Univerdity of York
Department of Computer Science
Real Time Systems Group

Using Dynamically Reconfigurable Hardwarein Real-Time
Communications Systems

Literature Survey

Alison Carter
November 2001

CONTENTS

1 INTRODUCTION ... aaaaa—aaaaaaasaaananaaaaanaanns 1
2 RECONFIGURABLE SYSTEMS. ..., 1
2.1 Paradigms from Other diSCIPINESc.uiiiiieiii e 1
A O 4T - To (= 1 o U UTPPPUPPPRR 2
P TS U 01011 0°= YO 3.
3 FIELD PROGRAMMABLE ARRAYS ..., 3
3.1 History Of deVEIOPMENT.ccueiiiie e e e e e 3
3.2 Current FPGA teN0IO0Y ...cvviieiiiii et e e e e e aaaas 5
3.3 Field Programmable ANAIOG ATTAYS.ccuuiii e et e e e e e e e e eaaas 6
3.4 Programming and Dynamic Reconfigurabilityccoooiiiiiiiiiiiie e, 6
T = LU 3N I = 00 PP PTRRPPRNY 4
G I S U 0 0] 1°= Y PP 1.
4 FPGA SYSTEM DESIGN ..ottt 8
g R Y/ oo (==Y 0] U = T 8
4.2 What is hardware, and Why re@nfigure it? ..o 8
4.3 Hardware-SOftware COOESIGNivuiiii i e e e e e e e e aanaaee 10
4.4 Design methodologies currently employed for FP devices..........ccovvveiiiiiiiiiiiciecii e, 11
4.5 Implications for dynamicdly reconfigurable systems...........ccooevviiiiiiiiiceeeic e, 12
I U 1 0] .0°= PP 12
5 SCHEDULING REAL-TIMESYSTEMS.............c 13
5.1 Worst-Case Exeaution TIMeS iN SOftWare...........cuuiiiiiiiiiiiiiieeee e 13
5.2 Schedulingtasksonasingle fiXed ProCESONovvuiiii i eeaans 13
5.3 Real-time charaderistics of hardware SyStemsccooviiiiiiiiiii e 17
5.4 Redl-timeremnfigurable SYySteMSiiiiii e 19
D SUMIMIA Y ..t e e r e e e e 19
6 REAL-TIME COMMUNICATIONSAPPLICATIONS................eeeee. 20
6.1 SOMWArE RAOIOcieei et e e e e e 20
6.2 Adaptive SIgNal PrOCESSING......iiviiiiieie et e e e e e e e e e e aaa s 20
6.3 Re@mnfigurable ProtOCOIS.........ccouiiii e 21
T SUMM ARY 22
8 REFERENCES....... 22

O LN S e 25

1 Introduction

The development of field programmable systems on a dip (FPSC) heralds an emerging
tedhnology of dynamicdly reconfigurable hardware. The promise of architedures that can be
atered on the fly, acarding to prevailing conditions, adds a new dimension to the design of red-
time systems. This survey investigates the potential for dynamic reconfigurability, using current
and projeded tedhnologies, and looks at possble gplicaions in the field of red-time
communications.

The study begins by categorising the types of architedure and strategy that can be used in any
reconfigurable system. Having explored the genera concept of reconfigurability, the first part of
the required infrastructure to be investigated is the Field Programmable Gate Array (FPGA).
The development and future diredion of the hardware ae discussed, with reference in particular
to suitability for dynamic reconfigurability. This leads on to the methods used to design and
implement systems on FPGASs, and the functionality of libraries available for them.

The second issie explored is the scheduling of red-time tasks, both in software and hardware
systems. Methods in current use ae described, and their relevance to implementation on
dynamicdly reconfigurable systems are discussed.

Findly, the question hes to be aked whether dynamicdly rewnfigurable hardware would be
genuinely useful in any current or envisaged applications. Examples in the communicaions area
are exploredas possble apdications for this technology.

2 Reconfigurable Systems

“A system can be aproduct, processor servicethat converts a set of inputs into a set of outputs’
is the broad definition offered by [Stoddart99]. In this context, the system is also assumed to be
eledronic (rather than medhanica or manual, for instance).

A remonfigurable system is one that changes its form in order to ater its function. For it to be
more than “configurable” it must be possble to change it either whilst it isin use, or by taking it
out of use for a short time. There ae different models for how systems can be reconfigured, in
terms of the granularity, the intelligence and the @ntrol method required. This sdion proposes
paradigms from various urces outside of computer science and eledronics, and looks at their
charaderisticsin terms that might be applied to eledronic systems.

2.1 Paradigmsfrom other disciplines

2.1.1 The SwissArmy knife.

A penknife has a set of predefined forms creaed by opening ead one of the blades. An
equivalent type of reconfigurability is the dild's “transformer” toy which can be manipulated
into two or three different vehicle and/or robot forms. This is organised by a cenitral
“controller”, who just chooses one of a set of prepared configurations. The only advantageis the
convenienceof carrying one tool instead of many separate ones.

212 Lego

Some remnfigurable systems consist of small blocks that can be put together in any order and
then dismantled for rebuilding. An example is the Lego toy, where there ae different types of
brick but they can be joined in various ways. Taking the building-block size down to an
infinitesimal level gives modelling clay or Plasticine. This model assumes a caitral intelli gent
controller, which choaoses the blocks and remnfigures them acording to requirement. The
function is defined aimost entirely by the physicd arrangement of the blocks.

Alison Carter page 1
07/11/0116:42

2.1.3 Thetean

Each member of a football tean or army unit has a variety of different cgpabilities, possbly
overlapping in spedalisations, and al with some genera functions. A reonfiguration means
restricting individuals to perform a cetain subset of their possble tasks in a spedfied relative
locaion. Like the “Swiss Army knife” model above, there is a ceitral speaalised controller, but
eah part has intrinsic intelligence (albeit possbly limited) used to minimise the anount of
central control required. Exeauting the reconfiguration may involve communication between the
individuals.

2.1.4 Theant colony

Ants have spedalised functions within their society (worker, soldier, queen, etc.). According to
changing circumstances, the wlony can adapt to cope best with their current environment, such
asinvasion by apredator. Thereisnooveral central control, so this model is an extension of the
“team” ideato an entirely distributed intelligence Communication is vital to the recnfiguration
process

2.1.5 Theimmune system

The body’s immune system is prompted into attadking a particular invading organism by
deteding its “foreign” presence This makes the defensive cdls whose shape is attuned to this
particular invader proliferate more rapidly than others [Weir97]. These cdls, or baderia that
mutate to becme immune to particular antibiotics, are following a seledive ewlution model, but
much faster than normal evolutionary systems. This is an often-borrowed ideain hardware and
software systems, such as the sdf-repairing and evolutionary systems on a dip in
[Moreno98][Ortegad7]. In the biologicd prototype, there is no central organisation, and no red
intelligence, but smply a distributed response to the current environment.

2.2 Characteristics

2.2.1 Control

In order to remnfigure a system, there must either be an overal controller, initiating and
exeauting the diange, or else the parts of the system must respond to external stimuli by
changing their own organisation. The control mechanism should be caegorisade as

* Central, externa intelligent controller: the system can be “downloaded” with a new
arrangement from outside as required

e Central, interna intelligent controller: part of the system can cdculate and exeaute
rearangement of the remainder

» Digtributed, intelligent: ead part of the system can deade on the need for rearangement,
and negotiate changing itsdf, or other parts.

» Didtributed, unintelligent: ead part of the system is modified acording to predefined
rulesin response to externa events.

2.2.2 Blocks

The blocks making up an eledronic system can be thought of as pieces of circuitry which may
possbly be parameterisable or programmable. They could be & gnall as sngle transstors, or as
large & a wmputer network. In general, complexity and programmeability increase together. In
terms of function, the blocks may be

» Predefined, single-function: a block of hardwired circuitry that performs a spedfied
function acerding to its structure.

Alison Carter page 2
07/11/0116:42

» Parameterisable/adaptable: whilst the overall function is fixed, certain parameters can be
adjusted.

* Inteligent, multi-function: a system containing one or more procesors which can be
programmed to alter completely the function it performs.

It is, of course, possble to conceave of a heterogeneous s/stem comprising blocks of different
sizes and with different levels of intelli gence.

2.2.3 Configuration

The function of the overal system is affeded by the arangement and internal configuration of
the constituent blocks. Configuration may involve

» Simple choice one of severd possble blocks is seleded to beacive

» Arrangement defines function: the interconnedion of blocks (feeding of outputs from
some into inputs of others) defines the functionality of the system as awhole.

* Arrangement forms part of function: when the blocks themselves are programmable or
parameterisable, they and their interconnedion may be dtered to change the system
function.

2.3 Summary

Reaonfigurable systems can be cdegorised by the cmplexity of their constituent blocks and the
way in which they are rewmnfigured. Non-technicd paradigms discussed above fit this
caegorisation as diown in Table 2-1. The @ncept of “parameterisable” (alterable in a small
way) is not present in these examples, but is included as it is appropriate for eledronic systems
discussd later.

