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1 Introduction 
The development of field programmable systems on a chip (FPSC) heralds an emerging 
technology of dynamically reconfigurable hardware.  The promise of architectures that can be 
altered on the fly, according to prevaili ng conditions, adds a new dimension to the design of real-
time systems.  This survey investigates the potential for dynamic reconfigurabili ty, using current 
and projected technologies, and looks at possible applications in the field of real-time 
communications. 

The study begins by categorising the types of architecture and strategy that can be used in any 
reconfigurable system.  Having explored the general concept of reconfigurabili ty, the first part of 
the required infrastructure to be investigated is the Field Programmable Gate Array (FPGA).  
The development and future direction of the hardware are discussed, with reference in particular 
to suitabili ty for dynamic reconfigurabili ty.  This leads on to the methods used to design and 
implement systems on FPGAs, and the functionality of libraries available for them. 

The second issue explored is the scheduling of real-time tasks, both in software and hardware 
systems.  Methods in current use are described, and their relevance to implementation on 
dynamically reconfigurable systems are discussed. 

Finally, the question has to be asked whether dynamically reconfigurable hardware would be 
genuinely useful in any current or envisaged applications.  Examples in the communications area 
are explored as possible applications for this technology.  

2 Reconfigurable Systems 
“A system can be a product, process or service that converts a set of inputs into a set of outputs” 
is the broad definition offered by [Stoddart99].  In this context, the system is also assumed to be 
electronic (rather than mechanical or manual, for instance). 

A reconfigurable system is one that changes its form in order to alter its function.  For it to be 
more than “configurable” it must be possible to change it either whilst it is in use, or by taking it 
out of use for a short time.  There are different models for how systems can be reconfigured, in 
terms of the granularity, the intelli gence and the control method required.  This section proposes 
paradigms from various sources outside of computer science and electronics, and looks at their 
characteristics in terms that might be applied to electronic systems. 

2.1 Paradigms from other disciplines 

2.1.1 The Swiss Army knife. 

A penknife has a set of predefined forms created by opening each one of the blades.  An 
equivalent type of reconfigurabili ty is the child’s “transformer” toy which can be manipulated 
into two or three different vehicle and/or robot forms.  This is organised by a central 
“controller” , who just chooses one of a set of prepared configurations.  The only advantage is the 
convenience of carrying one tool instead of many separate ones. 

2.1.2 Lego 

Some reconfigurable systems consist of small blocks that can be put together in any order and 
then dismantled for rebuilding.  An example is the Lego toy, where there are different types of 
brick but they can be joined in various ways.  Taking the building-block size down to an 
infinitesimal level gives modelli ng clay or Plasticine.  This model assumes a central intelli gent 
controller, which chooses the blocks and reconfigures them according to requirement.  The 
function is defined almost entirely by the physical arrangement of the blocks. 
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2.1.3 The team 

Each member of a football team or army unit has a variety of different capabili ties, possibly 
overlapping in specialisations, and all with some general functions.  A reconfiguration means 
restricting individuals to perform a certain subset of their possible tasks in a specified relative 
location.  Like the “Swiss Army knife” model above, there is a central specialised controller, but 
each part has intrinsic intelli gence (albeit possibly limited) used to minimise the amount of 
central control required.  Executing the reconfiguration may involve communication between the 
individuals. 

2.1.4 The ant colony 

Ants have specialised functions within their society (worker, soldier, queen, etc.).  According to 
changing circumstances, the colony can adapt to cope best with their current environment, such 
as invasion by a predator.  There is no overall central control, so this model is an extension of the 
“team” idea to an entirely distributed intelli gence.  Communication is vital to the reconfiguration 
process. 

2.1.5 The immune system 

The body’s immune system is prompted into attacking a particular invading organism by 
detecting its “foreign” presence.  This makes the defensive cells whose shape is attuned to this 
particular invader proliferate more rapidly than others [Weir97].  These cells, or bacteria that 
mutate to become immune to particular antibiotics, are following a selective evolution model, but 
much faster than normal evolutionary systems.  This is an often-borrowed idea in hardware and 
software systems, such as the self-repairing and evolutionary systems on a chip in 
[Moreno98][Ortega97].  In the biological prototype, there is no central organisation, and no real 
intelli gence, but simply a distributed response to the current environment. 

2.2 Characteristics 

2.2.1 Control 

In order to reconfigure a system, there must either be an overall controller, initiating and 
executing the change, or else the parts of the system must respond to external stimuli by 
changing their own organisation.  The control mechanism should be categorisable as 

• Central, external intelli gent controller: the system can be “downloaded” with a new 
arrangement from outside as required 

• Central, internal intelli gent controller: part of the system can calculate and execute 
rearrangement of the remainder 

• Distributed, intelli gent: each part of the system can decide on the need for rearrangement, 
and negotiate changing itself, or other parts. 

• Distributed, unintelli gent: each part of the system is modified according to predefined 
rules in response to external events. 

2.2.2 Blocks 

The blocks making up an electronic system can be thought of as pieces of circuitry which may 
possibly be parameterisable or programmable.  They could be as small as single transistors, or as 
large as a computer network.  In general, complexity and programmabili ty increase together.  In 
terms of function, the blocks may be 

• Predefined, single-function: a block of hardwired circuitry that performs a specified 
function according to its structure. 
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• Parameterisable/adaptable: whilst the overall function is fixed, certain parameters can be 
adjusted. 

• Intelli gent, multi-function: a system containing one or more processors which can be 
programmed to alter completely the function it performs. 

It is, of course, possible to conceive of a heterogeneous system comprising blocks of different 
sizes and with different levels of intelli gence. 

2.2.3 Configuration 

The function of the overall system is affected by the arrangement and internal configuration of 
the constituent blocks.  Configuration may involve 

• Simple choice: one of several possible blocks is selected to be active 

• Arrangement defines function: the interconnection of blocks (feeding of outputs from 
some into inputs of others) defines the functionality of the system as a whole. 

• Arrangement forms part of function: when the blocks themselves are programmable or 
parameterisable, they and their interconnection may be altered to change the system 
function. 

2.3 Summary 
Reconfigurable systems can be categorised by the complexity of their constituent blocks and the 
way in which they are reconfigured.  Non-technical paradigms discussed above fit this 
categorisation as shown in Table 2-1.  The concept of “parameterisable” (alterable in a small 
way) is not present in these examples, but is included as it is appropriate for electronic systems 
discussed later. 

↓↓↓↓Control Blocks→→→→ Predefined Parameterisable Intelligent 
Central external Swiss army knife 

Lego 

  

Central internal   Team 

Distributed Bacteria  Ant colony 

Table 2-1: Categorisation of Reconfigurable Systems 

 

3 Field Programmable Arrays 
This section reviews the development of the technology of field programmable gate arrays 
(FPGAs) and similar devices, and their potential for use in dynamically configurable systems. 

