learning Problem”, Third 
Symposium on Logic Design and Learning, Conference  
Proceedings,  pp. Oregon, USA, May 2000.  

 
 
 
[2]  M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. 

Grygiel, M. Nowicka, R. Malvi, Z. Wang, J.S. Zhang, 
“Decomposition of Multiple-Valued Relations”, Proc.  IEEE 
International Symposium on Multiple -Valued Logic, pp.13 – 
18, Nova Scotia, Canada, May 1997.  

[3]  J. A. Goldman, M. L. Axtell, “ On Using Logic Syntesis for 
Knowledge Discovery”, Tools with AI conference, 1997  

[4]  H. A. Curtis, A New Approach to the Design of  Switching 
Circuits, Princeton, D. Van Nostrand Co. Inc., NJ, 1962. 

[5]  B. Zupan, M. Bohanec, I. Bratko, J. Demsar, “Machine 
Learning by Function Decomposition, Proceedings of the 
Fourteenth International Conference Machine Learning 
(ICML'97), pp. 421 – 429, Nashville, Tennessee, July 1997. 

[6]  B. Zupan, M. Bohanec, J. Demsar, I. Bratko, “Feature 
transformation by function decomposition”, IEEE Intelligent 
Systems & Their Applications, vol. 13, pages 38-43, 1998. 

[7]  B. Zupan, M. Bohanec, I. Bratko, B. Cestnik, “A data set 
decomposition approach to data mining and machine 
discovery”, Proceedings of the Third International Conference 
on Knowledge Discovery and Data Mining, pp. 229 – 302, 
Newport Beach, Canada, August 1997.  

[8]  T. Luba, “Decomposition of Multiple  Valued Functions”, 
Proc. of 25 t h IEEE International Symposium on Multiple-
Valued Logic , pp. 256 – 261, Bloomington, Indiana, USA, 
May 23 – 25, 1995.  

[9]  C. M. Files, M. A. Perkowski, “ Multi-Valued Functional 
Decomposition as s Machine Learning method”, Proc. on 28th 
IEEE International Symposium on Multiple-Valued Logic, pp. 
173 – 178, Fukuoko, Japan, May 27 –29, 1998. 

[10] C. M. Files, M. A. Perkowski, “ An Error Reducing Approach 
to Machine Learning Using Multi-Valued Functional 
Decomposition”, Proc. on 28t h  IEEE International Symposium 
on Multi-Valued Logic, pp. 167 – 172, Fukuoko, Japan, May 
27 – 29, 1998.  

[11] J. R. Quinlan, C4.5: Programs for Machine Learning, San 
Mateo, California: Morgan Kaufmann, 1993.  

[12] J. R. Quinlan, “A Case Study in Machine Learning”, 
Proceedings 16t h  Australian Computer Science Conference, pp., 
731-737, Brisbane, Australia, 1993.  

[13] B. Zupan, Machine Learning Based on Functional  
Decomposition, PhD thesis, University of Ljubljana, Slovenia, 
1997.  

[14 Y. Abu-Mostafa, Compexity in Information Theory, Springer - 
Verlag, New York, 1988. 

[15] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, 
Occam’s razor, Information Processing Letters , pp.377 – 380, 
1987.  

[16] C. M. Files, A New Functional Decomposition Method As 
Applied to Machine Learning and VLSI Layout, Ph.D. 
Dissertation, Portland State University, Portland Oregon, June 
2000.  

[17] M. A. Perkowski, S. Grygiel, “A Survey of Literature on 
Function Decomposition”, Technical report , Portland State 
University, Portland, Oregon, November, 1995. 

[18] R. L. Ashenhurst, “The decomposition of switching functions”, 
International Symposium on Theory Switching Function , pp. 74 
– 116, 1959. 

[19] Y. T. Lai, M. Pedram, S. B. K. Vrudhula “BDD based 
decomposition of logic function with application to FPGA 
synthesis, Design Automation Conference, pp. 642 – 647, 1993. 

 