1Control Blocks— Predefined Parameterisable Intelligent

Central external Swissarmy knife

Lego
Central internal Tean
Distributed Baderia Ant colony

Table 2-1: Categorisation of Reconfigurable Systems

3 Field Programmable Arrays

This sdion reviews the development of the tedhnology of field programmeble gate arays
(FPGASs) and similar devices, and their potential for use in dynamicaly configurable systems.

3.1 History of development

3.1.1 GateArrays

The posshility of dynamicdly reconfigurable hardware has grown from the idea of the gate
array, first proposed in the 196Gs as a way of making custom integrated circuit design easier and
cheger [Read85. The gate arays (or masterslices) consisted of partialy processed silicon
chips, with ready-made gates that were not yet conneded. These muld be prepared in kbulk, and
the austomisation performed with only one or two layers of metal. This, in turn, encouraged the
development of automated CAD tools to implement applicaion spedfic integrated circuits
(ASICs), replaang the “polygon pushing” approach of designing ead transistor and
interconnedion individually.

There are ®veral choices to be macdein the desgn of a cate aray:

Alison Carter page 3

07/11/0116:42

* what should the basic cdl’sfunction be, andis it fixed?
* how many should there be, and how many input/output pins?
* how should they be arranged on thechip (in rows, or sea of gates)?

In theory, a digital circuit can be mnstructed entirely from 2-input NAND (or NOR) gates
[Boolel854, so any combinational or sequential system could be formed on a gate aray
providing enough of these gates, sufficient pins and room for interconned. Early gate aray
designs used this concept of providing fixed logic gates that could be wmnreded to build the
circuit. Inthe GEC AOI (and-or-invert) gate aray, ead cdl consisted of a 2-input AND, a 2-
input OR, and an inverter. These were unconneded, but could be joined or left unused as
appropriate to creae the required functions. Such an approad, athough flexible and amenable
to automation, is not efficient in terms of areaused and power consumption. It aso does not
alow for tri-state devices or any memory other than simple registers.

Later devices, such as the UK5000[Kirk84], had logic cdls that were incompletely formed gates
with unconneded transistors. The persondisation of the logic cdls would crede different
functions, which could be connectedas needel.

The gate aray was originaly not recmnfigurable: once the astomisation layers were alded, its
function was fixed. It could be used wherever the length of time and cost of development was
more important than optimising for spead or power, such as for small runs or where time-to-
market was vital. It was also used for prototyping, allowing systems to be implemented on
sllicon and tested prior toinvesting in afull -custom design.

312 FPGAs

The next important bresthrough was the alvent of field-programmable devices. Instead of
customisation taking place in the silicon foundry, it could be caried out eledricdly on the
padaged chip, via its pins. The technology used is what is often cdled an antifuse. That is, a
normally open circuit that is made permanently conductive when a 5SmA programming current is
forced through it [Smith97]. This meatt grealy reduced costs and time to market for ASIC
developers, but once programmed, the setup could not be dianged. Using EPROM technology
FPGAs could be eased with ultraviolet light, and reprogrammed, but this is a dow process
requiring manual intervention.

FPGAs next developed to be eledrically reprogramnmable, allowing embedded systems to be
modified or upgaded in the field without physicd replacement of hardware wmponents. The
tedhnology could be based on EEPROMS, using high woltages (12V or more) to program and
erasethearray. Thiscould now truly be termed “renfigurable hardware”.

The most flexible form of the FPGA uses SRAM tecrology to store look-up tables
charaaerising both cell function and interconnedion. This means that programming the dip’s
function amounts to writing data into memory addresses. The disadvantage is that there must be
continuous power suppied so that the memory retains its contents, or a fadlity for download
from PROM at power-up. Most current FPGA chips using this tedhnology require the etire
chip to be programmed at one time. However, there have been dynamicdly and partialy
reprogrammable tedhnologies around since before 1990 [Dettmer9(].

3.1.3 Field Programmable Systems on a Chip

Quite ealy in the development of semicustom ASICs, it was redised that some types of
component neeal to be predefined as tailor-made blocks, rather than constructed from cdls by
eah designer. Obvious examples are memory and clock generators. An FPGA chip would
therefore include these spedal blocks.

It seamed at one time that a combination of programmable and handcrafted parts would offer the
ided solution for systems on a dip. For example, a processor core could be supgied with

Alison Carter page 4
07/11/0116:42

memory and FPGA on-chip to make a omplete programmeble system. Eventualy, the
emphasis would shift from “an FPGA with speda bits’ to “a system on a dip with
reconfigurable bits’. However, the adility to implement processors and other spedalised blocks
on a genera purpose FPGA seans to be overtaking this with the provision of soft coresto usein
FPSC designs.

3.2 Current FPGA technology

A comparison of FPGAs commercialy available in 2000 [Krupnova00] shows little variation in
the achitedure of the basic cdl or the functionality. = Both one-time programmable and
reonfigurable arays are still used, and programmable combinational logic dements will be
based on AND-OR arrays and look-up tables [Salcic98],[Seds97]. FPGA chips usualy include
programmeable registers, with a doice of clocking (global, input, signal) and reset. The memory
avallable is getting bigger and more anfigurable. Input/output blocks on the dips are
programmeble & input, output, or bi-diredional, with most offering various interfadng
cgpabilities (such as TTL compatibility). Arrangement of cdlsis usually a redangular grid, with
routing chanrels. The interconnedion between cdls can be dfeded by antifuses between
crossed wires as in Figure 3-1 [Seds97], or connedions gated by memory elements as in Figure
3-2 [Salcic9g].

1-time programmable antifuse
i |
- ﬂ,

Figure 3-1: Antifuse interconnedions

i % Memory element (0 or 1)

B >_
Figure 3-2: SRAM-gated connedion

To get an idea of the physicd cgpabilities of commercialy available FPGAs it is aufficient to
look at the Web sites of the two leading manufadurers, Altera and Xilinx. Table 3-1 summarises
the faali ties avail able from their current chip families available in August, 2001

Family L ogic block Number Memory (bits) Other features
Xilinx Spartan-Il | Configurable 96-1176CLBs 16k—56kblock | 86-28410 pads
[Xilinx01S] logic block 15k—200kgates | 0—735kin CLB
Xilinx Virtex-Ii g;;e?j) ISLUT- "6415360CLBs | 72k-3456kblock | 88110810 pads
[Xilinx01V] 40k- 10M gates | dual-port, plus | spedalised

0-1920kin CLBs | multipliers
Xilinx XC4000 64-3136CLBs 2k — 98k 64 —44810 pads
[Xilinx99] 1.6k — 85k gates (interchangeale Dynamic

with logic) reconfiguration
Alison Carter page 5

07/11/0116:42

Altera Apex-Il Logic array 1664089280LEs | 416k- 1488kin 492-144010
[Altera01A] block (LAB) is | 1.90M —7M gates | additionto logic | pads

LUT-based
AlteraMercury '(OL% e;ﬁgmt 480014400LEs | 48k—112kin | 303—48610
[Altera01M] ermbedded 120k—350kgates | additionto logic | pads
AlteraFLEX system block 208-1296LEs 282- 1500 78—20810 pads
[Altera99] (ESB) 2.5k — 16k gates smple registers

Table 3-1: Commercially available FPGA chip families

3.3 Fidld Programmable Analog Arrays

Alongside the development of FPGAs for digital circuits, there has been paralel work on
reprogrammable analogue arays (FPAAS). They can be based on various circuit elements, such
as amplifiers or analog integrators [Pierzchala94]. An example is commercialy available from
Anadigm (reprogrammable from EEPROM) [ESEO1]. They market a module with an on-board
microcontroller to recnfigure the FPAA dynamicdly in 0.1ms. There is nowhere near so large
a market for such devices as for digital FPGASs, and they are much smaller with less sipport
software.

3.4 Programming and Dynamic Reconfigurability

In order to program an FPGA, the memory elements defining the logic functions, memory
charaderistics, connedions and other parameters must be filled with appropriate data values.
This data is termed a “bitstrean”, and may be loaded with the FPGA as an adive or passve
participant [Salcic98]. In adive mode, the FPGA loads its internal memory elements from an
externa chip (ROM) which has been written in the required format. Passve programming
involves a microprocessor or microcontroller sending the bitstrean as a seria or parallel input.
The programming procedure auld be regarded as smilar to downloading an exeautable program
to an embedded microcontroller’s internal memory, either from external ROM or from a host
processor.

FPGA’s can be once-only programmable, in which case the configuration is smply a fast design
tednique. They may have persistent but erasable memory, so that they can be upgaded
occasionaly, but till have basicdly a fixed design. If they have volatile (SRAM) memory, the
bitstrean is loaded on power-up, and may (dependent on the achitedure of the FPGA) be
atered dynamicdly while the dip is running. Time taken to program an FPGA varies acording
to sizeand technology, butis of the order of a second.

