
University of York
Department of Computer Science

Real Time Systems Group

Using Dynamically Reconfigurable Hardware in Real-Time
Communications Systems

Literature Survey

Alison Carter

November 2001

CONTENTS

1 INTRODUCTION ... 1

2 RECONFIGURABLE SYSTEMS.. 1

2.1 Paradigms from other disciplines...1
2.2 Characteristics...2
2.3 Summary ...3

3 FIELD PROGRAMMABLE ARRAYS ... 3

3.1 History of development..3
3.2 Current FPGA technology ...5
3.3 Field Programmable Analog Arrays...6
3.4 Programming and Dynamic Reconfigurabil ity ...6
3.5 Future Trends ..7
3.6 Summary ...7

4 FPGA SYSTEM DESIGN... 8

4.1 Modes of use ...8
4.2 What is hardware, and why reconfigure it? ..8
4.3 Hardware-Software Codesign ..10
4.4 Design methodologies currently employed for FP devices ...11
4.5 Implications for dynamically reconfigurable systems...12
4.6 Summary ...12

5 SCHEDULING REAL-TIME SYSTEMS.. 13

5.1 Worst-Case Execution Times in Software..13
5.2 Scheduling tasks on a single fixed processor ..13
5.3 Real-time characteristics of hardware systems ...17
5.4 Real-time reconfigurable systems ..19
5.5 Summary ...19

6 REAL-TIME COMMUNICATIONS APPLICATIONS 20

6.1 Software Radio ..20
6.2 Adaptive Signal Processing..20
6.3 Reconfigurable Protocols...21

7 SUMMARY ... 22

8 REFERENCES .. 22

9 LINKS .. 25

Alison Carter page 1

07/11/01 16:42

1 Introduction
The development of field programmable systems on a chip (FPSC) heralds an emerging
technology of dynamically reconfigurable hardware. The promise of architectures that can be
altered on the fly, according to prevaili ng conditions, adds a new dimension to the design of real-
time systems. This survey investigates the potential for dynamic reconfigurabili ty, using current
and projected technologies, and looks at possible applications in the field of real-time
communications.

The study begins by categorising the types of architecture and strategy that can be used in any
reconfigurable system. Having explored the general concept of reconfigurabili ty, the first part of
the required infrastructure to be investigated is the Field Programmable Gate Array (FPGA).
The development and future direction of the hardware are discussed, with reference in particular
to suitabili ty for dynamic reconfigurabili ty. This leads on to the methods used to design and
implement systems on FPGAs, and the functionality of libraries available for them.

The second issue explored is the scheduling of real-time tasks, both in software and hardware
systems. Methods in current use are described, and their relevance to implementation on
dynamically reconfigurable systems are discussed.

Finally, the question has to be asked whether dynamically reconfigurable hardware would be
genuinely useful in any current or envisaged applications. Examples in the communications area
are explored as possible applications for this technology.

2 Reconfigurable Systems
“A system can be a product, process or service that converts a set of inputs into a set of outputs”
is the broad definition offered by [Stoddart99]. In this context, the system is also assumed to be
electronic (rather than mechanical or manual, for instance).

A reconfigurable system is one that changes its form in order to alter its function. For it to be
more than “configurable” it must be possible to change it either whilst it is in use, or by taking it
out of use for a short time. There are different models for how systems can be reconfigured, in
terms of the granularity, the intelli gence and the control method required. This section proposes
paradigms from various sources outside of computer science and electronics, and looks at their
characteristics in terms that might be applied to electronic systems.

2.1 Paradigms from other disciplines

2.1.1 The Swiss Army knife.

A penknife has a set of predefined forms created by opening each one of the blades. An
equivalent type of reconfigurabili ty is the child’s “transformer” toy which can be manipulated
into two or three different vehicle and/or robot forms. This is organised by a central
“controller” , who just chooses one of a set of prepared configurations. The only advantage is the
convenience of carrying one tool instead of many separate ones.

2.1.2 Lego

Some reconfigurable systems consist of small blocks that can be put together in any order and
then dismantled for rebuilding. An example is the Lego toy, where there are different types of
brick but they can be joined in various ways. Taking the building-block size down to an
infinitesimal level gives modelli ng clay or Plasticine. This model assumes a central intelli gent
controller, which chooses the blocks and reconfigures them according to requirement. The
function is defined almost entirely by the physical arrangement of the blocks.

Alison Carter page 2

07/11/01 16:42

2.1.3 The team

Each member of a football team or army unit has a variety of different capabili ties, possibly
overlapping in specialisations, and all with some general functions. A reconfiguration means
restricting individuals to perform a certain subset of their possible tasks in a specified relative
location. Like the “Swiss Army knife” model above, there is a central specialised controller, but
each part has intrinsic intelli gence (albeit possibly limited) used to minimise the amount of
central control required. Executing the reconfiguration may involve communication between the
individuals.

2.1.4 The ant colony

Ants have specialised functions within their society (worker, soldier, queen, etc.). According to
changing circumstances, the colony can adapt to cope best with their current environment, such
as invasion by a predator. There is no overall central control, so this model is an extension of the
“team” idea to an entirely distributed intelli gence. Communication is vital to the reconfiguration
process.

2.1.5 The immune system

The body’s immune system is prompted into attacking a particular invading organism by
detecting its “foreign” presence. This makes the defensive cells whose shape is attuned to this
particular invader proliferate more rapidly than others [Weir97]. These cells, or bacteria that
mutate to become immune to particular antibiotics, are following a selective evolution model, but
much faster than normal evolutionary systems. This is an often-borrowed idea in hardware and
software systems, such as the self-repairing and evolutionary systems on a chip in
[Moreno98][Ortega97]. In the biological prototype, there is no central organisation, and no real
intelli gence, but simply a distributed response to the current environment.

2.2 Characteristics

2.2.1 Control

In order to reconfigure a system, there must either be an overall controller, initiating and
executing the change, or else the parts of the system must respond to external stimuli by
changing their own organisation. The control mechanism should be categorisable as

• Central, external intelli gent controller: the system can be “downloaded” with a new
arrangement from outside as required

• Central, internal intelli gent controller: part of the system can calculate and execute
rearrangement of the remainder

• Distributed, intelli gent: each part of the system can decide on the need for rearrangement,
and negotiate changing itself, or other parts.

• Distributed, unintelli gent: each part of the system is modified according to predefined
rules in response to external events.

2.2.2 Blocks

The blocks making up an electronic system can be thought of as pieces of circuitry which may
possibly be parameterisable or programmable. They could be as small as single transistors, or as
large as a computer network. In general, complexity and programmabili ty increase together. In
terms of function, the blocks may be

• Predefined, single-function: a block of hardwired circuitry that performs a specified
function according to its structure.

Alison Carter page 3

07/11/01 16:42

• Parameterisable/adaptable: whilst the overall function is fixed, certain parameters can be
adjusted.

• Intelli gent, multi-function: a system containing one or more processors which can be
programmed to alter completely the function it performs.

It is, of course, possible to conceive of a heterogeneous system comprising blocks of different
sizes and with different levels of intelli gence.

2.2.3 Configuration

The function of the overall system is affected by the arrangement and internal configuration of
the constituent blocks. Configuration may involve

• Simple choice: one of several possible blocks is selected to be active

• Arrangement defines function: the interconnection of blocks (feeding of outputs from
some into inputs of others) defines the functionality of the system as a whole.

• Arrangement forms part of function: when the blocks themselves are programmable or
parameterisable, they and their interconnection may be altered to change the system
function.

2.3 Summary
Reconfigurable systems can be categorised by the complexity of their constituent blocks and the
way in which they are reconfigured. Non-technical paradigms discussed above fit this
categorisation as shown in Table 2-1. The concept of “parameterisable” (alterable in a small
way) is not present in these examples, but is included as it is appropriate for electronic systems
discussed later.