3.1 History of development 

3.1.1 Gate Arrays 

The possibili ty of dynamically reconfigurable hardware has grown from the idea of the gate 
array, first proposed in the 1960s as a way of making custom integrated circuit design easier and 
cheaper [Read85].  The gate arrays (or masterslices) consisted of partially processed sili con 
chips, with ready-made gates that were not yet connected.  These could be prepared in bulk, and 
the customisation performed with only one or two layers of metal.  This, in turn, encouraged the 
development of automated CAD tools to implement application specific integrated circuits 
(ASICs), replacing the “polygon pushing” approach of designing each transistor and 
interconnection individually. 

There are several choices to be made in the design of a gate array:  
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• what should the basic cell ’s function be, and is it fixed?  

• how many should there be, and how many input/output pins? 

• how should they be arranged on the chip (in rows, or sea of gates)? 

In theory, a digital circuit can be constructed entirely from 2-input NAND (or NOR) gates 
[Boole1854], so any combinational or sequential system could be formed on a gate array 
providing enough of these gates, sufficient pins and room for interconnect.  Early gate array 
designs used this concept of providing fixed logic gates that could be connected to build the 
circuit.  In the GEC AOI (and-or-invert) gate array, each cell consisted of a 2-input AND, a 2-
input OR, and an inverter.  These were unconnected, but could be joined or left unused as 
appropriate to create the required functions.  Such an approach, although flexible and amenable 
to automation, is not efficient in terms of area used and power consumption.  It also does not 
allow for tri-state devices or any memory other than simple registers. 

Later devices, such as the UK5000 [Kirk84], had logic cells that were incompletely formed gates 
with unconnected transistors.  The personalisation of the logic cells would create different 
functions, which could be connected as needed. 

The gate array was originally not reconfigurable: once the customisation layers were added, its 
function was fixed.  It could be used wherever the length of time and cost of development was 
more important than optimising for speed or power, such as for small runs or where time-to-
market was vital.  It was also used for prototyping, allowing systems to be implemented on 
sili con and tested prior to investing in a full -custom design. 

3.1.2 FPGAs 

The next important breakthrough was the advent of field-programmable devices.  Instead of 
customisation taking place in the sili con foundry, it could be carried out electrically on the 
packaged chip, via its pins.  The technology used is what is often called an antifuse.  That is, a 
normally open circuit that is made permanently conductive when a 5mA programming current is 
forced through it [Smith97].  This meant greatly reduced costs and time to market for ASIC 
developers, but once programmed, the setup could not be changed. Using EPROM technology 
FPGAs could be erased with ultraviolet light, and reprogrammed, but this is a slow process 
requiring manual intervention. 

FPGAs next developed to be electrically reprogrammable, allowing embedded systems to be 
modified or upgraded in the field without physical replacement of hardware components.  The 
technology could be based on EEPROMs, using high voltages (12V or more) to program and 
erase the array.  This could now truly be termed “reconfigurable hardware”. 

The most flexible form of the FPGA uses SRAM technology to store look-up tables 
characterising both cell function and interconnection.  This means that programming the chip’s 
function amounts to writing data into memory addresses.  The disadvantage is that there must be 
continuous power supplied so that the memory retains its contents, or a facili ty for download 
from PROM at power-up.  Most current FPGA chips using this technology require the entire 
chip to be programmed at one time.  However, there have been dynamically and partially 
reprogrammable technologies around since before 1990 [Dettmer90]. 

3.1.3 Field Programmable Systems on a Chip 

Quite early in the development of semicustom ASICs, it was realised that some types of 
component need to be predefined as tailor-made blocks, rather than constructed from cells by 
each designer.  Obvious examples are memory and clock generators.  An FPGA chip would 
therefore include these special blocks. 

It seemed at one time that a combination of programmable and handcrafted parts would offer the 
ideal solution for systems on a chip.  For example, a processor core could be supplied with 
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memory and FPGA on-chip to make a complete programmable system.  Eventually, the 
emphasis would shift from “an FPGA with special bits” to “a system on a chip with 
reconfigurable bits” .  However, the abili ty to implement processors and other specialised blocks 
on a general purpose FPGA seems to be overtaking this with the provision of soft cores to use in 
FPSC designs. 

3.2 Current FPGA technology 
A comparison of FPGAs commercially available in 2000 [Krupnova00] shows little variation in 
the architecture of the basic cell or the functionality.   Both one-time programmable and 
reconfigurable arrays are still used, and programmable combinational logic elements will be 
based on AND-OR arrays and look-up tables [Salcic98],[Seals97].  FPGA chips usually include 
programmable registers, with a choice of clocking (global, input, signal) and reset. The memory 
available is getting bigger and more configurable.  Input/output blocks on the chips are 
programmable as input, output, or bi-directional, with most offering various interfacing 
capabili ties (such as TTL compatibili ty).  Arrangement of cells is usually a rectangular grid, with 
routing channels.  The interconnection between cells can be effected by antifuses between 
crossed wires as in Figure 3-1 [Seals97], or connections gated by memory elements as in Figure 
3-2 [Salcic98]. 

 1-time programmable antifuse 

 

Figure 3-1: Antifuse interconnections 

 Memory element (0 or 1) 

 

Figure 3-2: SRAM-gated connection 

To get an idea of the physical capabili ties of commercially available FPGAs it is sufficient to 
look at the Web sites of the two leading manufacturers, Altera and Xili nx.  Table 3-1 summarises 
the facili ties available from their current chip families available in August, 2001. 

Family Logic block Number Memory (bits) Other features 
Xili nx Spartan-II 
[Xili nx01S] 

96-1176 CLBs 

15k – 200k gates 

16k – 56k block 

0 – 73.5k in CLB 

86-284 IO pads 

Xili nx Virtex-II 
[Xili nx01V] 

64-15360 CLBs 

40k - 10M gates 
72k-3456k block 
dual-port, plus 

0-1920k in CLBs 

88-1108 IO pads 

Specialised 
multipliers 

Xili nx XC4000 
[Xili nx99] 

Configurable 
logic block 
(CLB) is LUT-
based 

64-3136 CLBs 

1.6k – 85k gates 
2k – 98k 
(interchangeable 
with logic) 

64 – 448 IO pads 

Dynamic 
reconfiguration 
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Altera Apex-II 
[Altera01A] 

16640-89280 LEs 

1.9M – 7M gates 
416k - 1488k in 
addition to logic 

492 – 1440 IO 
pads 

 

Altera Mercury 
[Altera01M] 

4800-14400 LEs 

120k – 350k gates 
48k – 112k in 
addition to logic 

303 – 486 IO 
pads 

Altera FLEX 
[Altera99] 

Logic array 
block (LAB) is 
LUT-based 
logic element 
(LE), plus 
embedded 
system block 
(ESB) 

208 – 1296 LEs 

2.5k – 16k gates 
282 – 1500 
simple registers 

78 – 208 IO pads 

Table 3-1: Commercially available FPGA chip families 

3.3 Field Programmable Analog Arrays 
Alongside the development of FPGAs for digital circuits, there has been parallel work on 
reprogrammable analogue arrays (FPAAs).  They can be based on various circuit elements, such 
as amplifiers or analog integrators [Pierzchala94].  An example is commercially available from 
Anadigm (reprogrammable from EEPROM) [ESE01]. They market a module with an on-board 
microcontroller to reconfigure the FPAA dynamically in 0.1ms.  There is nowhere near so large 
a market for such devices as for digital FPGAs, and they are much smaller with less support 
software. 