Advances in dynamic reconfigurability are mostly at the reseach stage. In 1995 the idea of
storing multiple versions of the look-up tables in an FPGA was patented by MIT [DeHon95].
The different versions, referred to as “contexts’ are stored locdly, and switched in response to a
simple instruction, this alowing the dip to switch quickly between severa predefined functions
(asin the “Swiss Army knife” model described in 2.1.1 above). It is easy to take this approach
with more hardware, and taking more time, smply by storing severa different bitstreams in
ROM and downloading as required.

Reaonfiguring an FPGA requires large anounts of data transfer. [Jeong0(explores the use of
partial reconfiguration, by adjusting the csynthesis algorithm to schedule tasks in hardware or
software taking acount of known size axd completion times. It has been smulated, but not
exeauted on red hardware. The work done & the University of Glasgow on defining and
implementing a run-time reoconfiguration manager (RAGE) generdises the requirements for
managing an FPGA-based system [Burns97]. The Xilinx XC6200 [Bradley96] has been
particularly useful for exploration of dynamicdly reconfigurable systems, becaise of its partial
Alison Carter page 6

07/11/0116:42

reconfiguration abilities. However, it is unfortunately no longer available. The aurrent XC4000
guotes dynamic reconfiguration as one of its feaures [Xilinx99].

3.5 FutureTrends

At the hardware level, increases in numbers of gates and clocking speeds in FPGAs mirror those
in other gilicon products [Radko0Q], and this ans st to continue in the same manner. Figure
3-3 illustrates this growth with the spead and size of Intel processors over the past 30 yeas (data
taken from <Intel>. A dired comparison of clock speals (say 1500 MHz for procesors and
200MHz for FPGAS) and gate aunts is meaningless due to the paralel nature of hardware
algorithms.

Intel Processor Growth
100,000,000

10,000,000

1,000,000

A Size (xistors)
X Speed (kHz)

100,000

10,000 ¥x
Q X X
X

1,000 /

1004-X% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1971 1973 1976 1979 1982 1984 1987 1990 1993 1995 1998 2001

X
x

Figure 3-3: Development of Intel Processor Power

Of more interest are potential quditative danges in FPGA functionality. Looking at United
States patents covering FPGAs <Delphion> shows that most development is commercia rather
than academic (72 of the 200 recett FPGA patents are from Xilinx), which suggests a mature
tedhnology. Of particular relevance here are aty developments concerning dynamic and/or
partial recnfiguration. Seven of the 200 recet FPGA patents address these diredly For
example, [Hartmann0Q] suggests a pipelined logic structure where eab stage of the pipeline may
be switched to a different (predefined) function by an intelligent controller as required during
exeaution. The aconcept of “memory planes’ within the FPGA can ke used to provide more than
one (predefined) configuration which can be quickly swapped [Mohan0Q]. This type of
approach could allow for a “double-buffering” arrangement where one plane of memory was
updeted whilst another was being used, dl owing for dynamic updates to thecircuit.

3.6 Summary

In this edion, field programmable gate arays have been presented at a hardware structural
level, where they can be cdegorised in terms of the models proposed in sedion 2.2 above as

Alison Carter page 7
07/11/0116:42

consisting of small, predefined or parameterisable blocks which can be rearanged by a cetrd
external controller.

The tedhnology is well established, and has a caability for reconfiguration within a timescde
which could be cdled “dynamic” rather than just “occasiona upgade”. Development of
multiple memory planes and sedioned, partia recnfigurability is apparent in the literature
although ot in large-scde commercid use at present.

4 FPGA System Design

The view of an FPGA given in sedion 3 above is analogous to describing the registers and
instruction set of a microprocessor which, in pradice is usualy programmed using a compiler
and predefined libraries. Similarly, a ommercial FPGA is ld with design software and
prepared component blocks. This sdion describes the ways in which FPGAs are used, what it
means to recnfigure them, and the methods employed to implement systems on them.

41 Modesof use

The initial application for Gate Arrays, both foundry- and field-programmed, was in rapid
prototyping. Previoudy, the design cycle for applicaion spedfic drcuits involved manual
construction of a hardware prototype from discrete cwmponents, which was obviously error-
prone and not a good indicaor of finished system timings. This is gill an important asped of
usage of FPGAs, but theemphasisis beginning to shift towards usein final products.

As an example, military systems neel high reliability and long-term stability but rapid
development cycles to be deal of competitors. The DoD RASSP projed [Richards94] was
spedficdly looking to prototype signal processng systems for applications such as radar. A
smilar current European projed, Espadon, is now designing a methodology for the use of
comnercial off-the-shelf (COTS) components, including the use of FPGASs in the deployed
systems [Madahar0(Q].

The use of multiple FPGAs in redistic communicaion systems poses challenges of speed and
complexity. In a paper describing the construction of an IP padket forwarder using 19 FPGA
chips [Miyaz&i99]. Miyaz«i states that “FPGA-based emulators ... cannot be gplied to red-
time telecommunicaions data processng, which often requires at lesst 20MHz”. Advances in
tedhnology have overtaken this, but the requirement of multimedia gplicaions for ever more
bandwidth will always leare a gap between the caabilities of custom hardware and that
achievable in reconfigurable systems. The question is whether development time from the
definition of a standard to the release of products will render custom design insufficiently
responsive to the market.

The reconfigurability of FPGAs makes them ided for field upgades to systems. As described in
sedion 3.4 above, a new hitstream can be downloaded containing a new version of the arcuitry.
This makes upgrading a drcuit as smple &, say, loading a patch for an operating system. It can
be supdied on disk, or via the web. In fad there is growing interest in internet-enabled FPGA
chips allowing remote upgrades of the circuit design.

The next level of flexibility is dynamic rewnfiguration: atering the wnfiguration while the
system is operating (or at least with small, insignificant down-time). Just because the hardware
might be cagable of this (as discused in sedion 3.4) does not necessarily mean that support
software is available to recompute the configuration in the required time.

4.2 What ishardware, and why reconfigureit?

There ae obvious advantages to a reconfigurable system, such as flexibility and ease of
modificaion or upgade. This could be taken to refer to any programmable system. The word
“programmeable” is used in many contexts. for instance, the programmable logic array (PLA) is

Alison Carter page 8
07/11/0116:42

an unchanging hardware block, and an FPGA chip is “programmed” by its bitstrean. It is
therefore useful to propose definitions of programmable software and reconfigurable herdware.

» A software system consists of an algorithm represented and exeauted as a set of
instructions. This usually takes place serialy, or with limited, well-defined parallelism,
on asingle or defined set of processors.

* Remnfigurable hardware mnsists of a set of interconneded components, ead with a
(currently) defined function, usually operating with extensive paralelism. The dgorithm
performed depends on the interconnedions and the individual component functions.
Reoonfiguration involves speafying new component functions and/or interconnedions.

Charaderistics of software implementations mean that they are comparatively easy to ater and
upgade. For any system whose potentially recnfigurable parts could be programmed entirely
in software using existing procesrs, it would be difficult to find any reason for looking for
hardware implementations. To justify the use of hardware for any particular application, it must
be posshbleto say oneor all of:

* It medstiming constraints that equivalent software does not
* It contains elements (e.g. analogue interfaces) that cannot be implemented in software

* It can be designed more eaily, more reliably, and/or more quickly using reconfigurable
hardware

In order to justify using FPGA-type reconfigurable hardware, rather than standard chips or
speaally designed ASICs, some of the following conditions must hold

* It meds power/sizerequirements that full hardware implementation does not
* It neadsaflexibility of reconfiguration not available in a fixed hardware implementation

* It can be designed more eaily, more reliably, and/or more quickly using reconfigurable
hardware
The use of general processors and the ladk of paralelism mekes ftware implementations less
efficient in terms of speal than hardware equivalents for some types of algorithm. [Pryan01]
describes the use of FPGA-based DSP solutions as a faster dternative to programming DSP
processors.

In a detalled analysis of the types of FPGA available, and the uses to which they can be put,
[Hauck98] gives the following types of application:

* Hardwarelogic emuation (faster than software Smulation)

* Multimode hardware (switching between predefined functions, rather than implementing
severa separate hardware blocks)

* Coprocesors
* Multi-FPGA implementations of spedfic dgorithms (e.g. ercryption)
» Trainable systems (e.g. neural networks)

However, he notes that “it is not clea that any application hes already been developed that can
drive wide-scde aloption of this technology”. Some interesting concepts are put forward, such
as the idea of “virtual hardware” by analogy with virtual memory, for multimode (switchable)
systems with sets of aternative hardware configurations ready for loading.

In red-time systems with spedfic time-response cnstraints, it may be necessry to implement
some programmable parts in hardware. If there is dso a limitation on the size/power-
consumption (such as in hand-held devices), then hardware recnfiguration is an obvious
solution.