↓↓↓↓Control Blocks→→→→ Predefined Parameterisable Intelligent
Central external Swiss army knife

Lego

Central internal Team

Distributed Bacteria Ant colony

Table 2-1: Categorisation of Reconfigurable Systems

3 Field Programmable Arrays
This section reviews the development of the technology of field programmable gate arrays
(FPGAs) and similar devices, and their potential for use in dynamically configurable systems.

3.1 History of development

3.1.1 Gate Arrays

The possibili ty of dynamically reconfigurable hardware has grown from the idea of the gate
array, first proposed in the 1960s as a way of making custom integrated circuit design easier and
cheaper [Read85]. The gate arrays (or masterslices) consisted of partially processed sili con
chips, with ready-made gates that were not yet connected. These could be prepared in bulk, and
the customisation performed with only one or two layers of metal. This, in turn, encouraged the
development of automated CAD tools to implement application specific integrated circuits
(ASICs), replacing the “polygon pushing” approach of designing each transistor and
interconnection individually.

There are several choices to be made in the design of a gate array:

Alison Carter page 4

07/11/01 16:42

• what should the basic cell ’s function be, and is it fixed?

• how many should there be, and how many input/output pins?

• how should they be arranged on the chip (in rows, or sea of gates)?

In theory, a digital circuit can be constructed entirely from 2-input NAND (or NOR) gates
[Boole1854], so any combinational or sequential system could be formed on a gate array
providing enough of these gates, sufficient pins and room for interconnect. Early gate array
designs used this concept of providing fixed logic gates that could be connected to build the
circuit. In the GEC AOI (and-or-invert) gate array, each cell consisted of a 2-input AND, a 2-
input OR, and an inverter. These were unconnected, but could be joined or left unused as
appropriate to create the required functions. Such an approach, although flexible and amenable
to automation, is not efficient in terms of area used and power consumption. It also does not
allow for tri-state devices or any memory other than simple registers.

Later devices, such as the UK5000 [Kirk84], had logic cells that were incompletely formed gates
with unconnected transistors. The personalisation of the logic cells would create different
functions, which could be connected as needed.

The gate array was originally not reconfigurable: once the customisation layers were added, its
function was fixed. It could be used wherever the length of time and cost of development was
more important than optimising for speed or power, such as for small runs or where time-to-
market was vital. It was also used for prototyping, allowing systems to be implemented on
sili con and tested prior to investing in a full -custom design.

3.1.2 FPGAs

The next important breakthrough was the advent of field-programmable devices. Instead of
customisation taking place in the sili con foundry, it could be carried out electrically on the
packaged chip, via its pins. The technology used is what is often called an antifuse. That is, a
normally open circuit that is made permanently conductive when a 5mA programming current is
forced through it [Smith97]. This meant greatly reduced costs and time to market for ASIC
developers, but once programmed, the setup could not be changed. Using EPROM technology
FPGAs could be erased with ultraviolet light, and reprogrammed, but this is a slow process
requiring manual intervention.

FPGAs next developed to be electrically reprogrammable, allowing embedded systems to be
modified or upgraded in the field without physical replacement of hardware components. The
technology could be based on EEPROMs, using high voltages (12V or more) to program and
erase the array. This could now truly be termed “reconfigurable hardware”.

The most flexible form of the FPGA uses SRAM technology to store look-up tables
characterising both cell function and interconnection. This means that programming the chip’s
function amounts to writing data into memory addresses. The disadvantage is that there must be
continuous power supplied so that the memory retains its contents, or a facili ty for download
from PROM at power-up. Most current FPGA chips using this technology require the entire
chip to be programmed at one time. However, there have been dynamically and partially
reprogrammable technologies around since before 1990 [Dettmer90].

3.1.3 Field Programmable Systems on a Chip

Quite early in the development of semicustom ASICs, it was realised that some types of
component need to be predefined as tailor-made blocks, rather than constructed from cells by
each designer. Obvious examples are memory and clock generators. An FPGA chip would
therefore include these special blocks.

It seemed at one time that a combination of programmable and handcrafted parts would offer the
ideal solution for systems on a chip. For example, a processor core could be supplied with

Alison Carter page 5

07/11/01 16:42

memory and FPGA on-chip to make a complete programmable system. Eventually, the
emphasis would shift from “an FPGA with special bits” to “a system on a chip with
reconfigurable bits” . However, the abili ty to implement processors and other specialised blocks
on a general purpose FPGA seems to be overtaking this with the provision of soft cores to use in
FPSC designs.

3.2 Current FPGA technology
A comparison of FPGAs commercially available in 2000 [Krupnova00] shows little variation in
the architecture of the basic cell or the functionality. Both one-time programmable and
reconfigurable arrays are still used, and programmable combinational logic elements will be
based on AND-OR arrays and look-up tables [Salcic98],[Seals97]. FPGA chips usually include
programmable registers, with a choice of clocking (global, input, signal) and reset. The memory
available is getting bigger and more configurable. Input/output blocks on the chips are
programmable as input, output, or bi-directional, with most offering various interfacing
capabili ties (such as TTL compatibili ty). Arrangement of cells is usually a rectangular grid, with
routing channels. The interconnection between cells can be effected by antifuses between
crossed wires as in Figure 3-1 [Seals97], or connections gated by memory elements as in Figure
3-2 [Salcic98].

 1-time programmable antifuse

Figure 3-1: Antifuse interconnections

 Memory element (0 or 1)

Figure 3-2: SRAM-gated connection

To get an idea of the physical capabili ties of commercially available FPGAs it is sufficient to
look at the Web sites of the two leading manufacturers, Altera and Xili nx. Table 3-1 summarises
the facili ties available from their current chip families available in August, 2001.

Family Logic block Number Memory (bits) Other features
Xili nx Spartan-II
[Xili nx01S]

96-1176 CLBs

15k – 200k gates

16k – 56k block

0 – 73.5k in CLB

86-284 IO pads

Xili nx Virtex-II
[Xili nx01V]

64-15360 CLBs

40k - 10M gates
72k-3456k block
dual-port, plus

0-1920k in CLBs

88-1108 IO pads

Specialised
multipliers

Xili nx XC4000
[Xili nx99]

Configurable
logic block
(CLB) is LUT-
based

64-3136 CLBs

1.6k – 85k gates
2k – 98k
(interchangeable
with logic)

64 – 448 IO pads

Dynamic
reconfiguration

Alison Carter page 6

07/11/01 16:42

Altera Apex-II
[Altera01A]

16640-89280 LEs

1.9M – 7M gates
416k - 1488k in
addition to logic

492 – 1440 IO
pads

Altera Mercury
[Altera01M]

4800-14400 LEs

120k – 350k gates
48k – 112k in
addition to logic

303 – 486 IO
pads

Altera FLEX
[Altera99]

Logic array
block (LAB) is
LUT-based
logic element
(LE), plus
embedded
system block
(ESB)

208 – 1296 LEs

2.5k – 16k gates
282 – 1500
simple registers

78 – 208 IO pads

Table 3-1: Commercially available FPGA chip families

3.3 Field Programmable Analog Arrays
Alongside the development of FPGAs for digital circuits, there has been parallel work on
reprogrammable analogue arrays (FPAAs). They can be based on various circuit elements, such
as amplifiers or analog integrators [Pierzchala94]. An example is commercially available from
Anadigm (reprogrammable from EEPROM) [ESE01]. They market a module with an on-board
microcontroller to reconfigure the FPAA dynamically in 0.1ms. There is nowhere near so large
a market for such devices as for digital FPGAs, and they are much smaller with less support
software.

3.4 Programming and Dynamic Reconfigurability
In order to program an FPGA, the memory elements defining the logic functions, memory
characteristics, connections and other parameters must be fill ed with appropriate data values.
This data is termed a “bitstream”, and may be loaded with the FPGA as an active or passive
participant [Salcic98]. In active mode, the FPGA loads its internal memory elements from an
external chip (ROM) which has been written in the required format. Passive programming
involves a microprocessor or microcontroller sending the bitstream as a serial or parallel input.
The programming procedure could be regarded as similar to downloading an executable program
to an embedded microcontroller’s internal memory, either from external ROM or from a host
processor.