3.4 Programming and Dynamic Reconfigurability 
In order to program an FPGA, the memory elements defining the logic functions, memory 
characteristics, connections and other parameters must be fill ed with appropriate data values.  
This data is termed a “bitstream”, and may be loaded with the FPGA as an active or passive 
participant [Salcic98].  In active mode, the FPGA loads its internal memory elements from an 
external chip (ROM) which has been written in the required format.  Passive programming 
involves a microprocessor or microcontroller sending the bitstream as a serial or parallel input.  
The programming procedure could be regarded as similar to downloading an executable program 
to an embedded microcontroller’s internal memory, either from external ROM or from a host 
processor. 

 

FPGA’s can be once-only programmable, in which case the configuration is simply a fast design 
technique.  They may have persistent but erasable memory, so that they can be upgraded 
occasionally, but still have basically a fixed design.  If they have volatile (SRAM) memory, the 
bitstream is loaded on power-up, and may (dependent on the architecture of the FPGA) be 
altered dynamically while the chip is running.  Time taken to program an FPGA varies according 
to size and technology, but is of the order of a second. 

Advances in dynamic reconfigurabili ty are mostly at the research stage.  In 1995, the idea of 
storing multiple versions of the look-up tables in an FPGA was patented by MIT [DeHon95].  
The different versions, referred to as “contexts” are stored locally, and switched in response to a 
simple instruction, this allowing the chip to switch quickly between several predefined functions 
(as in the “Swiss Army knife” model described in 2.1.1 above).  It is easy to take this approach 
with more hardware, and taking more time, simply by storing several different bitstreams in 
ROM and downloading as required. 

Reconfiguring an FPGA requires large amounts of data transfer.  [Jeong00] explores the use of 
partial reconfiguration, by adjusting the cosynthesis algorithm to schedule tasks in hardware or 
software taking account of known size and completion times.  It has been simulated, but not 
executed on real hardware.  The work done at the University of Glasgow on defining and 
implementing a run-time reconfiguration manager (RAGE) generalises the requirements for 
managing an FPGA-based system [Burns97]. The Xili nx XC6200 [Bradley96] has been 
particularly useful for exploration of dynamically reconfigurable systems, because of its partial 
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reconfiguration abili ties.  However, it is unfortunately no longer available.  The current XC4000 
quotes dynamic reconfiguration as one of its features [Xili nx99]. 

3.5 Future Trends 
At the hardware level, increases in numbers of gates and clocking speeds in FPGAs mirror those 
in other sili con products [Rachko00], and this seems set to continue in the same manner.  Figure 
3-3 ill ustrates this growth with the speed and size of Intel processors over the past 30 years (data 
taken from <Intel>.  A direct comparison of clock speeds (say 1500 MHz for processors and 
200MHz for FPGAs) and gate counts is meaningless due to the parallel nature of hardware 
algorithms. 

Figure 3-3: Development of Intel Processor Power 

Of more interest are potential qualitative changes in FPGA functionality.  Looking at United 
States patents covering FPGAs <Delphion> shows that most development is commercial rather 
than academic (72 of the 200 recent FPGA patents are from Xili nx), which suggests a mature 
technology.  Of particular relevance here are any developments concerning dynamic and/or 
partial reconfiguration.  Seven of the 200 recent FPGA patents address these directly For 
example, [Hartmann00] suggests a pipelined logic structure where each stage of the pipeline may 
be switched to a different (predefined) function by an intelli gent controller as required during 
execution.  The concept of “memory planes” within the FPGA can be used to provide more than 
one (predefined) configuration which can be quickly swapped [Mohan00].  This type of 
approach could allow for a “double-buffering” arrangement where one plane of memory was 
updated whilst another was being used, all owing for dynamic updates to the circuit. 

3.6 Summary 
In this section, field programmable gate arrays have been presented at a hardware structural 
level, where they can be categorised in terms of the models proposed in section 2.2 above as 
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consisting of small, predefined or parameterisable blocks which can be rearranged by a central 
external controller. 

The technology is well established, and has a capabili ty for reconfiguration within a timescale 
which could be called “dynamic” rather than just “occasional upgrade”.  Development of 
multiple memory planes and sectioned, partial reconfigurabili ty is apparent in the literature 
although not in large-scale commercial use at present. 

4 FPGA System Design 
The view of an FPGA given in section 3 above is analogous to describing the registers and 
instruction set of a microprocessor which, in practice, is usually programmed using a compiler 
and predefined libraries.  Similarly, a commercial FPGA is sold with design software and 
prepared component blocks.  This section describes the ways in which FPGAs are used, what it 
means to reconfigure them, and the methods employed to implement systems on them. 

4.1 Modes of use 
The initial application for Gate Arrays, both foundry- and field-programmed, was in rapid 
prototyping.  Previously, the design cycle for application specific circuits involved manual 
construction of a hardware prototype from discrete components, which was obviously error-
prone and not a good indicator of finished system timings.  This is still an important aspect of 
usage of FPGAs, but the emphasis is beginning to shift towards use in final products.  

As an example, military systems need high reliabili ty and long-term stabili ty but rapid 
development cycles to be ahead of competitors.  The DoD RASSP project [Richards94] was 
specifically looking to prototype signal processing systems for applications such as radar.  A 
similar current European project, Espadon, is now designing a methodology for the use of 
commercial off-the-shelf (COTS) components, including the use of FPGAs in the deployed 
systems [Madahar00]. 

The use of multiple FPGAs in realistic communication systems poses challenges of speed and 
complexity.  In a paper describing the construction of an IP packet forwarder using 19 FPGA 
chips [Miyazaki99].  Miyazaki states that “FPGA-based emulators … cannot be applied to real-
time telecommunications data processing, which often requires at least 20MHz”.  Advances in 
technology have overtaken this, but the requirement of multimedia applications for ever more 
bandwidth will always leave a gap between the capabili ties of custom hardware and that 
achievable in reconfigurable systems.  The question is whether development time from the 
definition of a standard to the release of products will render custom design insufficiently 
responsive to the market. 

The reconfigurabili ty of FPGAs makes them ideal for field upgrades to systems.  As described in 
section 3.4 above, a new bitstream can be downloaded containing a new version of the circuitry.  
This makes upgrading a circuit as simple as, say, loading a patch for an operating system.  It can 
be supplied on disk, or via the web.  In fact there is growing interest in internet-enabled FPGA 
chips allowing remote upgrades of the circuit design. 

The next level of flexibili ty is dynamic reconfiguration: altering the configuration while the 
system is operating (or at least with small, insignificant down-time).  Just because the hardware 
might be capable of this (as discussed in section 3.4) does not necessarily mean that support 
software is available to recompute the configuration in the required time.  