Hardware remnfiguration can also take the place of software emulation in the increasingly
important area of interoperability in networked systems. It is adready essy to get FPGA-

Alison Carter page 9
07/11/0116:42

implementable simple procesors <FPGA CPUs>, so the idea of completely recnfiguring a
processor to “look like” something elseis not far away.

Another reason for using remnfigurable hardware is where interfadng to external devices
requires reconfigurable ardlogue dharaderisticsthat canna be anticipated in theoriginal design.

4.3 Hardware-Software Codesign

Because of the differing advantages of hardware and software implementations, most systems
congist of a mixture of the two. Software, at the lowest level, consists of a sequence of
instructions, and obvioudly requires a procesor to interpret and exeaute these, and memory in
which to store the program and the working data. In addtion, some parts of the function may be
implemented dredly in hardware, interading with the software & appropriate points. The
system design then centres around portioning into which parts are to be implemented in software
and which in herdware.

A traditional design flow for codesign is shown in Figure 4-1 (adapted from [Douglas<)0])

Requirements Analysis

v

|| Spedficaion ||

I

HW/SW Partitioning

|| HW DT:H ption “/ \l‘ SW Description ||

v

InterfaceSynthesis L
HW Synthesis ¢ SW Generation
¢ || HW/SW Interface || L

|| Software Modues ||

—

Integration/Cosimulation |

| Hardware Componrents |

|| Integrated System ||

Figure 4-1: Traditional Hardware/Software Codesign Flow

This assumes that a hard partitioning choice is made ealy in the design process after which the
two parts are implemented separately and subsequently integrated. Current design tedniques
are moving towards independent system design and smulation, with later partitioning. The use
of dynamicdly reconfigurable hardware adds to the complexity of the codesign task.

» Hardware blocks communicaing with the software may be recnfigured
* The hardware on which the software runs may be recnfigured
* Theboundary between hardware and software may be moved dynamicdly

* The hardware desgn/implementation software becomes part of the finished product, not
just part of the design process

Alison Carter page 10
07/11/0116:42

4.4 Design methodologies currently employed for FP devices

FPGA hardware vendors provide software to enable designers to target systems to their
particular chips, and generad CAD companies &l tools which can be used with different FPGA
hardware. The general procedure involved in implementing a drcuit on a single FPGA is $1own
in Figure 4-2. An example of a aurrent FPGA design system is the Mentor Graphics FPGA
Advantage suite <Mentor> consisting of Renair (block-level design and synthesis), ModelSm
(smulation) and LeonardoSgedrum (placeand route).

Hardware design ﬁ

(block diagram Simulation Placement Routing Simulation Programming
and/or HDL)

Figure 4-2: FPGA Design Procedure

The designer has to model the system hardware using functiona blocks, which may be taken
from a library or programmed in a hardware description language (VHDL or Verilog)
[Ashenden00]. The design is hierarchicd, with the bottom level being elements that can be
implemented dredly in the look-up tables of the FPGA (simple logic gates) or other basic
building blocks (e.g. memory elements). The placanent and routing stages assgn these blocks
to spedfic places in the aray on the dhip, designate the values to be programmed into the LUTs
to perform the required function, and route the necessary connedions between them. This is
largely automated, but the placeament stage in particular will usually benefit from manual
guidancefrom the designer.

It is no longer necessary, when using commercial FPGAS, to build the design right down to gate
level. There is a growing colleaion of commercially available IP (predesigned high-level blocks
whose value is the intellecdua property involved in their design) including communicaions
peripherals (e.g. Ethernet controllers) and simple processors [Aycinenall] <FPGA CPUs>.
Table 4-1 shows examples of some of the IP cores currently commercially available (2001).
There ared <0 freely available @res on the Inernet <FreelP>.

Vendor | P Core Function
Mentor Inventra 10/100Mbps Ethernet Controller
Mentor Inventra M8052Microcontroller
ARC Cores Bluetooth Controller
Eureka Tedhnology | 8086Microprocessor
4i2i Streaming video CODEC

Table 4-1: Some Commercialy Available FPGA |P cores

The design hardware is smulated in is origina block/HDL form, and also after automatic
synthesis into lower-level hardware blocks. These blocks are initially vendor-independent, so
that the desgn, and any library and | P blocks used, are not spedfic to a particular FPGA chip.

At the final placeand-route stage, the user seleds a particular FPGA chip on which to
implement the design. An estimated gate-count, together with the known number of
interconnedions required, can be used to guide the sdledion. The tool would normally be
installed with a family of target chips from a particular vendor. Certain IP blocks may be
optimised for spedfic target families, but generally any design may be targeted to any large
enough chip. Resmulation, taking into acount the physicd layout, can ched that timing and
power constraints are still met, and if not the placement and routing can be repeaed with
different user-defined guidance parameters.

All of this is currently focussed on quick time-to-market and design re-use for one-time
programmed (or possbly later upgadeable) single-chip devices.

Alison Carter page 11
07/11/0116:42

45 Implicationsfor dynamically reconfigurable systems

There ae two problems with this design process the size and complexity of redistic systems,
and the time and manud input needel for theimplementation.

Many current studies of reconfigurable hardware look at single-chip FPGA systems. Whilst
useful as indghts into the tednology and its applications, the red chalenge is in the
reconfiguration of large, complex systems. These may incorporate fixed procesors, and several
(may be different types) of FPGA. Severa projeds have used large arays of FPGAS to
implement massvely paralel algorithms [Hauck98]. In any such architedure, reconfiguration of
the FPGA must either be caried out within atight spedfication so that it does not affed the rest
of the system, or other parts (e.g. software) must be dteredacardingly.

Reaonfiguration of an FPGA using a standard design system would necesstate running several
design — synthesise — layout cycles in advance to have different implementations ready to load.
That is, switchable onfigurations (“multimode” hardware) can ke implemented, and the
bitstreans gored realy to load as required. Switching time depends on the speead with which the
hardware can be @nfigured. There ae ways in which this can be improved on. If partial
reconfiguration is possble, the hardware for the different modes can be designed with minimal
differences, so that partial recmnfiguration can take alvantage of smaller changes [Heron99].
Suppose, for example, a system on a single FPGA chip consisted of a microprocessor core with
variable logic dongside it. It would obviously be awaste of time to run the whole dip layout
cycle ayain if the microproces9r itself did not change: it should be possble to mark parts of the
array as “in use”, and replace other parts with a new design. In a system using the “virtua
hardware” gpproach, smilar to context switching of software processs, [Levinson00] points out
that the information stored in memory in an FPGA can be split into permanent and transient.
The “permanent” information defines the anfiguration, whereas the “transent” is the arrent
contents of any registers at present time. In any state-change that maintains the hardware
configuration, only the registers need to be reloaded.

For truly dynamic reconfigurability, either the hardware design cycle neeals to be dramaticdly
shortened in time, or there must be intrinsic reuse of parts of the implementation (not just the
design, but the physicd positioning on the FPGA). The former may be possble if the hardware
is designed automaticdly, under program control, rather than with manual guidance The latter
is more implementation-dependent.

46 Summary

Most of the time spent in implementing hardware on an FPGA is in the design and layout, rather
than the programming, so this fage neeals to be made & efficient as possble if dynamic
reconfiguration is required. The reuse of predesigned blocks (analogous to software dass
libraries) is aready speading up asign. Taking into acount this higher-level view of the design
process reconfigurability scenarios can be modelled as shown in Table 4-2.

1Control Blocks— Predefined Parameterisable Intelligent
Central external Multimode hardware | Virtual hardware Hardware emuation
with context of different
switching processors
Central internal Multimode hardware | Trainable hardware | Soft processor
including on-board (e.g. neural network) | modifying its own
switching parameters
Distributed Self-modifying Multiple small
hardware e.g. reconfigurable
majority dedasions processors
for fault tolerance

Alison Carter page 12
07/11/0116:42

Table4-2: Moddl for FPGA System Reconfigurability

The following types of recmnfiguration scenarios could be envisaged:
» Software runs on afixed processor, controlli ng predefined updetes to the hardwvare
» Software on afixed procesor redesigns and reconfigures hardware

* Hardware isautonomousdly self-modifying

» Software runs on a rewnfigurable processor (either multimode or dynamicdly
redesigned)

5 Scheduling Real-Time Systems

“If something anticipated arrives too late it finds us numb, wrung out from waiti ng, and we fed - nothing at

all. The best things arrive on time.” [Dorothy Gilman, A New Kind of Courtry, 1978
In red-time systems, the timing of interadion with the environment is part of the spedfication
[Burns96]. If reconfigurable hardware is to be included in red-time systems, any timing analysis
must take into acount possble different hardware @nfigurations, and the time taken to switch
between them. This ®dion looks at methods for ensuring timing requirements are met in the
scheduling of software axd hardware operations, and how these might be dfeded by
reconfigurabili ty.

5.1 Worst-Case Execution Timesin Software

The primary requirement of a red-time system is that the timing of its outputs gwould be
predictable, either individually or statisticaly depending on the gplication. This predictabili ty
bemmes more difficult to adchieve the more complex the gplicaion. Inputs may be periodic
(with aregular arrival frequency), sporadic (with at least a known minimum inter-arrival time) or
entirely random.