FPGA’s can be once-only programmable, in which case the configuration is simply a fast design
technique. They may have persistent but erasable memory, so that they can be upgraded
occasionally, but still have basically a fixed design. If they have volatile (SRAM) memory, the
bitstream is loaded on power-up, and may (dependent on the architecture of the FPGA) be
altered dynamically while the chip is running. Time taken to program an FPGA varies according
to size and technology, but is of the order of a second.

Advances in dynamic reconfigurabili ty are mostly at the research stage. In 1995, the idea of
storing multiple versions of the look-up tables in an FPGA was patented by MIT [DeHon95].
The different versions, referred to as “contexts” are stored locally, and switched in response to a
simple instruction, this allowing the chip to switch quickly between several predefined functions
(as in the “Swiss Army knife” model described in 2.1.1 above). It is easy to take this approach
with more hardware, and taking more time, simply by storing several different bitstreams in
ROM and downloading as required.

Reconfiguring an FPGA requires large amounts of data transfer. [Jeong00] explores the use of
partial reconfiguration, by adjusting the cosynthesis algorithm to schedule tasks in hardware or
software taking account of known size and completion times. It has been simulated, but not
executed on real hardware. The work done at the University of Glasgow on defining and
implementing a run-time reconfiguration manager (RAGE) generalises the requirements for
managing an FPGA-based system [Burns97]. The Xili nx XC6200 [Bradley96] has been
particularly useful for exploration of dynamically reconfigurable systems, because of its partial

Alison Carter page 7

07/11/01 16:42

reconfiguration abili ties. However, it is unfortunately no longer available. The current XC4000
quotes dynamic reconfiguration as one of its features [Xili nx99].

3.5 Future Trends
At the hardware level, increases in numbers of gates and clocking speeds in FPGAs mirror those
in other sili con products [Rachko00], and this seems set to continue in the same manner. Figure
3-3 ill ustrates this growth with the speed and size of Intel processors over the past 30 years (data
taken from <Intel>. A direct comparison of clock speeds (say 1500 MHz for processors and
200MHz for FPGAs) and gate counts is meaningless due to the parallel nature of hardware
algorithms.

Figure 3-3: Development of Intel Processor Power

Of more interest are potential qualitative changes in FPGA functionality. Looking at United
States patents covering FPGAs <Delphion> shows that most development is commercial rather
than academic (72 of the 200 recent FPGA patents are from Xili nx), which suggests a mature
technology. Of particular relevance here are any developments concerning dynamic and/or
partial reconfiguration. Seven of the 200 recent FPGA patents address these directly For
example, [Hartmann00] suggests a pipelined logic structure where each stage of the pipeline may
be switched to a different (predefined) function by an intelli gent controller as required during
execution. The concept of “memory planes” within the FPGA can be used to provide more than
one (predefined) configuration which can be quickly swapped [Mohan00]. This type of
approach could allow for a “double-buffering” arrangement where one plane of memory was
updated whilst another was being used, all owing for dynamic updates to the circuit.

3.6 Summary
In this section, field programmable gate arrays have been presented at a hardware structural
level, where they can be categorised in terms of the models proposed in section 2.2 above as

 Intel Processor Growth

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1971 1973 1976 1979 1982 1984 1987 1990 1993 1995 1998 2001

Size (xistors)
Speed (kHz)

Alison Carter page 8

07/11/01 16:42

consisting of small, predefined or parameterisable blocks which can be rearranged by a central
external controller.

The technology is well established, and has a capabili ty for reconfiguration within a timescale
which could be called “dynamic” rather than just “occasional upgrade”. Development of
multiple memory planes and sectioned, partial reconfigurabili ty is apparent in the literature
although not in large-scale commercial use at present.

4 FPGA System Design
The view of an FPGA given in section 3 above is analogous to describing the registers and
instruction set of a microprocessor which, in practice, is usually programmed using a compiler
and predefined libraries. Similarly, a commercial FPGA is sold with design software and
prepared component blocks. This section describes the ways in which FPGAs are used, what it
means to reconfigure them, and the methods employed to implement systems on them.

4.1 Modes of use
The initial application for Gate Arrays, both foundry- and field-programmed, was in rapid
prototyping. Previously, the design cycle for application specific circuits involved manual
construction of a hardware prototype from discrete components, which was obviously error-
prone and not a good indicator of finished system timings. This is still an important aspect of
usage of FPGAs, but the emphasis is beginning to shift towards use in final products.

As an example, military systems need high reliabili ty and long-term stabili ty but rapid
development cycles to be ahead of competitors. The DoD RASSP project [Richards94] was
specifically looking to prototype signal processing systems for applications such as radar. A
similar current European project, Espadon, is now designing a methodology for the use of
commercial off-the-shelf (COTS) components, including the use of FPGAs in the deployed
systems [Madahar00].

The use of multiple FPGAs in realistic communication systems poses challenges of speed and
complexity. In a paper describing the construction of an IP packet forwarder using 19 FPGA
chips [Miyazaki99]. Miyazaki states that “FPGA-based emulators … cannot be applied to real-
time telecommunications data processing, which often requires at least 20MHz”. Advances in
technology have overtaken this, but the requirement of multimedia applications for ever more
bandwidth will always leave a gap between the capabili ties of custom hardware and that
achievable in reconfigurable systems. The question is whether development time from the
definition of a standard to the release of products will render custom design insufficiently
responsive to the market.

The reconfigurabili ty of FPGAs makes them ideal for field upgrades to systems. As described in
section 3.4 above, a new bitstream can be downloaded containing a new version of the circuitry.
This makes upgrading a circuit as simple as, say, loading a patch for an operating system. It can
be supplied on disk, or via the web. In fact there is growing interest in internet-enabled FPGA
chips allowing remote upgrades of the circuit design.

The next level of flexibili ty is dynamic reconfiguration: altering the configuration while the
system is operating (or at least with small, insignificant down-time). Just because the hardware
might be capable of this (as discussed in section 3.4) does not necessarily mean that support
software is available to recompute the configuration in the required time.

4.2 What is hardware, and why reconfigure it?
There are obvious advantages to a reconfigurable system, such as flexibili ty and ease of
modification or upgrade. This could be taken to refer to any programmable system. The word
“programmable” is used in many contexts: for instance, the programmable logic array (PLA) is

Alison Carter page 9

07/11/01 16:42

an unchanging hardware block, and an FPGA chip is “programmed” by its bitstream. It is
therefore useful to propose definitions of programmable software and reconfigurable hardware.

• A software system consists of an algorithm represented and executed as a set of
instructions. This usually takes place serially, or with limited, well-defined parallelism,
on a single or defined set of processors.

• Reconfigurable hardware consists of a set of interconnected components, each with a
(currently) defined function, usually operating with extensive parallelism. The algorithm
performed depends on the interconnections and the individual component functions.
Reconfiguration involves specifying new component functions and/or interconnections.

Characteristics of software implementations mean that they are comparatively easy to alter and
upgrade. For any system whose potentially reconfigurable parts could be programmed entirely
in software using existing processors, it would be difficult to find any reason for looking for
hardware implementations. To justify the use of hardware for any particular application, it must
be possible to say one or all of:

• It meets timing constraints that equivalent software does not

• It contains elements (e.g. analogue interfaces) that cannot be implemented in software

• It can be designed more easily, more reliably, and/or more quickly using reconfigurable
hardware

In order to justify using FPGA-type reconfigurable hardware, rather than standard chips or
specially designed ASICs, some of the following conditions must hold

• It meets power/size requirements that full hardware implementation does not

• It needs a flexibili ty of reconfiguration not available in a fixed hardware implementation

• It can be designed more easily, more reliably, and/or more quickly using reconfigurable
hardware

The use of general processors and the lack of parallelism makes software implementations less
efficient in terms of speed than hardware equivalents for some types of algorithm. [Pryan01]
describes the use of FPGA-based DSP solutions as a faster alternative to programming DSP
processors.