4.2 What is hardware, and why reconfigure it? 
There are obvious advantages to a reconfigurable system, such as flexibili ty and ease of 
modification or upgrade.  This could be taken to refer to any programmable system.  The word 
“programmable” is used in many contexts: for instance, the programmable logic array (PLA) is 
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an unchanging hardware block, and an FPGA chip is “programmed” by its bitstream.  It is 
therefore useful to propose definitions of programmable software and reconfigurable hardware. 

• A software system consists of an algorithm represented and executed as a set of 
instructions.  This usually takes place serially, or with limited, well-defined parallelism, 
on a single or defined set of processors. 

• Reconfigurable hardware consists of a set of interconnected components, each with a 
(currently) defined function, usually operating with extensive parallelism.  The algorithm 
performed depends on the interconnections and the individual component functions.  
Reconfiguration involves specifying new component functions and/or interconnections.  

Characteristics of software implementations mean that they are comparatively easy to alter and 
upgrade.  For any system whose potentially reconfigurable parts could be programmed entirely 
in software using existing processors, it would be difficult to find any reason for looking for 
hardware implementations.  To justify the use of hardware for any particular application, it must 
be possible to say one or all of: 

• It meets timing constraints that equivalent software does not 

• It contains elements (e.g. analogue interfaces) that cannot be implemented in software 

• It can be designed more easily, more reliably, and/or more quickly using reconfigurable 
hardware 

In order to justify using FPGA-type reconfigurable hardware, rather than standard chips or 
specially designed ASICs, some of the following conditions must hold 

• It meets power/size requirements that full hardware implementation does not 

• It needs a flexibili ty of reconfiguration not available in a fixed hardware implementation 

• It can be designed more easily, more reliably, and/or more quickly using reconfigurable 
hardware 

The use of general processors and the lack of parallelism makes software implementations less 
efficient in terms of speed than hardware equivalents for some types of algorithm.  [Pryan01] 
describes the use of FPGA-based DSP solutions as a faster alternative to programming DSP 
processors. 

In a detailed analysis of the types of FPGA available, and the uses to which they can be put, 
[Hauck98] gives the following types of application: 

• Hardware logic emulation (faster than software simulation) 

• Multimode hardware (switching between predefined functions, rather than implementing 
several separate hardware blocks) 

• Coprocessors 

• Multi-FPGA implementations of specific algorithms (e.g. encryption) 

• Trainable systems (e.g. neural networks) 

However, he notes that “ it is not clear that any application has already been developed that can 
drive wide-scale adoption of this technology” .  Some interesting concepts are put forward, such 
as the idea of “virtual hardware” by analogy with virtual memory, for multimode (switchable) 
systems with sets of alternative hardware configurations ready for loading. 

In real-time systems with specific time-response constraints, it may be necessary to implement 
some programmable parts in hardware.  If there is also a limitation on the size/power-
consumption (such as in hand-held devices), then hardware reconfiguration is an obvious 
solution. 

Hardware reconfiguration can also take the place of software emulation in the increasingly 
important area of interoperabili ty in networked systems.  It is already easy to get FPGA-
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implementable simple processors <FPGA CPUs>, so the idea of completely reconfiguring a 
processor to “ look like” something else is not far away. 

Another reason for using reconfigurable hardware is where interfacing to external devices 
requires reconfigurable analogue characteristics that cannot be anticipated in the original design. 

4.3 Hardware-Software Codesign 
Because of the differing advantages of hardware and software implementations, most systems 
consist of a mixture of the two.  Software, at the lowest level, consists of a sequence of 
instructions, and obviously requires a processor to interpret and execute these, and memory in 
which to store the program and the working data.  In addition, some parts of the function may be 
implemented directly in hardware, interacting with the software at appropriate points.  The 
system design then centres around portioning into which parts are to be implemented in software 
and which in hardware. 

A traditional design flow for codesign is shown in Figure 4-1 (adapted from [Douglass00]) 

 Requirements Analysis 

Specification 

HW/SW Partitioning 

HW Description SW Description 

HW Synthesis SW Generation 

Interface Synthesis 

Hardware Components 

HW/SW Interface 

Software Modules 

Integration/Cosimulation 

Integrated System  

Figure 4-1: Traditional Hardware/Software Codesign Flow 

This assumes that a hard partitioning choice is made early in the design process, after which the 
two parts are implemented separately and subsequently integrated.  Current design techniques 
are moving towards independent system design and simulation, with later partitioning.  The use 
of dynamically reconfigurable hardware adds to the complexity of the codesign task.  

• Hardware blocks communicating with the software may be reconfigured 

• The hardware on which the software runs may be reconfigured 

• The boundary between hardware and software may be moved dynamically  

• The hardware design/implementation software becomes part of the finished product, not 
just part of the design process. 
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4.4 Design methodologies currently employed for FP devices 
FPGA hardware vendors provide software to enable designers to target systems to their 
particular chips, and general CAD companies sell tools which can be used with different FPGA 
hardware.  The general procedure involved in implementing a circuit on a single FPGA is shown 
in Figure 4-2. An example of a current FPGA design system is the Mentor Graphics FPGA 
Advantage suite <Mentor> consisting of Renoir (block-level design and synthesis), ModelSim 
(simulation) and LeonardoSpectrum (place and route). 

 
Hardware design 
(block diagram 

and/or HDL) 
Simulation Placement Routing Simulation Programming 

 

Figure 4-2: FPGA Design Procedure 

The designer has to model the system hardware using functional blocks, which may be taken 
from a library or programmed in a hardware description language (VHDL or Verilog) 
[Ashenden00].  The design is hierarchical, with the bottom level being elements that can be 
implemented directly in the look-up tables of the FPGA (simple logic gates) or other basic 
building blocks (e.g. memory elements).  The placement and routing stages assign these blocks 
to specific places in the array on the chip, designate the values to be programmed into the LUTs 
to perform the required function, and route the necessary connections between them.  This is 
largely automated, but the placement stage in particular will usually benefit from manual 
guidance from the designer. 

It is no longer necessary, when using commercial FPGAs, to build the design right down to gate 
level.  There is a growing collection of commercially available IP (predesigned high-level blocks 
whose value is the intellectual property involved in their design) including communications 
peripherals (e.g. Ethernet controllers) and simple processors [Aycinena01] <FPGA CPUs>.  
Table 4-1 shows examples of some of the IP cores currently commercially available (2001).  
There are also freely available cores on the Internet <Free IP>. 

Vendor IP Core Function 

Mentor Inventra 10/100Mbps Ethernet Controller 

Mentor Inventra M8052 Microcontroller 

ARC Cores Bluetooth Controller 

Eureka Technology 8086 Microprocessor 

4i2i Streaming video CODEC 

Table 4-1: Some Commercially Available FPGA IP cores 

The design hardware is simulated in is original block/HDL form, and also after automatic 
synthesis into lower-level hardware blocks.  These blocks are initially vendor-independent, so 
that the design, and any library and IP blocks used, are not specific to a particular FPGA chip.  

At the final place-and-route stage, the user selects a particular FPGA chip on which to 
implement the design.  An estimated gate-count, together with the known number of 
interconnections required, can be used to guide the selection.  The tool would normally be 
installed with a family of target chips from a particular vendor.  Certain IP blocks may be 
optimised for specific target families, but generally any design may be targeted to any large 
enough chip.  Resimulation, taking into account the physical layout, can check that timing and 
power constraints are still met, and if not the placement and routing can be repeated with 
different user-defined guidance parameters. 