In order to design a software system that will med timing requirements, it is necessary to predict
how long tasks will take to exeaute. At least, the worst case exeaution time (WCET), which is
an upper bound on the time taken, is needed as it usualy does not matter if a task completes
ealy. The WCET nedls to be tight (not too much of an over-estimate), but also safe (never
exceealed) in order to be useful [Engblom0Q]. The cdculation (or estimation) of WCET involves
both hgh-level (source @de) and low-level (microcode) analysis, and tends to be highly spedfic
to a particular compiler and architedure [BernatOO0]. This would be a big problem for
reconfigurable systems, asthe architecure might be liable to change.

The high-level analysis consists of looking at how paths through the mde ae followed, such as
how many times a loop may exeaute, when different conditions exist for if-then-else branches,
and where functions are cdled. This information is usually not entirely available by static
analysis, and has to be aigmented by programmer annotation [Li95 where value ranges of
variables cannot be inferred from the wde. For simple tasks, it may be possble to analyse dl
possble paths through the cde, but this can easily become infeasible for larger programs. The
problem can alternatively be expresgedasa cdlection of constraints, and solved andyticdly.

Low-level analysis means working out how long madine-code instructions take to exeaute. The
straightforward clock-periods per instruction cycle cdculation can be dfeded by pipelining,
instruction cading and data cading. As procesors become more @mplex, with more
“speading ug medianisms, the ead cdculations of the time taken to exeaute ay one
instruction beaomes more context-dependent and difficult to determine.

5.2 Scheduling taskson a single fixed processor

Before looking at the complexities of scheduling tasks on rewnfigurable procesrs, it is
necessary to understand methods used to do this a traditional processor. Red-time gplicaions
generaly require more than one task to be exeauted, and ead has its own constraints to be met.
In order to share the procesr time betweean them, the following are nealed:

Alison Carter page 13

07/11/0116:42

A medhanism for starting the next task running. This can be & smple a a procedure cd (cyclic
exeautive) or interrupt service routine, but will more usually be aqueue of processes, with saved
states. The process a the heal of the queue can be loaded for exeaution at regular intervals
(round robin), immediately (preemptive) or when the current task compl etes (non-preemptive).

A method for allocaing priorities (unless all proceses are onsdered equal). This deddes
which processes get to the front of the queue and therefore get more immediate servicing. The
priorities may be staticdly or dynamicdly assgned.

Metrics (such as WCET) to alow priorities to be cdculated, and so that an analysis of the
feasbility of the schedule can be made. Along with metrics for the processes themselves, the
constraints and scheduling goals nead to be expressed mathematicdly (e.g. is it minimum time,
or minimum latenessthat isimportant).

In addition, eat scheduling method makes assumptions about the daraderistics of the
processes for which it is designed (e.g. periodicity).

5.2.1 Cyclicexeautive:

N
If the inputs to a system are known to be periodic & multiples of a basic period T, and Z C <T

(where Cy is the WCET of process k associated with a particular periodic input), a non-
preamptive gyclic exeautive scheme can be cdculated in advance [Burns9g],([Liu0(cdls this a
“clock driven” system). There is no neeal for saving process $ates and context switching: tasks
can be cdled as procedures and ead runs to completion. Given simple exough input timing,
such a saticdly defined schedule wuld be used for a remnfigurable system in the cae of
multimode hardware, where different exeautives could be defined for ead pre-defined
configuration. The adual recnfiguration procedures could be considered as additiona tasks to
be included in the schedule.

5.2.2 Round Robhin

This is an algorithm in which al eligible processes are given time in turn, then preampted at the
end of a time-dice (or quantum) if they are still running. Processes are put to the badk of the
gqueue when they complete, in an effort to give fair share to al. It is possble to introduce a
weighting fador, to give ectra quanta to some “more important” processs [Liu0(. The nethod
has the alvantage of smplicity, and is used in operating systems sich as POSI X, but does not
cope well with sporadic processes, or processes with preceadence constrants.

The use of a round robin scheduler could be imagined for switching between different
configurations in a dynamic system. Here, the task switching also involves stting up a new
configuration. The reconfiguration could not be seen as extra tasks in this case, as eat has to
complete, and be done in a spedfic order in relation to processes. The time-dice length will
affea the overal efficiency of the system, becaise of the overhea involved in task switching,
which could now become much larger. For example, if the time-dice is st at 10ms, and the
switching takes 1ms, there is a 10% overheal added to exeaution time, whereas if the time-dice
is increased to 50ms, there is only a 2% overheal. However, as the time-dice gets longer there
will be more occasions when a process cannot use its whole dice, and an extra switchover is

needed or time is wasted. Every processi will complete in a time lessthan gN E’f—'E where q
-s

is the time quantum, N isthe number of processes, and sisthe context switching time.

Alison Carter page 14
07/11/0116:42

5.2.3 Priority-Driven Scheduling

Where ready processs are taken from the queue acording to priority, the dlocaion of these
priorities becomes the main issue.

Rate Monotonic [Liu73: Rate-monotonic scheduling is particularly designed for the
servicing of periodic events, as found in red-time systems with synchronous inputs. The RMS
scheduling agorithm smply gives highest priority to the task with the shortest period, and
alows higher priority tasks to preempt. It will effedively schedule N processes if the sum of the

utili sations % of al the processs is lessthan N%%“ —1@ This levels out around 70% (limit =

In2 = 0.693]) as processnumbersincrea®, asshown in Figure 5-1

1

0.95

o
©

0.85

o
©

Utilisation bound

0.75

0.7

0.65

r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
Number of Processes

Figure 5-1: Utilisation bound for guaranteed rate monotonic scheduling

Although a set of processes with given timing constraints may be schedulable by this method,
the resporse time (from input, causing the queuing of a process to output, assumed to be
completion of a process is dependent on the competion of higher priority processe.

Deadline: If a red-time process is invoked to cgpture input in an embedded system, the
important fador in scheduling is acualy meding a dealline, rather than taking a particular
amount of time. There ae therefore scheduling algorithms that assgn priorities acording to
deallines by which a task must start or complete. If the task with the ealiest finishing deadlline
is given highest priority, there is no need to have periodic tasks. Thisis cdled “deadlline driven”
[Liu73, “dealline monotonic” [Burns96] or “Earliest Dealline First” (EDF) [Liu0Q. It can be
scheduled if for a given set of processs if any other method can ([Liu73 for periodic processes,
[Liu0O(g more generally). It is aso possble to consider starting deadlines (release times), rather
than finishing deallines for processes, and to extend the analysis to alow for release jitter
[Audsley9s].

Critical Sections. Interadion between processes, either in terms of competition for resources
or temporal sequencing, means that smple priority assgnments by period or dealline can leal to
priority inversion and deadlocks [Auddey95]. To overcome this, proceses can be made to
inherit priorities dynamicdly from those they are blocking. This is insufficient to avoid possble
long chains of processes blocking eat other, so further adion can be taken to assgn priorities
acwording to use of resources. This can ke done by assgning priority celings and only
allowing processes whose priorities are higher than this to enter a aiticd sedion that uses this
resource[Burnsog].

Varying priority with resources. An example of dynamic priority assgnment in a changing
system that might be relevant to remnfigurability is given in [Ma00]. Here the problem of
energy efficient scheduling for mobile gplicaions is addressed by assgning tasks two different

Alison Carter page 15
07/11/0116:42

types of priority. One represents the importance of the task (P, = O for unimportant, 1 for vital),
and the other represents its energy consumption (P = O for using al the energy, 1 for using
none). The overal task priority is then assgned acording to a formula which can be smplified
as

P(t)=@-r)P.E(t)+rP (1-E())

where E(t) represents the ratio of residual energy at timet to the total energy budget, and r is an
adjustable parameter to give more or lessweight to the energy-saving asped of the dgorithm.
As energy is used up E(t) deaeases and the priority is driven more by the importance of the
task, as diown in Figure 5-2. Here, the residual energy is assumed to be deaeasing linealy with
time. When there is plenty of energy, paradoxicdly more emphasis is given to the energy
consumption asped. The overall task priority determines the period of operation in an example
application of aportable GPS wayfinder.

Energy efficient (Pe=0.8), increasing Pi Important (Pi=0.8), increasing Pe

0.5 0.5
0.4
> 203
S S
o a 0.2
0.1 0.1
0 : : : : 0 : : : :
0 20 40 60 80 100 0 20 40 60 80 100
time time
Energy inefficient (Pe=0.2), increasing Pi Unimportant (Pi=0.2), increasing Pe
0.5 : : : : 0.5 - : : .
0.4 0.4
2 2
S S
o o
0 0
0 20 40 60 80 100 0 20 40 60 80 100
time time

Figure 5-2: Priorities (with r = 0.5) over time using Ma'sformula

This is an example of a schedule having a metric (power remaining) and a goa (avoiding
running out of power) which dynamicdly aters the behaviour.