In a detailed analysis of the types of FPGA available, and the uses to which they can be put,
[Hauck98] gives the following types of application:

• Hardware logic emulation (faster than software simulation)

• Multimode hardware (switching between predefined functions, rather than implementing
several separate hardware blocks)

• Coprocessors

• Multi-FPGA implementations of specific algorithms (e.g. encryption)

• Trainable systems (e.g. neural networks)

However, he notes that “ it is not clear that any application has already been developed that can
drive wide-scale adoption of this technology” . Some interesting concepts are put forward, such
as the idea of “virtual hardware” by analogy with virtual memory, for multimode (switchable)
systems with sets of alternative hardware configurations ready for loading.

In real-time systems with specific time-response constraints, it may be necessary to implement
some programmable parts in hardware. If there is also a limitation on the size/power-
consumption (such as in hand-held devices), then hardware reconfiguration is an obvious
solution.

Hardware reconfiguration can also take the place of software emulation in the increasingly
important area of interoperabili ty in networked systems. It is already easy to get FPGA-

Alison Carter page 10

07/11/01 16:42

implementable simple processors <FPGA CPUs>, so the idea of completely reconfiguring a
processor to “ look like” something else is not far away.

Another reason for using reconfigurable hardware is where interfacing to external devices
requires reconfigurable analogue characteristics that cannot be anticipated in the original design.

4.3 Hardware-Software Codesign
Because of the differing advantages of hardware and software implementations, most systems
consist of a mixture of the two. Software, at the lowest level, consists of a sequence of
instructions, and obviously requires a processor to interpret and execute these, and memory in
which to store the program and the working data. In addition, some parts of the function may be
implemented directly in hardware, interacting with the software at appropriate points. The
system design then centres around portioning into which parts are to be implemented in software
and which in hardware.

A traditional design flow for codesign is shown in Figure 4-1 (adapted from [Douglass00])

 Requirements Analysis

Specification

HW/SW Partitioning

HW Description SW Description

HW Synthesis SW Generation

Interface Synthesis

Hardware Components

HW/SW Interface

Software Modules

Integration/Cosimulation

Integrated System

Figure 4-1: Traditional Hardware/Software Codesign Flow

This assumes that a hard partitioning choice is made early in the design process, after which the
two parts are implemented separately and subsequently integrated. Current design techniques
are moving towards independent system design and simulation, with later partitioning. The use
of dynamically reconfigurable hardware adds to the complexity of the codesign task.

• Hardware blocks communicating with the software may be reconfigured

• The hardware on which the software runs may be reconfigured

• The boundary between hardware and software may be moved dynamically

• The hardware design/implementation software becomes part of the finished product, not
just part of the design process.

Alison Carter page 11

07/11/01 16:42

4.4 Design methodologies currently employed for FP devices
FPGA hardware vendors provide software to enable designers to target systems to their
particular chips, and general CAD companies sell tools which can be used with different FPGA
hardware. The general procedure involved in implementing a circuit on a single FPGA is shown
in Figure 4-2. An example of a current FPGA design system is the Mentor Graphics FPGA
Advantage suite <Mentor> consisting of Renoir (block-level design and synthesis), ModelSim
(simulation) and LeonardoSpectrum (place and route).

Hardware design
(block diagram

and/or HDL)
Simulation Placement Routing Simulation Programming

Figure 4-2: FPGA Design Procedure

The designer has to model the system hardware using functional blocks, which may be taken
from a library or programmed in a hardware description language (VHDL or Verilog)
[Ashenden00]. The design is hierarchical, with the bottom level being elements that can be
implemented directly in the look-up tables of the FPGA (simple logic gates) or other basic
building blocks (e.g. memory elements). The placement and routing stages assign these blocks
to specific places in the array on the chip, designate the values to be programmed into the LUTs
to perform the required function, and route the necessary connections between them. This is
largely automated, but the placement stage in particular will usually benefit from manual
guidance from the designer.

It is no longer necessary, when using commercial FPGAs, to build the design right down to gate
level. There is a growing collection of commercially available IP (predesigned high-level blocks
whose value is the intellectual property involved in their design) including communications
peripherals (e.g. Ethernet controllers) and simple processors [Aycinena01] <FPGA CPUs>.
Table 4-1 shows examples of some of the IP cores currently commercially available (2001).
There are also freely available cores on the Internet <Free IP>.

Vendor IP Core Function

Mentor Inventra 10/100Mbps Ethernet Controller

Mentor Inventra M8052 Microcontroller

ARC Cores Bluetooth Controller

Eureka Technology 8086 Microprocessor

4i2i Streaming video CODEC

Table 4-1: Some Commercially Available FPGA IP cores

The design hardware is simulated in is original block/HDL form, and also after automatic
synthesis into lower-level hardware blocks. These blocks are initially vendor-independent, so
that the design, and any library and IP blocks used, are not specific to a particular FPGA chip.

At the final place-and-route stage, the user selects a particular FPGA chip on which to
implement the design. An estimated gate-count, together with the known number of
interconnections required, can be used to guide the selection. The tool would normally be
installed with a family of target chips from a particular vendor. Certain IP blocks may be
optimised for specific target families, but generally any design may be targeted to any large
enough chip. Resimulation, taking into account the physical layout, can check that timing and
power constraints are still met, and if not the placement and routing can be repeated with
different user-defined guidance parameters.

All of this is currently focussed on quick time-to-market and design re-use for one-time
programmed (or possibly later upgradeable) single-chip devices.

Alison Carter page 12

07/11/01 16:42

4.5 Implications for dynamically reconfigurable systems
There are two problems with this design process: the size and complexity of realistic systems,
and the time and manual input needed for the implementation.

Many current studies of reconfigurable hardware look at single-chip FPGA systems. Whilst
useful as insights into the technology and its applications, the real challenge is in the
reconfiguration of large, complex systems. These may incorporate fixed processors, and several
(may be different types) of FPGA. Several projects have used large arrays of FPGAs to
implement massively parallel algorithms [Hauck98]. In any such architecture, reconfiguration of
the FPGA must either be carried out within a tight specification so that it does not affect the rest
of the system, or other parts (e.g. software) must be altered accordingly.

Reconfiguration of an FPGA using a standard design system would necessitate running several
design – synthesise – layout cycles in advance to have different implementations ready to load.
That is, switchable configurations (“multimode” hardware) can be implemented, and the
bitstreams stored ready to load as required. Switching time depends on the speed with which the
hardware can be configured. There are ways in which this can be improved on. If partial
reconfiguration is possible, the hardware for the different modes can be designed with minimal
differences, so that partial reconfiguration can take advantage of smaller changes [Heron99].
Suppose, for example, a system on a single FPGA chip consisted of a microprocessor core with
variable logic alongside it. It would obviously be a waste of time to run the whole chip layout
cycle again if the microprocessor itself did not change: it should be possible to mark parts of the
array as “ in use”, and replace other parts with a new design. In a system using the “virtual
hardware” approach, similar to context switching of software processes, [Levinson00] points out
that the information stored in memory in an FPGA can be split into permanent and transient.
The “permanent” information defines the configuration, whereas the “transient” is the current
contents of any registers at present time. In any state-change that maintains the hardware
configuration, only the registers need to be reloaded.

For truly dynamic reconfigurabili ty, either the hardware design cycle needs to be dramatically
shortened in time, or there must be intrinsic reuse of parts of the implementation (not just the
design, but the physical positioning on the FPGA). The former may be possible if the hardware
is designed automatically, under program control, rather than with manual guidance. The latter
is more implementation-dependent.

4.6 Summary
Most of the time spent in implementing hardware on an FPGA is in the design and layout, rather
than the programming, so this stage needs to be made as efficient as possible if dynamic
reconfiguration is required. The reuse of predesigned blocks (analogous to software class
libraries) is already speeding up design. Taking into account this higher-level view of the design
process, reconfigurabili ty scenarios can be modelled as shown in Table 4-2.