All of this is currently focussed on quick time-to-market and design re-use for one-time 
programmed (or possibly later upgradeable) single-chip devices. 
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4.5 Implications for dynamically reconfigurable systems 
There are two problems with this design process: the size and complexity of realistic systems, 
and the time and manual input needed for the implementation. 

Many current studies of reconfigurable hardware look at single-chip FPGA systems.  Whilst 
useful as insights into the technology and its applications, the real challenge is in the 
reconfiguration of large, complex systems.  These may incorporate fixed processors, and several 
(may be different types) of FPGA.  Several projects have used large arrays of FPGAs to 
implement massively parallel algorithms [Hauck98].  In any such architecture, reconfiguration of 
the FPGA must either be carried out within a tight specification so that it does not affect the rest 
of the system, or other parts (e.g. software) must be altered accordingly. 

Reconfiguration of an FPGA using a standard design system would necessitate running several 
design – synthesise – layout cycles in advance to have different implementations ready to load.  
That is, switchable configurations (“multimode” hardware) can be implemented, and the 
bitstreams stored ready to load as required.  Switching time depends on the speed with which the 
hardware can be configured.  There are ways in which this can be improved on.  If partial 
reconfiguration is possible, the hardware for the different modes can be designed with minimal 
differences, so that partial reconfiguration can take advantage of smaller changes [Heron99].  
Suppose, for example, a system on a single FPGA chip consisted of a microprocessor core with 
variable logic alongside it.  It would obviously be a waste of time to run the whole chip layout 
cycle again if the microprocessor itself did not change: it should be possible to mark parts of the 
array as “ in use”, and replace other parts with a new design.  In a system using the “virtual 
hardware” approach, similar to context switching of software processes, [Levinson00] points out 
that the information stored in memory in an FPGA can be split into permanent and transient.  
The “permanent” information defines the configuration, whereas the “transient” is the current 
contents of any registers at present time.  In any state-change that maintains the hardware 
configuration, only the registers need to be reloaded. 

For truly dynamic reconfigurabili ty, either the hardware design cycle needs to be dramatically 
shortened in time, or there must be intrinsic reuse of parts of the implementation (not just the 
design, but the physical positioning on the FPGA).  The former may be possible if the hardware 
is designed automatically, under program control, rather than with manual guidance.  The latter 
is more implementation-dependent. 

4.6 Summary 
Most of the time spent in implementing hardware on an FPGA is in the design and layout, rather 
than the programming, so this stage needs to be made as efficient as possible if dynamic 
reconfiguration is required.  The reuse of predesigned blocks (analogous to software class 
libraries) is already speeding up design.  Taking into account this higher-level view of the design 
process, reconfigurabili ty scenarios can be modelled as shown in Table 4-2. 

↓↓↓↓Control Blocks→→→→ Predefined Parameterisable Intelligent 
Central external Multimode hardware Virtual hardware 

with context 
switching 

Hardware emulation 
of different 
processors 

Central internal Multimode hardware 
including on-board 
switching 

Trainable hardware 
(e.g. neural network) 

Soft processor 
modifying its own 
parameters 

Distributed  Self-modifying 
hardware e.g. 
majority decisions 
for fault tolerance 

Multiple small 
reconfigurable 
processors 
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Table 4-2: Model for FPGA System Reconfigurability 

The following types of reconfiguration scenarios could be envisaged: 
• Software runs on a fixed processor, controlli ng predefined updates to the hardware 
• Software on a fixed processor redesigns and reconfigures hardware 

• Hardware is autonomously self-modifying 

• Software runs on a reconfigurable processor (either multimode or dynamically 
redesigned) 

5 Scheduling Real-Time Systems 
“ If something anticipated arrives too late it finds us numb, wrung out from waiting, and we feel - nothing at 
all . The best things arrive on time.” [Dorothy Gilman, A New Kind of Country, 1978] 

In real-time systems, the timing of interaction with the environment is part of the specification 
[Burns96].  If reconfigurable hardware is to be included in real-time systems, any timing analysis 
must take into account possible different hardware configurations, and the time taken to switch 
between them.  This section looks at methods for ensuring timing requirements are met in the 
scheduling of software and hardware operations, and how these might be affected by 
reconfigurabili ty. 

5.1 Worst-Case Execution Times in Software 
The primary requirement of a real-time system is that the timing of its outputs should be 
predictable, either individually or statistically depending on the application.  This predictabili ty 
becomes more difficult to achieve the more complex the application.  Inputs may be periodic 
(with a regular arrival frequency), sporadic (with at least a known minimum inter-arrival time) or 
entirely random. 

In order to design a software system that will meet timing requirements, it is necessary to predict 
how long tasks will take to execute.  At least, the worst case execution time (WCET), which is 
an upper bound on the time taken, is needed as it usually does not matter if a task completes 
early.  The WCET needs to be tight (not too much of an over-estimate), but also safe (never 
exceeded) in order to be useful [Engblom00].  The calculation (or estimation) of WCET involves 
both high-level (source code) and low-level (microcode) analysis, and tends to be highly specific 
to a particular compiler and architecture [Bernat00].  This would be a big problem for 
reconfigurable systems, as the architecture might be liable to change. 

The high-level analysis consists of looking at how paths through the code are followed, such as 
how many times a loop may execute, when different conditions exist for if-then-else branches, 
and where functions are called.  This information is usually not entirely available by static 
analysis, and has to be augmented by programmer annotation [Li95] where value ranges of 
variables cannot be inferred from the code.  For simple tasks, it may be possible to analyse all 
possible paths through the code, but this can easily become infeasible for larger programs.  The 
problem can alternatively be expressed as a collection of constraints, and solved analyticall y. 

Low-level analysis means working out how long machine-code instructions take to execute.  The 
straightforward clock-periods per instruction cycle calculation can be affected by pipelining, 
instruction caching and data caching.  As processors become more complex, with more 
“speeding up” mechanisms, the exact calculations of the time taken to execute any one 
instruction becomes more context-dependent and diff icult to determine. 

5.2 Scheduling tasks on a single fixed processor 
Before looking at the complexities of scheduling tasks on reconfigurable processors, it is 
necessary to understand methods used to do this a traditional processor.  Real-time applications 
generally require more than one task to be executed, and each has its own constraints to be met.  
In order to share the processor time between them, the following are needed: 



 

Alison Carter  page 14 

07/11/01 16:42 

A mechanism for starting the next task running.  This can be as simple as a procedure call (cyclic 
executive) or interrupt service routine, but will more usually be a queue of processes, with saved 
states.  The process at the head of the queue can be loaded for execution at regular intervals 
(round robin), immediately (preemptive) or when the current task completes (non-preemptive). 

A method for allocating priorities (unless all processes are considered equal).  This decides 
which processes get to the front of the queue and therefore get more immediate servicing.  The 
priorities may be statically or dynamically assigned. 