Value-Based Systems: An approach to alocaing scarce resources when scheduling has
been developed under the caegory of value-based methods [Burns98]. These methods assime
that resources are limited, and will at some stage become insufficient to allow al processes to
med their spedfied criteria (deallines). It isthen necessary to dedde which should be negleded
and which must be scheduled, so that the system can cope with a temporary period of overload.
The value is a metric d@tadhed to a process or group of processes, which may vary acording to
time and context. It is used to dedde which processes are almitted to (or excluded from) the run
queue when resources are limited. This medianism is in addition to any priority assgnment
aaing within the queue.

Heter ogeneous Systems: Many anayses of scheduling algorithms assume a homogeneous
set of task charaderistics, whereas in redity there will probably be amixture of periodic and
aperiodic, red-time and non-criticd, those with known WCET or deadllines and those without.
[Liu73 suggests that a combination of Rate Monotonic and Deadlline Driven priority assgnment

Alison Carter page 16
07/11/0116:42

can be very effedive. Even in aress such as DSP programming, which is charaderised by
simple periodic inputs and outputs, there is an emerging trend towards the need for more
sophisticated scheduling [Dubin01]. It is likely that in dynamicdly reconfigurable systems,
scheduling will need to use a ombination of agorithms at different times and in different
circumstances.

5.2.4 Multiprocessor Schedulirg

If there is more than one processor available, or if some of the operation can be caried out in
hardware, then the scheduling becomes more complex and issuies of synchronisation must be
addresd. [Stallings98] caegorises multiprocesor implementations acwrding to their
granularity (assuming ead applicaion contains many tasks) as

* Independent, which is redly multiple gplicaions rather than paralelism in a single
application.

* Coarse, where individual processors perform tasks that could be run on a single, multi-
tasking system, but al at oncerather than switching between them.

* Medium, where strongly interading processthreals of a single gplicaion are scheduled
to run on several procesors.

* Fine, where asingle instruction stream contains parallelism that can be distributed over
severa processors, such asin an occam Transputer environment.

The issues of static versus dynamic scheduling still apply. It is gill common for the programmer
to have to spedfy the dlocaion to multiple processors, rather than any automatic dlocation.
Methods of automatic scheduling can take into ac@unt not only the timing of processes, but also
the communicaion / synchronisation between them, so that communicaing processes run
simultaneoudly.

Of course, there is no reason to asume homogeneity of processors. At one extreme, all
processors are interchangeable, and at the other eadh is dedicaied to a particular task.

5.3 Real-time characteristics of hardware systems

Hardware systems are intrinsicdly paralel, and their timing charaderistics have traditionally
been modelled in a different manner from software systems. There is gill the wncept of a
“worst-case exeaution time”, but the fadors that can affed the timing are not all the same as for
software:

» The same low-level hardware block can take different times to exeaute, depending on the
loading (fan-out), so at different placesin the circuit, amilar blocks hawe diff erent delays.

* Thetime taken by a hardware block to complete processng may depend on its inputs (for
example, amultiplier may take different timesfor diff erent data)

» The requirement to synchronise the arival of data from several different sources means
that the WCET of a hardware block depends on the slowest path through it.

5.3.1 Datapath model of synchronous systems

As an example of timing analysis of hardware systems, the losdess discrete integrator (LDI)
filter described in [Rouse94] and shown in Figure 5-3 is a synchronous sgnal processng
structure with several paralel branches. The input is a periodic data strean which is input at a
spedfied frequency, and an output is cdculated at the same frequency, but after some delay.
Delay (memory) elements are docked at the input frequency, so their output represents a
previous data value. The other components are fixed point adders and multipliers (eath
multiplying by a different, constant coefficient), and have an inherent delay which is to some
extent data-dependent. The delay aso depends on topology, tedhnology and physicd layout.

Alison Carter page 17
07/11/0116:42

Simulation padages typicdly use very conservative delay estimates, but these can be badk-
annotated more acairatdy from a physica implementati on.

WW:

>

Yk

Figure 5-3: LDI Filter

The @rred timing operation can be confirmed by ascribing a worst-case exeaution time to ead
component, and identifying the critical path from one delay element to the next (the path with
the longest time). This can be done using signd flow graph techniques. For example, given the
times adder = 1, multiplier = 2, there are two, equal criticd paths of 14, asshown in Figure 5-4.

WW:

Figure 5-4: Criticd Paths

Hardware systems do not generaly have d their memory elements (registers) clocked at the
same rate like this one. In this case, a controller, in the form of a finite state madine, is
responsible for enabling capture of data & ead register at the gpropriate times. This makes the
design of the aontroller similar to designing a scheduler for a multiprocessor software system (it
fad, it can be mnsidered a multiprocessor system where eab processor has one dedicaed task,
as described in 5.2.4 above). Thereis, however, the alded high-level design deasion about how
many hardware mmponents are needed. For example, if an algorithm requires two independent
additions, this could be done with a single adder, the first result being stored in a register while
the seoond is cdculated. Alternatively, if speed isimportant, two separate adcders could be used.

With more cmplex synchronous g/stems, the techniques above gply, but at a block level,
rather than individual components. There is gill a static analysis of paths through the system,
based on WCETSs of the blocks, and synchronisation occurring when datais cgptured in memory.

5.3.2 Sdf-timed systems

A sdf-timed system is a hardware system with the equivalent of dynamic scheduling. That is,
elements of the system have amethod of signaling that they have completed, and are inhibited
from continuing until all their inputs are ready. This is done & logic gate level, enabling micro-
pipelines to be established, with components running at their adual speed rather than using
worst-case estimates . Methods used in self-timed logic ae reviewed here, as their dynamic
nature and dstributed control of timing may find paralels in the scheduling of reconfigurable
systems [Gras97].

Alison Carter page 18
07/11/0116:42

One method used is the introduction of a space token between hits. Insteal of data items of just
0 and 1, there ae three values (0, 1 and space). This may be implemented by using three
different voltage levels, or using two wires for ead signa. A transition from spaceto O or 1
signals that a cdculation is complete. Conversely, the presence of a space on an input inhibits
further processng. Although this method allows for effedive self-timed operation, it introduces
overheads on the time (and on the hardware and power consumgtion).

Another method is to introduce aixiliary circuitry to generate a ready signa when the
cdculation is complete, which is fed into the start control of the next function(s) in line. This
asmes that the delay is data-dependent, so the auxiliary circuit uses the input data, and posshbly
extrainformation from the logic block, to cdculate and imdgement an appropriate delay.

A third method involves smehow deteding adivity in the logic block. Depending on the
tedhnology, this might involve measuring currents, or looking for internal voltage level changes.
In any case, the asumption is that the drcuitry is normally quiescent, and there is sme way of
telling when nothing is taking placeinddeit.

5.4 Real-timereconfigurable systems

The problem of scheduling in red-time recmnfigurable systems depends on the type of
reconfiguration being undertaken. [Levinson00] looks at the problems associated with stopping
and restarting processes that are running in hardware on FPGAs in order to implement
preamptive scheduling. Instead of the handful of registers and required to speafy the state of a
software process (in addition to its memory contents), the hardware process may have alarge
number of internal registers. In this example, the (changing) register contents are disentangled
from the (semipermanent) parts of the FPGA definition htstream representing the hardware
layout, requiring the abili ty toread back the configuration of the FPGA.

55 Summary

The scheduling of red-time gplicaions often assumes a smple model of processes (e.g.
independent and periodic). For implementation on dynamicdly remnfigurable hardware, the
issle of scheduling reconfiguration (a relatively low operation), and the necessty for the right
hardware to be in place for particular processes, adds to the @mplexity. Taking the
reconfiguration scenarios mentioned in sedion 4.6 above, different scheduling methods would be

appropriate
Multimode hardware;

Standard software scheduling tedhniques within ead mode, plus global scheduling of
switchover between modes taking acount of precalence of operations

Virtual hardware with context switching
Standard software scheduling tedhniques with modification to take acaunt of long
switching times

Hardware emulation of different processors
Standard software scheduling tedhniques appropriate to ead procesor

Trainable or Self-modifying hardware

Self-timed or hardware controll er, plus software scheduling mé&ing all owance for
reconfiguration times

Soft processor modifying its own parameters

Extension to software scheduling with dynamic adjustment to suit procesor charges
(value based tedhniques could be useful here)

Multiple small reconfigurable processors
Extension to multiprocessor scheduling techniquesto alow for reconfigurahili ty.