↓↓↓↓Control Blocks→→→→ Predefined Parameterisable Intelligent
Central external Multimode hardware Virtual hardware

with context
switching

Hardware emulation
of different
processors

Central internal Multimode hardware
including on-board
switching

Trainable hardware
(e.g. neural network)

Soft processor
modifying its own
parameters

Distributed Self-modifying
hardware e.g.
majority decisions
for fault tolerance

Multiple small
reconfigurable
processors

Alison Carter page 13

07/11/01 16:42

Table 4-2: Model for FPGA System Reconfigurability

The following types of reconfiguration scenarios could be envisaged:
• Software runs on a fixed processor, controlli ng predefined updates to the hardware
• Software on a fixed processor redesigns and reconfigures hardware

• Hardware is autonomously self-modifying

• Software runs on a reconfigurable processor (either multimode or dynamically
redesigned)

5 Scheduling Real-Time Systems
“ If something anticipated arrives too late it finds us numb, wrung out from waiting, and we feel - nothing at
all . The best things arrive on time.” [Dorothy Gilman, A New Kind of Country, 1978]

In real-time systems, the timing of interaction with the environment is part of the specification
[Burns96]. If reconfigurable hardware is to be included in real-time systems, any timing analysis
must take into account possible different hardware configurations, and the time taken to switch
between them. This section looks at methods for ensuring timing requirements are met in the
scheduling of software and hardware operations, and how these might be affected by
reconfigurabili ty.

5.1 Worst-Case Execution Times in Software
The primary requirement of a real-time system is that the timing of its outputs should be
predictable, either individually or statistically depending on the application. This predictabili ty
becomes more difficult to achieve the more complex the application. Inputs may be periodic
(with a regular arrival frequency), sporadic (with at least a known minimum inter-arrival time) or
entirely random.

In order to design a software system that will meet timing requirements, it is necessary to predict
how long tasks will take to execute. At least, the worst case execution time (WCET), which is
an upper bound on the time taken, is needed as it usually does not matter if a task completes
early. The WCET needs to be tight (not too much of an over-estimate), but also safe (never
exceeded) in order to be useful [Engblom00]. The calculation (or estimation) of WCET involves
both high-level (source code) and low-level (microcode) analysis, and tends to be highly specific
to a particular compiler and architecture [Bernat00]. This would be a big problem for
reconfigurable systems, as the architecture might be liable to change.

The high-level analysis consists of looking at how paths through the code are followed, such as
how many times a loop may execute, when different conditions exist for if-then-else branches,
and where functions are called. This information is usually not entirely available by static
analysis, and has to be augmented by programmer annotation [Li95] where value ranges of
variables cannot be inferred from the code. For simple tasks, it may be possible to analyse all
possible paths through the code, but this can easily become infeasible for larger programs. The
problem can alternatively be expressed as a collection of constraints, and solved analyticall y.

Low-level analysis means working out how long machine-code instructions take to execute. The
straightforward clock-periods per instruction cycle calculation can be affected by pipelining,
instruction caching and data caching. As processors become more complex, with more
“speeding up” mechanisms, the exact calculations of the time taken to execute any one
instruction becomes more context-dependent and diff icult to determine.

5.2 Scheduling tasks on a single fixed processor
Before looking at the complexities of scheduling tasks on reconfigurable processors, it is
necessary to understand methods used to do this a traditional processor. Real-time applications
generally require more than one task to be executed, and each has its own constraints to be met.
In order to share the processor time between them, the following are needed:

Alison Carter page 14

07/11/01 16:42

A mechanism for starting the next task running. This can be as simple as a procedure call (cyclic
executive) or interrupt service routine, but will more usually be a queue of processes, with saved
states. The process at the head of the queue can be loaded for execution at regular intervals
(round robin), immediately (preemptive) or when the current task completes (non-preemptive).

A method for allocating priorities (unless all processes are considered equal). This decides
which processes get to the front of the queue and therefore get more immediate servicing. The
priorities may be statically or dynamically assigned.

Metrics (such as WCET) to allow priorities to be calculated, and so that an analysis of the
feasibili ty of the schedule can be made. Along with metrics for the processes themselves, the
constraints and scheduling goals need to be expressed mathematically (e.g. is it minimum time,
or minimum lateness that is important).

In addition, each scheduling method makes assumptions about the characteristics of the
processes for which it is designed (e.g. periodicity).

5.2.1 Cyclic executive:

If the inputs to a system are known to be periodic at multiples of a basic period T, and
1

N

k
k

C T
=

<∑

(where Ck is the WCET of process k associated with a particular periodic input), a non-
preemptive cyclic executive scheme can be calculated in advance [Burns96],([Liu00] calls this a
“clock driven” system). There is no need for saving process states and context switching: tasks
can be called as procedures and each runs to completion. Given simple enough input timing,
such a statically defined schedule could be used for a reconfigurable system in the case of
multimode hardware, where different executives could be defined for each pre-defined
configuration. The actual reconfiguration procedures could be considered as additional tasks to
be included in the schedule.

5.2.2 Round Robin

This is an algorithm in which all eligible processes are given time in turn, then preempted at the
end of a time-slice (or quantum) if they are still running. Processes are put to the back of the
queue when they complete, in an effort to give fair share to all. It is possible to introduce a
weighting factor, to give extra quanta to some “more important” processes [Liu00]. The method
has the advantage of simplicity, and is used in operating systems such as POSIX, but does not
cope well with sporadic processes, or processes with precedence constraints.

The use of a round robin scheduler could be imagined for switching between different
configurations in a dynamic system. Here, the task switching also involves setting up a new
configuration. The reconfiguration could not be seen as extra tasks in this case, as each has to
complete, and be done in a specific order in relation to processes. The time-slice length will
affect the overall efficiency of the system, because of the overhead involved in task switching,
which could now become much larger. For example, if the time-slice is set at 10ms, and the
switching takes 1ms, there is a 10% overhead added to execution time, whereas if the time-slice
is increased to 50ms, there is only a 2% overhead. However, as the time-slice gets longer there
will be more occasions when a process cannot use its whole slice, and an extra switchover is

needed or time is wasted. Every process i will complete in a time less than iC
qN

q s

 
 − 

, where q

is the time quantum, N is the number of processes, and s is the context switching time.

Alison Carter page 15

07/11/01 16:42

5.2.3 Priority-Driven Scheduling

Where ready processes are taken from the queue according to priority, the allocation of these
priorities becomes the main issue.

Rate Monotonic [Liu73]: Rate-monotonic scheduling is particularly designed for the
servicing of periodic events, as found in real-time systems with synchronous inputs. The RMS
scheduling algorithm simply gives highest priority to the task with the shortest period, and
allows higher priority tasks to preempt. It will effectively schedule N processes if the sum of the

utili sations
i

i

T

C
 of all the processes is less than 


 −12

1
NN . This levels out around 70% (limit =

ln2 ≈ 0.6931) as process numbers increase, as shown in Figure 5-1

0 5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processes

U
til

is
at

io
n

bo
un

d

Figure 5-1: Utili sation bound for guaranteed rate monotonic scheduling

Although a set of processes with given timing constraints may be schedulable by this method,
the response time (from input, causing the queuing of a process, to output, assumed to be
completion of a process) is dependent on the completion of higher priority processes.

Deadline: If a real-time process is invoked to capture input in an embedded system, the
important factor in scheduling is actually meeting a deadline, rather than taking a particular
amount of time. There are therefore scheduling algorithms that assign priorities according to
deadlines by which a task must start or complete. If the task with the earliest finishing deadline
is given highest priority, there is no need to have periodic tasks. This is called “deadline driven”
[Liu73], “deadline monotonic” [Burns96] or “Earliest Deadline First” (EDF) [Liu00]. It can be
scheduled if for a given set of processes if any other method can ([Liu73] for periodic processes,
[Liu00] more generally). It is also possible to consider starting deadlines (release times), rather
than finishing deadlines for processes, and to extend the analysis to allow for release jitter
[Audsley95].

Critical Sections: Interaction between processes, either in terms of competition for resources
or temporal sequencing, means that simple priority assignments by period or deadline can lead to
priority inversion and deadlocks [Audsley95]. To overcome this, processes can be made to
inherit priorities dynamically from those they are blocking. This is insufficient to avoid possible
long chains of processes blocking each other, so further action can be taken to assign priorities
according to use of resources. This can be done by assigning priority ceili ngs and only
allowing processes whose priorities are higher than this to enter a critical section that uses this
resource [Burns96].