Metrics (such as WCET) to allow priorities to be calculated, and so that an analysis of the 
feasibili ty of the schedule can be made.  Along with metrics for the processes themselves, the 
constraints and scheduling goals need to be expressed mathematically (e.g. is it minimum time, 
or minimum lateness that is important). 

In addition, each scheduling method makes assumptions about the characteristics of the 
processes for which it is designed (e.g. periodicity). 

5.2.1 Cyclic executive: 

If the inputs to a system are known to be periodic at multiples of a basic period T, and 
1

N

k
k

C T
=

<∑  

(where Ck is the WCET of process k associated with a particular periodic input), a non-
preemptive cyclic executive scheme can be calculated in advance [Burns96],([Liu00] calls this a 
“clock driven” system).  There is no need for saving process states and context switching: tasks 
can be called as procedures and each runs to completion.  Given simple enough input timing, 
such a statically defined schedule could be used for a reconfigurable system in the case of 
multimode hardware, where different executives could be defined for each pre-defined 
configuration.  The actual reconfiguration procedures could be considered as additional tasks to 
be included in the schedule. 

5.2.2 Round Robin 

This is an algorithm in which all eligible processes are given time in turn, then preempted at the 
end of a time-slice (or quantum) if they are still running.  Processes are put to the back of the 
queue when they complete, in an effort to give fair share to all.  It is possible to introduce a 
weighting factor, to give extra quanta to some “more important” processes [Liu00].  The method 
has the advantage of simplicity, and is used in operating systems such as POSIX, but does not 
cope well with sporadic processes, or processes with precedence constraints. 

The use of a round robin scheduler could be imagined for switching between different 
configurations in a dynamic system.  Here, the task switching also involves setting up a new 
configuration.  The reconfiguration could not be seen as extra tasks in this case, as each has to 
complete, and be done in a specific order in relation to processes.  The time-slice length will 
affect the overall efficiency of the system, because of the overhead involved in task switching, 
which could now become much larger.  For example, if the time-slice is set at 10ms, and the 
switching takes 1ms, there is a 10% overhead added to execution time, whereas if the time-slice 
is increased to 50ms, there is only a 2% overhead. However, as the time-slice gets longer there 
will be more occasions when a process cannot use its whole slice, and an extra switchover is 

needed or time is wasted.  Every process i will complete in a time less than iC
qN

q s

 
 − 

, where q 

is the time quantum, N is the number of processes, and s is the context switching time.   
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5.2.3 Priority-Driven Scheduling 

Where ready processes are taken from the queue according to priority, the allocation of these 
priorities becomes the main issue. 

Rate Monotonic [Liu73]: Rate-monotonic scheduling is particularly designed for the 
servicing of periodic events, as found in real-time systems with synchronous inputs. The RMS 
scheduling algorithm simply gives highest priority to the task with the shortest period, and 
allows higher priority tasks to preempt.  It will  effectively schedule N processes if the sum of the 

utili sations 
i

i

T

C
 of all the processes is less than 


 −12

1
NN . This levels out around 70% (limit = 

ln2 ≈ 0.6931) as process numbers increase, as shown in Figure 5-1 
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Figure 5-1: Utili sation bound for guaranteed rate monotonic scheduling 

Although a set of processes with given timing constraints may be schedulable by this method, 
the response time (from input, causing the queuing of a process, to output, assumed to be 
completion of a process) is dependent on the completion of higher priority processes. 

Deadline: If a real-time process is invoked to capture input in an embedded system, the 
important factor in scheduling is actually meeting a deadline, rather than taking a particular 
amount of time.  There are therefore scheduling algorithms that assign priorities according to 
deadlines by which a task must start or complete.  If the task with the earliest finishing deadline 
is given highest priority, there is no need to have periodic tasks.  This is called “deadline driven” 
[Liu73], “deadline monotonic” [Burns96] or “Earliest Deadline First” (EDF) [Liu00].  It can be 
scheduled if for a given set of processes if any other method can ([Liu73] for periodic processes, 
[Liu00] more generally).  It is also possible to consider starting deadlines (release times), rather 
than finishing deadlines for processes, and to extend the analysis to allow for release jitter 
[Audsley95]. 

Critical Sections: Interaction between processes, either in terms of competition for resources 
or temporal sequencing, means that simple priority assignments by period or deadline can lead to 
priority inversion and deadlocks [Audsley95].  To overcome this, processes can be made to 
inherit priorities dynamically from those they are blocking.  This is insufficient to avoid possible 
long chains of processes blocking each other, so further action can be taken to assign priorities 
according to use of resources.  This can be done by assigning priority ceili ngs   and only 
allowing processes whose priorities are higher than this to enter a critical section that uses this 
resource [Burns96]. 

Varying priority with resources: An example of dynamic priority assignment in a changing 
system that might be relevant to reconfigurabili ty is given in [Ma00].  Here the problem of 
energy efficient scheduling for mobile applications is addressed by assigning tasks two different 
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types of priority.  One represents the importance of the task (PI = 0 for unimportant, 1 for vital), 
and the other represents its energy consumption (PE = 0 for using all the energy, 1 for using 
none).  The overall task priority is then assigned according to a formula which can be simplified 
as 

( ) ( ) ( ) ( )( )tErPtEPrtP IE −+−= 11  

where E(t) represents the ratio of residual energy at time t to the total energy budget, and r is an 
adjustable parameter to give more or less weight to the energy-saving aspect of the algorithm.  
As energy is used up, E(t) decreases and the priority is driven more by the importance of the 
task, as shown in Figure 5-2.  Here, the residual energy is assumed to be decreasing linearly with 
time.  When there is plenty of energy, paradoxically more emphasis is given to the energy 
consumption aspect.  The overall task priority determines the period of operation in an example 
application of a portable GPS wayfinder. 
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Figure 5-2: Priorities (with r = 0.5) over time using Ma’s formula 

This is an example of a schedule having a metric (power remaining) and a goal (avoiding 
running out of power) which dynamically alters the behaviour. 

Value-Based Systems: An approach to allocating scarce resources when scheduling has 
been developed under the category of value-based methods [Burns98].  These methods assume 
that resources are limited, and will at some stage become insufficient to allow all processes to 
meet their specified criteria (deadlines).  It is then necessary to decide which should be neglected 
and which must be scheduled, so that the system can cope with a temporary period of overload.  
The value is a metric attached to a process, or group of processes, which may vary according to 
time and context.  It is used to decide which processes are admitted to (or excluded from) the run 
queue when resources are limited.  This mechanism is in addition to any priority assignment 
acting within the queue. 

Heterogeneous Systems: Many analyses of scheduling algorithms assume a homogeneous 
set of task characteristics, whereas in reality there will probably be a mixture of periodic and 
aperiodic, real-time and non-critical, those with known WCET or deadlines and those without.  
[Liu73] suggests that a combination of Rate Monotonic and Deadline Driven priority assignment 
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can be very effective.  Even in areas such as DSP programming, which is characterised by 
simple periodic inputs and outputs, there is an emerging trend towards the need for more 
sophisticated scheduling [Dubin01].  It is likely that in dynamically reconfigurable systems, 
scheduling will need to use a combination of algorithms at different times and in different 
circumstances. 