Alison Carter page 19
07/11/0116:42

6 Real-Time Communications Applications

This wdion looks at the gplications in the red-time communications field that might benefit
from the use of dynamicdly recnfigurable hardware. The apeds that are particularly relevant
are

* interoperability of different standards
» multifunctionin asingle device or system (adaptation to apgication or data)
» adapationto environment

6.1 SoftwareRadio

The aoncept of software-defined radio has conflicting definitions, but a detailed dscusson in
[PereiralQ] issummedup &
“we @wison Re-configuring on demand not only the terminal but aso the serving network(s) and the
servicesthey provideUpon this open framework, we envision truly ‘ platform’-independent appli cations,
no longer exclusively developed by or for operators, capable of adjusting themselves to the serving network
capabiliti es ... and the terminal characteristics, negotiating with the network to oltain the best possble
servicetaking into acoount the user profile.”
The basic premise is that everything is recmnfigurable. This ranges from the protocols at all
levels (e.g. using GSM or UMTY), through network management (e.g. reconfiguring a network
to cope with different loading profiles), to applicaions (e.g. an applicaion that normally
provides dreaming video switching to stil monochrome images if the quality of service is
insufficient). The general message is that nothing is predefined.

Much of thisis, asin its name, software defined. However, there ae dements of such a system
that are idedly suited to remnfigurable hardware. This is particularly the cae for mobile
handsets, where small sizeand low power consumption areimportant.

The CAST projed (Configurable Radio with Advanced Software Tedhnology) [MadaniO0] aims
to demonstrate an architecure for intelligent reconfiguration of the physicd layer in wireless
communicaion networks. This covers interoperability between GSM and UMTS in the bottom
level of a communicaions g/stem, together with adaptation to prevailing conditions and user
requirements. The hardware acnfiguration proposed for a demonstrator consists of a board with
four Xilinx XCV600 FPGAS, with controller and memory, plus a programmable DSP processor
board, and reconfigurable analogue cwmponents. This gives a mixture of hardware and software
reconfiguration.

The eonomic necessty for rapid time-to-market in an environment of complex, evolving
standards is one of the reasons for the interest in reconfigurability in this area[Dick00]. There
are dso constraints on the size and power consumption of mobile equipment, together with
enormous versatility requirementsin terms of applications, loading and physcal environments.

6.2 Adaptive Signal Processing

A common DSP task is the aedion of a filter which can adapt acerding to conditions. For
example, the remova of cockpit noise in an aircraft pilot’s voice ommunicaions equipment
neals to adapts as that noise varies. Thisis a smaller, and better defined task than that described
in 6.1 above. In genera, it will involve recdculating the efficients in the numericd
implementation of a digital filter, which is implemented in software on a DSP procesr.
However, given a hardware implementation of such a filter, it could be necessary to remnfigure
that hardware to give optimum performance with the new coefficients. [Dempster95] describes
an agorithm for minimising the number and complexity of adder blocks in a given filter
implementation. The achitedure is entirely dependent on the adual coefficient values, as it
seaches for common “power of 2" shifts in the set of numbers to maximise the sharing of
cdculation. It would therefore need to be recmnfigured in order to ater the filter in any way.
The viability of this idea for adaptive filtering depends on the time taken to recdculate the

Alison Carter page 20
07/11/0116:42

architedure and renfigure the hardware, and the frequency of the required reconfiguration,
compared with the spead/efficiency advantage gained by using a hardware implementation. It is
suggested in [Courtney0Q] that a more regular, less efficient multiplier architecure gives better

reconfiguration performance that one spedficdly tailored to the coefficient structure.
X 1012 Predicted growth in Multiply-Accumulates per second

[[[[

MACs per second

I

2000 2001 2002 2003 2004 2005

Year

Figure 6-1: Predicted Growth in DSPThroughput [Pryan01]

An adaptive gproad to system identification (such as might be used to charaderise the dhannel
in a communicaions application) is described in [Pasquato99]. This tries to match a given
(noisy) system response with an IR (Infinite Impulse Response) filter, having first arrived at a
rough estimate usng an FIR (Finite Impulse Response) structure. Such a system could
theoreticdly be implemented by reconfiguring hardware from an FIR to an IIR, with or without
hardwired coefficients in the drcuitry. A suitable scenario could involve different hardware
configurations in sequence

» Genera FIR with adaptable coefficients (in registers)

» Mappngof FIRto IIR

* Generd Il R with adaptable coefficients (in registers)

» Calculation of structure of efficient, fixed coefficient [IR
» Fixed coefficient IR

6.3 Reconfigurable Protocols

With the rapid growth in bandwidth of communicaion systems, the type of applicaion and
content is st to change unpredictably in the future. In a presentation of the idea of dynamic
protocol architedures [Crane98], it is asserted that “no fixed set of protocols can satisfy the
nedals of al future gplicaions’. Whilst it is obvious that no set of currently defined protocols
will be suitable for all future unknown demands, the more useful interpretation given is that
architedures $ould be designed in which an interpreter can demand-load protocols from a
library. This can then be updated as required, and allows communicaions programs access to
dynamicdly loadable, and parameterisable, protocols, which can be used to maintain the quality
of servicerequired by an applicaion.

The use of remnfigurable hardware for adaptable protocols is arealy being explored by the
PRO® projed <PRO3>. This aims to design a protocol processor for both data and
telecommunicaions applicaions, which includes reconfigurable hardware. This will handle
low-level protocol functions, while the higher layers are dedt with by a processor core included
on the chip.

In the aeaof ad-hoc (pee-to-pea) networking, distributed intelligence in the communicaing
devices sts up and controls the protocols, including the routing [Haas99]. Here we ae deding
Alison Carter page 21
07/11/0116:42

with mobile devices, so they must be small, with low power consumption, and there is the
inherent reconfigurability of a network which routing nodes can join and leare & they wish. As
with other communications applications, there will be aquality of service to maintain, consistent
with the apgli cation, which may include red-time components.

7 Summary

Current FPGA systems alow fast, cheg implementation of systems, with the fadlity for
upgades in the field. Some smal amount of dynamic recnfigurability exists currently, but
without red support for commercial exploitation. The length of the design processrequired for
an unpredicted change predudes dynamic, on-demand alteration of systems, but multimode
systems (loading predefined alternatives as required) are cetainly feasible. One possble field of
further reseach is methods of redesigning hardware which minimises the layout change
required, and therefore might allow recnfiguration in red time.

Even with multimode hardware, the implicaions of reconfigurability for scheduling red-time
systems are that extra delays are introduced while the system reconfigures. The improvement in
quality of service dforded by the reconfiguration must be worthwhile. Standard scheduling
algorithms would need to be adapted to takeinto acount thisextrafador.

It is obvious that adaptable systems are needed in many applicaions, but this ability to change
could usually come from altering software, rather than recnfiguring the hardware. Applicaions
which reeal to be fast and low power, have high intrinsic parallelism, or for other reasons must
be implemented in hardware, are possble candidates for this technique. For multimode
hardware, replication is an alternative to recnfiguration if there ae no size or cost constraints.
Those aplicaions investigated include software radio, adaptive signal processng and
reconfigurable protocols. All of these might be used in a hand-held device which must be small
and low power, aswell as neading high speed.

8 References

[Altera99 Altera Corp., FLEX 8000 Programmable Logic Device Family, Data Shed
v10.01, 1999

[Altera01A] Altera Corp., Apex Il Programnmable Logic Device Family, Data Shed v1.1,
2001

[Altera01M] Altera Corp., Mercury Programmable Logic Device Family, Data Shed v1.1,
2001

[Ashenden00] Ashenden, P., A Designer’s Guide to VHDL, Morgan Kaufmann, 2001 | SBN:
1-55-8606742

[Audsley9q] Auddey, N.C. et a, Fixed Priority Pre-emptive Scheduling: An Historical
Perspedive, Red-Time Systems, March 1995

[Aycinena01l] Aycinena, P, Focus Report: PLD Todls, Integrated System Design, September
2001

[BernatOQ] Bernat, G., Burns, A. and Wellings, A. Portable Worst-Case Exeaition Time
Analysis Using Java Byte Code, 6th Internationa EUROMICRO Conference
on Red-Time Systems, 2000

[Boolel854 Boadle, G., Aninvestigation into the laws of thougH, onwhich are foundel the
mathematical theories of logic and probability, Maamillan, 1854 (republished
Dover, 1958 I1SBN 0-486-600289)

[Bradley96] Bradley, K F, and Watson, J, Reconfigurable Processngwith Field
Programmable Gate Arrays, ASAP 1996

Alison Carter page 22
07/11/0116:42

[Burnsog)

[Burnsog]

[Burns97]

[CourtneyQQ]

[Crane98]
[DeHon95]

[Dempster95]

[Dettmer9Q]

[DickoQ]

[Douglass00]
[Dubin01]
[Engblom00]
[ESEO]]
[GrasD7]
[Haas99]

[HartmannO(Q]

[Hauck98]

[Heron99

[Jeong0Q

Alison Carter
07/11/0116:42

Burns, A. and Wellings A., Real-Time Systems and Programning Languages,
Addison-Wesley, 2nd Edition. 1996

Burns, A. Prasad, D., Bondavadli, A., di Giandomenico, F. et a, The Meaning
and Role of Value in Sheduling Real-Time Systems, Journal of Systems
Architedure, 1998