Varying priority with resources: An example of dynamic priority assignment in a changing
system that might be relevant to reconfigurabili ty is given in [Ma00]. Here the problem of
energy efficient scheduling for mobile applications is addressed by assigning tasks two different

Alison Carter page 16

07/11/01 16:42

types of priority. One represents the importance of the task (PI = 0 for unimportant, 1 for vital),
and the other represents its energy consumption (PE = 0 for using all the energy, 1 for using
none). The overall task priority is then assigned according to a formula which can be simplified
as

() () () ()()tErPtEPrtP IE −+−= 11

where E(t) represents the ratio of residual energy at time t to the total energy budget, and r is an
adjustable parameter to give more or less weight to the energy-saving aspect of the algorithm.
As energy is used up, E(t) decreases and the priority is driven more by the importance of the
task, as shown in Figure 5-2. Here, the residual energy is assumed to be decreasing linearly with
time. When there is plenty of energy, paradoxically more emphasis is given to the energy
consumption aspect. The overall task priority determines the period of operation in an example
application of a portable GPS wayfinder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5
Energy efficient (Pe=0.8), increasing Pi

time

P
rio

rit
y

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5
Important (Pi=0.8), increasing Pe

time

P
rio

rit
y

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

time

P
rio

rit
y

Energy inefficient (Pe=0.2), increasing Pi

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

time

P
rio

rit
y

Unimportant (Pi=0.2), increasing Pe

Figure 5-2: Priorities (with r = 0.5) over time using Ma’s formula

This is an example of a schedule having a metric (power remaining) and a goal (avoiding
running out of power) which dynamically alters the behaviour.

Value-Based Systems: An approach to allocating scarce resources when scheduling has
been developed under the category of value-based methods [Burns98]. These methods assume
that resources are limited, and will at some stage become insufficient to allow all processes to
meet their specified criteria (deadlines). It is then necessary to decide which should be neglected
and which must be scheduled, so that the system can cope with a temporary period of overload.
The value is a metric attached to a process, or group of processes, which may vary according to
time and context. It is used to decide which processes are admitted to (or excluded from) the run
queue when resources are limited. This mechanism is in addition to any priority assignment
acting within the queue.

Heterogeneous Systems: Many analyses of scheduling algorithms assume a homogeneous
set of task characteristics, whereas in reality there will probably be a mixture of periodic and
aperiodic, real-time and non-critical, those with known WCET or deadlines and those without.
[Liu73] suggests that a combination of Rate Monotonic and Deadline Driven priority assignment

Alison Carter page 17

07/11/01 16:42

can be very effective. Even in areas such as DSP programming, which is characterised by
simple periodic inputs and outputs, there is an emerging trend towards the need for more
sophisticated scheduling [Dubin01]. It is likely that in dynamically reconfigurable systems,
scheduling will need to use a combination of algorithms at different times and in different
circumstances.

5.2.4 Multiprocessor Scheduling

If there is more than one processor available, or if some of the operation can be carried out in
hardware, then the scheduling becomes more complex and issues of synchronisation must be
addressed. [Stalli ngs98] categorises multiprocessor implementations according to their
granularity (assuming each application contains many tasks) as

• Independent, which is really multiple applications rather than parallelism in a single
application.

• Coarse, where individual processors perform tasks that could be run on a single, multi-
tasking system, but all at once rather than switching between them.

• Medium, where strongly interacting process threads of a single application are scheduled
to run on several processors.

• Fine, where a single instruction stream contains parallelism that can be distributed over
several processors, such as in an occam Transputer environment.

The issues of static versus dynamic scheduling still apply. It is still common for the programmer
to have to specify the allocation to multiple processors, rather than any automatic allocation.
Methods of automatic scheduling can take into account not only the timing of processes, but also
the communication / synchronisation between them, so that communicating processes run
simultaneously.

Of course, there is no reason to assume homogeneity of processors. At one extreme, all
processors are interchangeable, and at the other each is dedicated to a particular task.

5.3 Real-time characteristics of hardware systems
Hardware systems are intrinsically parallel, and their timing characteristics have traditionally
been modelled in a different manner from software systems. There is still the concept of a
“worst-case execution time”, but the factors that can affect the timing are not all the same as for
software:

• The same low-level hardware block can take different times to execute, depending on the
loading (fan-out), so at different places in the circuit, similar blocks have different delays.

• The time taken by a hardware block to complete processing may depend on its inputs (for
example, a multiplier may take different times for different data)

• The requirement to synchronise the arrival of data from several different sources means
that the WCET of a hardware block depends on the slowest path through it.

5.3.1 Datapath model of synchronous systems

As an example of timing analysis of hardware systems, the lossless discrete integrator (LDI)
filter described in [Rouse94] and shown in Figure 5-3 is a synchronous signal processing
structure with several parallel branches. The input is a periodic data stream which is input at a
specified frequency, and an output is calculated at the same frequency, but after some delay.
Delay (memory) elements are clocked at the input frequency, so their output represents a
previous data value. The other components are fixed point adders and multipliers (each
multiplying by a different, constant coefficient), and have an inherent delay which is to some
extent data-dependent. The delay also depends on topology, technology and physical layout.

Alison Carter page 18

07/11/01 16:42

Simulation packages typically use very conservative delay estimates, but these can be back-
annotated more accurately from a physical implementation.

 xk

 yk

Figure 5-3: LDI Filter

The correct timing operation can be confirmed by ascribing a worst-case execution time to each
component, and identifying the critical path from one delay element to the next (the path with
the longest time). This can be done using signal flow graph techniques. For example, given the
times adder = 1, multiplier = 2, there are two, equal critical paths of 14, as shown in Figure 5-4.

 xk

 yk

Figure 5-4: Critical Paths

Hardware systems do not generally have all their memory elements (registers) clocked at the
same rate like this one. In this case, a controller, in the form of a finite state machine, is
responsible for enabling capture of data at each register at the appropriate times. This makes the
design of the controller similar to designing a scheduler for a multiprocessor software system (it
fact, it can be considered a multiprocessor system where each processor has one dedicated task,
as described in 5.2.4 above). There is, however, the added high-level design decision about how
many hardware components are needed. For example, if an algorithm requires two independent
additions, this could be done with a single adder, the first result being stored in a register while
the second is calculated. Alternatively, if speed is important, two separate adders could be used.

With more complex synchronous systems, the techniques above apply, but at a block level,
rather than individual components. There is still a static analysis of paths through the system,
based on WCETs of the blocks, and synchronisation occurring when data is captured in memory.

5.3.2 Self-timed systems

A self-timed system is a hardware system with the equivalent of dynamic scheduling. That is,
elements of the system have a method of signalli ng that they have completed, and are inhibited
from continuing until all their inputs are ready. This is done at logic gate level, enabling micro-
pipelines to be established, with components running at their actual speed rather than using
worst-case estimates . Methods used in self-timed logic are reviewed here, as their dynamic
nature and distributed control of timing may find parallels in the scheduling of reconfigurable
systems [Grass97].

Alison Carter page 19

07/11/01 16:42

One method used is the introduction of a space token between bits. Instead of data items of just
0 and 1, there are three values (0, 1 and space). This may be implemented by using three
different voltage levels, or using two wires for each signal. A transition from space to 0 or 1
signals that a calculation is complete. Conversely, the presence of a space on an input inhibits
further processing. Although this method allows for effective self-timed operation, it introduces
overheads on the time (and on the hardware and power consumption).

Another method is to introduce auxili ary circuitry to generate a ready signal when the
calculation is complete, which is fed into the start control of the next function(s) in line. This
assumes that the delay is data-dependent, so the auxili ary circuit uses the input data, and possibly
extra information from the logic block, to calculate and implement an appropriate delay.