5.2.4 Multiprocessor Scheduling 

If there is more than one processor available, or if some of the operation can be carried out in 
hardware, then the scheduling becomes more complex and issues of synchronisation must be 
addressed.  [Stalli ngs98] categorises multiprocessor implementations according to their 
granularity (assuming each application contains many tasks) as 

• Independent, which is really multiple applications rather than parallelism in a single 
application. 

• Coarse, where individual processors perform tasks that could be run on a single, multi-
tasking system, but all at once rather than switching between them. 

• Medium, where strongly interacting process threads of a single application are scheduled 
to run on several processors. 

• Fine, where a single instruction stream contains parallelism that can be distributed over 
several processors, such as in an occam Transputer environment. 

The issues of static versus dynamic scheduling still apply.  It is still common for the programmer 
to have to specify the allocation to multiple processors, rather than any automatic allocation.  
Methods of automatic scheduling can take into account not only the timing of processes, but also 
the communication / synchronisation between them, so that communicating processes run 
simultaneously. 

Of course, there is no reason to assume homogeneity of processors.  At one extreme, all 
processors are interchangeable, and at the other each is dedicated to a particular task.  

5.3 Real-time characteristics of hardware systems 
Hardware systems are intrinsically parallel, and their timing characteristics have traditionally 
been modelled in a different manner from software systems.  There is still the concept of a 
“worst-case execution time”, but the factors that can affect the timing are not all the same as for 
software: 

• The same low-level hardware block can take different times to execute, depending on the 
loading (fan-out), so at different places in the circuit, similar blocks have different delays. 

• The time taken by a hardware block to complete processing may depend on its inputs (for 
example, a multiplier may take different times for different data) 

• The requirement to synchronise the arrival of data from several different sources means 
that the WCET of a hardware block depends on the slowest path through it. 

5.3.1 Datapath model of synchronous systems 

As an example of timing analysis of hardware systems, the lossless discrete integrator (LDI) 
filter described in [Rouse94] and shown in Figure 5-3 is a synchronous signal processing 
structure with several parallel branches.  The input is a periodic data stream which is input at a 
specified frequency, and an output is calculated at the same frequency, but after some delay.  
Delay (memory) elements are clocked at the input frequency, so their output represents a 
previous data value.  The other components are fixed point adders and multipliers (each 
multiplying by a different, constant coefficient), and have an inherent delay which is to some 
extent data-dependent.  The delay also depends on topology, technology and physical layout.  
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Simulation packages typically use very conservative delay estimates, but these can be back-
annotated more accurately from a physical implementation. 

 xk

 yk

 

Figure 5-3: LDI Filter 

The correct timing operation can be confirmed by ascribing a worst-case execution time to each 
component, and identifying the critical path from one delay element to the next (the path with 
the longest time).  This can be done using signal flow graph techniques.  For example, given the 
times adder = 1, multiplier = 2, there are two, equal critical paths of 14, as shown in Figure 5-4. 

 xk

 yk

 

Figure 5-4: Critical Paths 

Hardware systems do not generally have all their memory elements (registers) clocked at the 
same rate like this one.  In this case, a controller, in the form of a finite state machine, is 
responsible for enabling capture of data at each register at the appropriate times.  This makes the 
design of the controller similar to designing a scheduler for a multiprocessor software system (it 
fact, it can be considered a multiprocessor system where each processor has one dedicated task, 
as described in 5.2.4 above).  There is, however, the added high-level design decision about how 
many hardware components are needed.  For example, if an algorithm requires two independent 
additions, this could be done with a single adder, the first result being stored in a register while 
the second is calculated.  Alternatively, if speed is important, two separate adders could be used. 

With more complex synchronous systems, the techniques above apply, but at a block level, 
rather than individual components.  There is still a static analysis of paths through the system, 
based on WCETs of the blocks, and synchronisation occurring when data is captured in memory. 

5.3.2 Self-timed systems 

A self-timed system is a hardware system with the equivalent of dynamic scheduling.  That is, 
elements of the system have a method of signalli ng that they have completed, and are inhibited 
from continuing until all their inputs are ready.  This is done at logic gate level, enabling micro-
pipelines to be established, with components running at their actual speed rather than using 
worst-case estimates .  Methods used in self-timed logic are reviewed here, as their dynamic 
nature and distributed control of timing may find parallels in the scheduling of reconfigurable 
systems [Grass97]. 
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One method used is the introduction of a space token between bits.  Instead of data items of just 
0 and 1, there are three values (0, 1 and space).  This may be implemented by using three 
different voltage levels, or using two wires for each signal.  A transition from space to 0 or 1 
signals that a calculation is complete.  Conversely, the presence of a space on an input inhibits 
further processing.  Although this method allows for effective self-timed operation, it introduces 
overheads on the time (and on the hardware and power consumption). 

Another method is to introduce auxili ary circuitry to generate a ready signal when the 
calculation is complete, which is fed into the start control of the next function(s) in line.  This 
assumes that the delay is data-dependent, so the auxili ary circuit uses the input data, and possibly 
extra information from the logic block, to calculate and implement an appropriate delay. 

A third method involves somehow detecting activity in the logic block.  Depending on the 
technology, this might involve measuring currents, or looking for internal voltage level changes.  
In any case, the assumption is that the circuitry is normally quiescent, and there is some way of 
telli ng when nothing is taking place inside it.  

5.4 Real-time reconfigurable systems 
The problem of scheduling in real-time reconfigurable systems depends on the type of 
reconfiguration being undertaken.  [Levinson00] looks at the problems associated with stopping 
and restarting processes that are running in hardware on FPGAs in order to implement 
preemptive scheduling.  Instead of the handful of registers and required to specify the state of a 
software process (in addition to its memory contents), the hardware process may have a large 
number of internal registers.  In this example, the (changing) register contents are disentangled 
from the (semipermanent) parts of the FPGA definition bitstream representing the hardware 
layout, requiring the abili ty to read back the configuration of the FPGA. 

5.5 Summary 
The scheduling of real-time applications often assumes a simple model of processes (e.g. 
independent and periodic).  For implementation on dynamically reconfigurable hardware, the 
issue of scheduling reconfiguration (a relatively slow operation), and the necessity for the right 
hardware to be in place for particular processes, adds to the complexity.  Taking the 
reconfiguration scenarios mentioned in section 4.6 above, different scheduling methods would be 
appropriate 

Multimode hardware: 
Standard software scheduling techniques within each mode, plus global scheduling of 
switchover between modes taking account of precedence of operations 

Virtual hardware with context switching 
Standard software scheduling techniques with modification to take account of long 
switching times 

Hardware emulation of different processors 
Standard software scheduling techniques appropriate to each processor 

Trainable or Self-modifying hardware 
Self-timed or hardware controller, plus software scheduling making allowance for 
reconfiguration times 

Soft processor modifying its own parameters 
Extension to software scheduling with dynamic adjustment to suit processor changes 
(value based techniques could be useful here) 

Multiple small reconfigurable processors 
Extension to multiprocessor scheduling techniques to allow for reconfigurabili ty. 
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6 Real-Time Communications Applications 
This section looks at the applications in the real-time communications field that might benefit 
from the use of dynamically reconfigurable hardware.  The aspects that are particularly relevant 
are 

• interoperabilit y of different standards 

• multi function in a single device or system (adaptation to application or data) 

• adaptation to environment 

6.1 Software Radio 
The concept of software-defined radio has conflicting definitions, but a detailed discussion in 
[Pereira00] is summed up as  

“we envision Re-configuring on demand not only the terminal but also the serving network(s) and the 
services they provide ….Upon this open framework, we envision truly ‘platform’-independent applications, 
no longer exclusively developed by or for operators, capable of adjusting themselves to the serving network 
capabiliti es … and the terminal characteristics, negotiating with the network to obtain the best possible 
service taking into account the user profile.”  