Burns, J., Donlin, A., Hogg, J., Singh, S. and de Wit, M, A Dynamic
Reanfiguration Run-Time System, | EEE Symposium on Field-Programmable
Custom Computing Machines, 1997

Courtney, T., Turner, R., and Woods, R, An Investigation of Reconfigurable
Multipliers for usein Adapive Sgnd Processng, |IEEE Symposium on Field-
Programmable Custom Computing Madhines, 2000

Crane, J. S., Pryce N. G. and Magee J. N., A Dynamic Protocol Architedure
for Multimedia Commnunications, Tedhnicd Report, City University, 1998

DeHon, A, Dynamically Programmable Gate Array With Multi ple Contexs,
US Patent 5742180,1995

Dempster, A G and Madeod, M D Use of minimum-adder multi plier blocksin
FIR digital filters, IEEE Trans Circuits and Systems I, vol 42, no 9, September
1995

Dettmer, R., User-programmable logic: chasing the gate array, |EE Review,
Vol 36 No 5, 1990

Dick, C., harris, f., and Rice M. Synchronisationin Sdtware Radios — Carrier
andTiming Recovey Using FPGAdSs, |EEE Symposium on Field-
Programmable Custom Computing Madines, 2000

Douglass B.P., Doing Hard Time, Addison Wedey Longman, 2000 ISBN
0201489375

Dubin, J. Rapid Prototyping of Real-time DSP Sdtware Using DSP/BIOS
Kernel, Embedded Systems Show, 2001

Engblom, J. and Ermedahl, A., Modding Complex Flows for Worst-Case
Exeaition Time Analysys, |IEEE Red-Time Systems Symposium, 2000

Embedded Systems Engineeing, vol. 9 nol DedJan 2001

Grass E., V. A. Bartlett and |. Kale, Completion-detedion techniques for
asynchronous circuits, |EICE Transadions on Information & Systems, val.
E80-D, no. 3, 1997.

Hass, Z.J. et a, Guest editorial: wirelessad ha networks, IEEE Journal on
Seleded Areasin Communications, Volume: 17 Issue: 8, Aug. 1999

Hartmann, A C, Dynamically Recnfigurable Logic Networks Interconneded
by Fall-throughFIFOsfor Flexble Pipeline Processngin a Sygem-on-a-
Chip, US Patent 6096091 Aug 2000

Hauck, S, The Roles of FPGAsin Reprogrammable Systems, The Proceadings
of the IEEE, Vol 86 #4, April 1998

Heron, J-P and Woods, R.F., Accderating Run-Time Renfiguration on
FCCMs, |EE Symposium on Field-Programmable Custom Computing
Madhinery, 1999

Jeong, B, S. Yoo, S.Leeand K. Choi, Hardware-Sdtware Cosynthesis for Run-
time Incrementall y Reconfigurable FPGAs, Asia-South Paafic Design
Automation Conference, 2000

page 23

[Kirks4]

[Krupnova0(Qj

[Li95]

[LiuoQ

[Liu73

[Levinson0Q]

[Ma00]

[Madahar00]

[Madanioo]

[Miyaz&i99|

[MohanOQ]

[Moreno98]

[Ortegad7]

[Pasquato99)

[Pereira0Q]

[Pierzchala94]

[Pryan01]
[RadkoO(Q]

Alison Carter
07/11/0116:42

Kirk, I. H., Devdoping Gate Array Sdtware, Silicon Design Vol 1, No. 8,
1984

Krupnova, H., and G. Saucier, FPGA Tedhndogy Snapshot: Current Devices
andDesign Todls, Proc. 11th International Workshop on Rapid System
Prototyping, 2000

Li, Y-T., Mdlik, S. and Wolfe, A., Efficient Microarchitecdure Modeling and
Path Analysis for Real-Time Sdtware, IEEE Red-Time Systems Symposium,
1995

Liu, Jane W. S., Real-Time Systems, Prentice Hall, 2000

Liu, C. and Layland, J., Scheduling Algorithms for Multiprogramming in Hard
Real Time Environment, Journal of the ACM, 1973

Levinson, L, Manrer, R., Sesder, M., Simmler, H., Preemptive Multitasking on
FPGAs, |EEE Symposium on Field-Programmable Custom Computing
Madhines, 2000

Ma, T. C-L and Shin, K. G., A User-Customisable Energy-Adaptive Combined
Satic/Dynamic Scheduler for Mobile Applications, IEEE Red-Time Systems
Symposium, 2000

Madahar, B, Environment For Sgnd Processng Appli cation Devdopment and
PrOtotypiNg (ESPADON), NATO Symposium on Commercia Off-The-Shelf
Productsin Defence Applicaions, Brussls, 2000

Madani, K., Configurable radio with Advanced Sdtware Tedhnology (CAST) —
Initial Concepts, |ST Mobile Summit, 200Q

Miyazi, T., MurookaT., Katayama M. and Takahara A., Transmutable
Teleaom System and Its Appli cation, | EEE Symposium on Field-Programmable
Custom Computing Machines, 1999

Mohan, S. and Trimberger, S.M., Method for Configuring FPGA memory
planesfor virtual hardware computation, US Patentno 6047115 April 2000

Moreno, JM., Madrenas, J., Faura J., Cant6 E., Cabestany J. and Insenser J.M.,
Feasible Evolutionary and Self-Repairing Hardwar e by Measurement of the
Dynamic Renfiguration Capaliliti es of the FIPSOC De\mices, Springer
Verlag Ledure Notesin Computer Science, 1998

Ortega, C. and Tyrrell, A., Biologically Inspired Reconfigurable Hardware for
Dependalle Applications, |EE Colloquium on Hardware Systems for
Dependable Applications, 1997

Pasguato, L. and Kale, 1., System Identification via Hybrid FIR-1IR Adagive
Filtering, IEEE Instrumentation and Measurement Tedhnology Conference,
1999

Pereira, JM., Re-Defining Sdtware (Defined) Radio: Re-Configurable Radio
Systems and Networks, | EICE Transadions on Communications, Vd E83-B
No 6, June 2000

Pierzchala, E., Perkowski, M, High Seeal Field Programnmable Analog Array
Architedure Design, FPGA 1994

Pryan, D, Xili nx Xtreme DSP Initiative, Embedded Systems Show, 2001

Radko, V., Bridging the FPGA Design Gap, Eledronic Component News,
September 2000

page 24

[Richards94]

[Real85)
[Rouse94]
[Salcicog]
[Seds97]
[Smith97]
[Stalli ngs98]
[Stoddart99]

[Weir97]
[Xilinx99]

[Xilinx01S]

[Xilinx01V]

9 Links
<Delphion>
<FreelP>
<FPGA CPUs>
<Intel>

<Mentor>

<PRO3>

Alison Carter
07/11/0116:42

Richards, M. A., The Rapid Prototyping of Application Spedfic Sgnd
Procesors (RASP) program: overview andstatus, |EEE International
Workshop on Rapid System Prototyping, 1994

Read, JW, Gate Arrays. Designand Applications, 1985 ISBN 0-00-3830125

Rouse, C.J. and Carter A.J., Exploring Delay/Area Trade-Offs of anLDI Filter
using a Natural Based Algorithm, Proc. Int. Symposium on Circuits and
Systems, June 1994

Salcic, Z., VHDL and FPLDs in Digital Systems Design, Prototyping and
Customisation, Kluwer, 1998 ISBN 0-792381440

Seds, R. C. and Whapshott, G. F., Programmable Logic: PLDs and FPGAs,
Maanillan, 1997 ISBN 0-333-655702

Smith, M J S, Application-Spedfic Integrated Circuits, Addison Wedley, 1997,
ISBN 0-201-500221

Stallings, W, Operating Systems: Internals and Design Principles, Prentice-
Hall, 1998 ISBN 0-13-9179984

Stoddart, A.G., Systems Engineeing: isit a new discipline?, IEE Control and
Computer, v10#3 1999

Welir, D. and Stewart J., Imnundogy 8th Ed, Churchill -Livingstone, 1997
Xilinx, Inc., XC400(E and XC4000X Series Field Programmable Gate Arrays,
Product Spedficaion, v1.6, 1999

Xilinx, Inc., Spatan-1l 2.5V FPGA Family: Functiond Description,
Preliminary Product Spedficaion, v2.1, 2001

Xilinx, Inc., VirtexIl 1.5V FHeld-Programmable Gate Arrays, Advance
Product Spedficaion, v1.6, 2001

Delphion IP Network, http://www.delphion.com/
The Freel P Projed, http://www.free-ip.com/about.htm
FPGA CPU news, http://www.fpgagu.org/

Intel Corp., Microprocessor quick referenceguide,
http://mww.intel.com/pressroom/kits/quickreffam.htm

Mentor Graphics Corporation, FPGA Advantage version 50, at
http://mww.mentorg.com/fpga-advantage/

EC Framework 5 IST, Protocol Processor Projed, IST Projed 11499 at
http://www.pro3-processor.com/

page 25