A third method involves somehow detecting activity in the logic block. Depending on the
technology, this might involve measuring currents, or looking for internal voltage level changes.
In any case, the assumption is that the circuitry is normally quiescent, and there is some way of
telli ng when nothing is taking place inside it.

5.4 Real-time reconfigurable systems
The problem of scheduling in real-time reconfigurable systems depends on the type of
reconfiguration being undertaken. [Levinson00] looks at the problems associated with stopping
and restarting processes that are running in hardware on FPGAs in order to implement
preemptive scheduling. Instead of the handful of registers and required to specify the state of a
software process (in addition to its memory contents), the hardware process may have a large
number of internal registers. In this example, the (changing) register contents are disentangled
from the (semipermanent) parts of the FPGA definition bitstream representing the hardware
layout, requiring the abili ty to read back the configuration of the FPGA.

5.5 Summary
The scheduling of real-time applications often assumes a simple model of processes (e.g.
independent and periodic). For implementation on dynamically reconfigurable hardware, the
issue of scheduling reconfiguration (a relatively slow operation), and the necessity for the right
hardware to be in place for particular processes, adds to the complexity. Taking the
reconfiguration scenarios mentioned in section 4.6 above, different scheduling methods would be
appropriate

Multimode hardware:
Standard software scheduling techniques within each mode, plus global scheduling of
switchover between modes taking account of precedence of operations

Virtual hardware with context switching
Standard software scheduling techniques with modification to take account of long
switching times

Hardware emulation of different processors
Standard software scheduling techniques appropriate to each processor

Trainable or Self-modifying hardware
Self-timed or hardware controller, plus software scheduling making allowance for
reconfiguration times

Soft processor modifying its own parameters
Extension to software scheduling with dynamic adjustment to suit processor changes
(value based techniques could be useful here)

Multiple small reconfigurable processors
Extension to multiprocessor scheduling techniques to allow for reconfigurabili ty.

Alison Carter page 20

07/11/01 16:42

6 Real-Time Communications Applications
This section looks at the applications in the real-time communications field that might benefit
from the use of dynamically reconfigurable hardware. The aspects that are particularly relevant
are

• interoperabilit y of different standards

• multi function in a single device or system (adaptation to application or data)

• adaptation to environment

6.1 Software Radio
The concept of software-defined radio has conflicting definitions, but a detailed discussion in
[Pereira00] is summed up as

“we envision Re-configuring on demand not only the terminal but also the serving network(s) and the
services they provide ….Upon this open framework, we envision truly ‘platform’-independent applications,
no longer exclusively developed by or for operators, capable of adjusting themselves to the serving network
capabiliti es … and the terminal characteristics, negotiating with the network to obtain the best possible
service taking into account the user profile.”

The basic premise is that everything is reconfigurable. This ranges from the protocols at all
levels (e.g. using GSM or UMTS), through network management (e.g. reconfiguring a network
to cope with different loading profiles), to applications (e.g. an application that normally
provides streaming video switching to still monochrome images if the quality of service is
insufficient). The general message is that nothing is predefined.

Much of this is, as in its name, software defined. However, there are elements of such a system
that are ideally suited to reconfigurable hardware. This is particularly the case for mobile
handsets, where small size and low power consumption are important.

The CAST project (Configurable Radio with Advanced Software Technology) [Madani00] aims
to demonstrate an architecture for intelli gent reconfiguration of the physical layer in wireless
communication networks. This covers interoperabili ty between GSM and UMTS in the bottom
level of a communications system, together with adaptation to prevaili ng conditions and user
requirements. The hardware configuration proposed for a demonstrator consists of a board with
four Xili nx XCV600 FPGAs, with controller and memory, plus a programmable DSP processor
board, and reconfigurable analogue components. This gives a mixture of hardware and software
reconfiguration.

The economic necessity for rapid time-to-market in an environment of complex, evolving
standards is one of the reasons for the interest in reconfigurabili ty in this area [Dick00]. There
are also constraints on the size and power consumption of mobile equipment, together with
enormous versatili ty requirements in terms of applications, loading and physical environments.

6.2 Adaptive Signal Processing
A common DSP task is the creation of a filter which can adapt according to conditions. For
example, the removal of cockpit noise in an aircraft pilot’s voice communications equipment
needs to adapts as that noise varies. This is a smaller, and better defined task than that described
in 6.1 above. In general, it will i nvolve recalculating the coefficients in the numerical
implementation of a digital filter, which is implemented in software on a DSP processor.
However, given a hardware implementation of such a filter, it could be necessary to reconfigure
that hardware to give optimum performance with the new coefficients. [Dempster95] describes
an algorithm for minimising the number and complexity of adder blocks in a given filter
implementation. The architecture is entirely dependent on the actual coefficient values, as it
searches for common “power of 2” shifts in the set of numbers to maximise the sharing of
calculation. It would therefore need to be reconfigured in order to alter the filter in any way.
The viabili ty of this idea for adaptive filtering depends on the time taken to recalculate the

Alison Carter page 21

07/11/01 16:42

architecture and reconfigure the hardware, and the frequency of the required reconfiguration,
compared with the speed/efficiency advantage gained by using a hardware implementation. It is
suggested in [Courtney00] that a more regular, less efficient multiplier architecture gives better
reconfiguration performance that one specifically tailored to the coefficient structure.

20002000 20012001 20022002 20032003 20042004 20052005
00

0.50.5

11

1.51.5

22

2.52.5

33
x 10x 10

1212 Predicted growth in Multiply-Accumulates per secondPredicted growth in Multiply-Accumulates per second

M
A

C
s

pe
r

se
co

nd
M

A
C

s
pe

r
se

co
nd

YearYear
Figure 6-1: Predicted Growth in DSP Throughput [Pryan01]

An adaptive approach to system identification (such as might be used to characterise the channel
in a communications application) is described in [Pasquato99]. This tries to match a given
(noisy) system response with an IIR (Infinite Impulse Response) filter, having first arrived at a
rough estimate using an FIR (Finite Impulse Response) structure. Such a system could
theoretically be implemented by reconfiguring hardware from an FIR to an IIR, with or without
hardwired coefficients in the circuitry. A suitable scenario could involve different hardware
configurations in sequence:

• General FIR with adaptable coefficients (in registers)

• Mapping of FIR to IIR

• General IIR with adaptable coefficients (in registers)

• Calculation of structure of efficient, fixed coefficient IIR

• Fixed coefficient IIR

6.3 Reconfigurable Protocols
With the rapid growth in bandwidth of communication systems, the type of application and
content is set to change unpredictably in the future. In a presentation of the idea of dynamic
protocol architectures [Crane98], it is asserted that “no fixed set of protocols can satisfy the
needs of all future applications” . Whilst it is obvious that no set of currently defined protocols
will be suitable for all future unknown demands, the more useful interpretation given is that
architectures should be designed in which an interpreter can demand-load protocols from a
library. This can then be updated as required, and allows communications programs access to
dynamically loadable, and parameterisable, protocols, which can be used to maintain the quality
of service required by an application.

The use of reconfigurable hardware for adaptable protocols is already being explored by the
PRO3 project <PRO3>. This aims to design a protocol processor for both data and
telecommunications applications, which includes reconfigurable hardware. This will handle
low-level protocol functions, while the higher layers are dealt with by a processor core included
on the chip.

In the area of ad-hoc (peer-to-peer) networking, distributed intelli gence in the communicating
devices sets up and controls the protocols, including the routing [Haas99]. Here we are dealing

Alison Carter page 22

07/11/01 16:42

with mobile devices, so they must be small, with low power consumption, and there is the
inherent reconfigurabili ty of a network which routing nodes can join and leave as they wish. As
with other communications applications, there will be a quality of service to maintain, consistent
with the application, which may include real-time components.

7 Summary
Current FPGA systems allow fast, cheap implementation of systems, with the facili ty for
upgrades in the field. Some small amount of dynamic reconfigurabili ty exists currently, but
without real support for commercial exploitation. The length of the design process required for
an unpredicted change precludes dynamic, on-demand alteration of systems, but multimode
systems (loading predefined alternatives as required) are certainly feasible. One possible field of
further research is methods of redesigning hardware which minimises the layout change
required, and therefore might allow reconfiguration in real time.