The basic premise is that everything is reconfigurable.  This ranges from the protocols at all 
levels (e.g. using GSM or UMTS), through network management (e.g. reconfiguring a network 
to cope with different loading profiles), to applications (e.g. an application that normally 
provides streaming video switching to still monochrome images if the quality of service is 
insufficient).  The general message is that nothing is predefined. 

Much of this is, as in its name, software defined.  However, there are elements of such a system 
that are ideally suited to reconfigurable hardware.  This is particularly the case for mobile 
handsets, where small size and low power consumption are important. 

The CAST project (Configurable Radio with Advanced Software Technology) [Madani00] aims 
to demonstrate an architecture for intelli gent reconfiguration of the physical layer in wireless 
communication networks.  This covers interoperabili ty between GSM and UMTS in the bottom 
level of a communications system, together with adaptation to prevaili ng conditions and user 
requirements.  The hardware configuration proposed for a demonstrator consists of a board with 
four Xili nx XCV600 FPGAs, with controller and memory, plus a programmable DSP processor 
board, and reconfigurable analogue components.  This gives a mixture of hardware and software 
reconfiguration. 

The economic necessity for rapid time-to-market in an environment of complex, evolving 
standards is one of the reasons for the interest in reconfigurabili ty in this area [Dick00].  There 
are also constraints on the size and power consumption of mobile equipment, together with 
enormous versatili ty requirements in terms of applications, loading and physical environments. 

6.2 Adaptive Signal Processing 
A common DSP task is the creation of a filter which can adapt according to conditions.  For 
example, the removal of cockpit noise in an aircraft pilot’s voice communications equipment 
needs to adapts as that noise varies.  This is a smaller, and better defined task than that described 
in 6.1 above.  In general, it will i nvolve recalculating the coefficients in the numerical 
implementation of a digital filter, which is implemented in software on a DSP processor.  
However, given a hardware implementation of such a filter, it could be necessary to reconfigure 
that hardware to give optimum performance with the new coefficients.  [Dempster95] describes 
an algorithm for minimising the number and complexity of adder blocks in a given filter 
implementation.  The architecture is entirely dependent on the actual coefficient values, as it 
searches for common “power of 2” shifts in the set of numbers to maximise the sharing of 
calculation.  It would therefore need to be reconfigured in order to alter the filter in any way.  
The viabili ty of this idea for adaptive filtering depends on the time taken to recalculate the 



 

Alison Carter  page 21 

07/11/01 16:42 

architecture and reconfigure the hardware, and the frequency of the required reconfiguration, 
compared with the speed/efficiency advantage gained by using a hardware implementation.  It is 
suggested in [Courtney00] that a more regular, less efficient multiplier architecture gives better 
reconfiguration performance that one specifically tailored to the coefficient structure. 
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Figure 6-1: Predicted Growth in DSP Throughput [Pryan01] 

An adaptive approach to system identification (such as might be used to characterise the channel 
in a communications application) is described in [Pasquato99].  This tries to match a given 
(noisy) system response with an IIR (Infinite Impulse Response) filter, having first arrived at a 
rough estimate using an FIR (Finite Impulse Response) structure.  Such a system could 
theoretically be implemented by reconfiguring hardware from an FIR to an IIR, with or without 
hardwired coefficients in the circuitry.  A suitable scenario could involve different hardware 
configurations in sequence: 

• General FIR with adaptable coefficients (in registers) 

• Mapping of FIR to IIR 

• General IIR with adaptable coefficients (in registers) 

• Calculation of structure of efficient, fixed coefficient IIR 

• Fixed coefficient IIR 

6.3 Reconfigurable Protocols 
With the rapid growth in bandwidth of communication systems, the type of application and 
content is set to change unpredictably in the future.  In a presentation of the idea of dynamic 
protocol architectures [Crane98], it is asserted that “no fixed set of protocols can satisfy the 
needs of all future applications” .  Whilst it is obvious that no set of currently defined protocols 
will be suitable for all future unknown demands, the more useful interpretation given is that 
architectures should be designed in which an interpreter can demand-load protocols from a 
library.  This can then be updated as required, and allows communications programs access to 
dynamically loadable, and parameterisable, protocols, which can be used to maintain the quality 
of service required by an application. 

The use of reconfigurable hardware for adaptable protocols is already being explored by the 
PRO3 project <PRO3>.  This aims to design a protocol processor for both data and 
telecommunications applications, which includes reconfigurable hardware.  This will handle  
low-level protocol functions, while the higher layers are dealt with by a processor core included 
on the chip. 

In the area of ad-hoc (peer-to-peer) networking, distributed intelli gence in the communicating 
devices sets up and controls the protocols, including the routing [Haas99].  Here we are dealing 
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with mobile devices, so they must be small, with low power consumption, and there is the 
inherent reconfigurabili ty of a network which routing nodes can join and leave as they wish.  As 
with other communications applications, there will be a quality of service to maintain, consistent 
with the application, which may include real-time components. 

7 Summary 
Current FPGA systems allow fast, cheap implementation of systems, with the facili ty for 
upgrades in the field.  Some small amount of dynamic reconfigurabili ty exists currently, but 
without real support for commercial exploitation.  The length of the design process required for 
an unpredicted change precludes dynamic, on-demand alteration of systems, but multimode 
systems (loading predefined alternatives as required) are certainly feasible.  One possible field of 
further research is methods of redesigning hardware which minimises the layout change 
required, and therefore might allow reconfiguration in real time. 

Even with multimode hardware, the implications of reconfigurabili ty for scheduling real-time 
systems are that extra delays are introduced while the system reconfigures.  The improvement in 
quality of service afforded by the reconfiguration must be worthwhile.  Standard scheduling 
algorithms would need to be adapted to take into account this extra factor. 

It is obvious that adaptable systems are needed in many applications, but this abili ty to change 
could usually come from altering software, rather than reconfiguring the hardware.  Applications 
which need to be fast and low power, have high intrinsic parallelism, or for other reasons must 
be implemented in hardware,  are possible candidates for this technique.  For multimode 
hardware, replication is an alternative to reconfiguration if there are no size or cost constraints.  
Those applications investigated include software radio, adaptive signal processing and 
reconfigurable protocols.  All of these might be used in a hand-held device which must be small 
and low power, as well as needing high speed. 
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