Even with multimode hardware, the implications of reconfigurabili ty for scheduling real-time
systems are that extra delays are introduced while the system reconfigures. The improvement in
quality of service afforded by the reconfiguration must be worthwhile. Standard scheduling
algorithms would need to be adapted to take into account this extra factor.

It is obvious that adaptable systems are needed in many applications, but this abili ty to change
could usually come from altering software, rather than reconfiguring the hardware. Applications
which need to be fast and low power, have high intrinsic parallelism, or for other reasons must
be implemented in hardware, are possible candidates for this technique. For multimode
hardware, replication is an alternative to reconfiguration if there are no size or cost constraints.
Those applications investigated include software radio, adaptive signal processing and
reconfigurable protocols. All of these might be used in a hand-held device which must be small
and low power, as well as needing high speed.

8 References
[Altera99] Altera Corp., FLEX 8000 Programmable Logic Device Family, Data Sheet

v10.01, 1999

[Altera01A] Altera Corp., Apex II Programmable Logic Device Family, Data Sheet v1.1,
2001

[Altera01M] Altera Corp., Mercury Programmable Logic Device Family, Data Sheet v1.1,
2001

[Ashenden00] Ashenden, P., A Designer’s Guide to VHDL, Morgan Kaufmann, 2001 ISBN:
1-55-860674-2

[Audsley95] Audsley, N.C. et al, Fixed Priority Pre-emptive Scheduling: An Historical
Perspective, Real-Time Systems, March 1995

[Aycinena01] Aycinena, P, Focus Report: PLD Tools, Integrated System Design, September
2001

[Bernat00] Bernat, G., Burns, A. and Wellings, A. Portable Worst-Case Execution Time
Analysis Using Java Byte Code, 6th International EUROMICRO Conference
on Real-Time Systems , 2000

[Boole1854] Boole, G., An investigation into the laws of thought, on which are founded the
mathematical theories of logic and probability, Macmillan, 1854 (republished
Dover, 1958, ISBN 0-486-60028-9)

[Bradley96] Bradley, K F, and Watson, J, Reconfigurable Processing with Field
Programmable Gate Arrays, ASAP 1996

Alison Carter page 23

07/11/01 16:42

[Burns96] Burns, A. and Welli ngs A., Real-Time Systems and Programming Languages,
Addison-Wesley, 2nd Edition. 1996

[Burns98] Burns, A. Prasad, D., Bondavalli , A., di Giandomenico, F. et al, The Meaning
and Role of Value in Scheduling Real-Time Systems, Journal of Systems
Architecture, 1998

[Burns97] Burns, J., Donlin, A., Hogg, J., Singh, S. and de Wit, M, A Dynamic
Reconfiguration Run-Time System, IEEE Symposium on Field-Programmable
Custom Computing Machines, 1997

[Courtney00] Courtney, T., Turner, R., and Woods, R, An Investigation of Reconfigurable
Multipliers for use in Adaptive Signal Processing, IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000

[Crane98] Crane, J. S., Pryce, N. G. and Magee, J. N., A Dynamic Protocol Architecture
for Multimedia Communications, Technical Report, City University, 1998

[DeHon95] DeHon, A, Dynamically Programmable Gate Array With Multiple Contexts,
US Patent 5742180, 1995

[Dempster95] Dempster, A G and Macleod, M D Use of minimum-adder multiplier blocks in
FIR digital filters, IEEE Trans Circuits and Systems II , vol 42, no 9, September
1995

[Dettmer90] Dettmer, R., User-programmable logic: chasing the gate array, IEE Review,
Vol 36 No 5, 1990

[Dick00] Dick, C., harris, f., and Rice, M. Synchronisation in Software Radios – Carr ier
and Timing Recovery Using FPGAds, IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000

[Douglass00] Douglass, B.P., Doing Hard Time, Addison Wesley Longman, 2000, ISBN
0201489375

[Dubin01] Dubin, J. Rapid Prototyping of Real-time DSP Software Using DSP/BIOS
Kernel, Embedded Systems Show, 2001

[Engblom00] Engblom, J. and Ermedahl, A., Modeling Complex Flows for Worst-Case
Execution Time Analysys, IEEE Real-Time Systems Symposium, 2000

[ESE01] Embedded Systems Engineering, vol. 9 no1 Dec/Jan 2001

[Grass97] Grass, E., V. A. Bartlett and I. Kale, Completion-detection techniques for
asynchronous circuits, IEICE Transactions on Information & Systems, vol.
E80-D, no. 3, 1997.

[Haas99] Haas, Z.J. et al, Guest editorial: wireless ad hoc networks, IEEE Journal on
Selected Areas in Communications, Volume: 17 Issue: 8, Aug. 1999

[Hartmann00] Hartmann, A C, Dynamically Reconfigurable Logic Networks Interconnected
by Fall -through FIFOs for Flexible Pipeline Processing in a System-on-a-
Chip, US Patent 6096091, Aug 2000

[Hauck98] Hauck, S, The Roles of FPGAs in Reprogrammable Systems, The Proceedings
of the IEEE, Vol 86 #4, April 1998

[Heron99] Heron, J-P and Woods, R.F., Accelerating Run-Time Reconfiguration on
FCCMs, IEE Symposium on Field-Programmable Custom Computing
Machinery, 1999

[Jeong00] Jeong, B, S. Yoo, S.Lee and K. Choi, Hardware-Software Cosynthesis for Run-
time Incrementally Reconfigurable FPGAs, Asia-South Pacific Design
Automation Conference, 2000

Alison Carter page 24

07/11/01 16:42

[Kirk84] Kirk, I. H., Developing Gate Array Software, Sili con Design Vol 1, No. 8,
1984.

[Krupnova00] Krupnova, H., and G. Saucier, FPGA Technology Snapshot: Current Devices
and Design Tools, Proc. 11th International Workshop on Rapid System
Prototyping, 2000

[Li95] Li, Y-T., Malik, S. and Wolfe, A., Efficient Microarchitecture Modeling and
Path Analysis for Real-Time Software, IEEE Real-Time Systems Symposium,
1995

[Liu00] Liu, Jane W. S., Real-Time Systems, Prentice Hall, 2000

[Liu73] Liu, C. and Layland, J., Scheduling Algorithms for Multiprogramming in Hard
Real Time Environment, Journal of the ACM, 1973

[Levinson00] Levinson, L, Männer, R., Sessler, M., Simmler, H., Preemptive Multitasking on
FPGAs, IEEE Symposium on Field-Programmable Custom Computing
Machines, 2000

[Ma00] Ma, T. C-L and Shin, K. G., A User-Customisable Energy-Adaptive Combined
Static/Dynamic Scheduler for Mobile Applications, IEEE Real-Time Systems
Symposium, 2000

[Madahar00] Madahar, B, Environment For Signal Processing Application Development and
PrOtotypiNg (ESPADON), NATO Symposium on Commercial Off-The-Shelf
Products in Defence Applications, Brussels, 2000

[Madani00] Madani, K., Configurable radio with Advanced Software Technology (CAST) –
Initial Concepts, IST Mobile Summit, 2000.

[Miyazaki99] Miyazaki, T., Murooka T., Katayama M. and Takahara A., Transmutable
Telecom System and Its Application, IEEE Symposium on Field-Programmable
Custom Computing Machines, 1999

[Mohan00] Mohan, S. and Trimberger, S.M., Method for Configuring FPGA memory
planes for virtual hardware computation, US Patent no 6047115, April 2000

[Moreno98] Moreno, J.M., Madrenas, J., Faura J., Cantó E., Cabestany J. and Insenser J.M.,
Feasible Evolutionary and Self-Repairing Hardware by Measurement of the
Dynamic Reconfiguration Capabiliti es of the FIPSOC Devices, Springer
Verlag Lecture Notes in Computer Science, 1998

[Ortega97] Ortega, C. and Tyrrell, A., Biologically Inspired Reconfigurable Hardware for
Dependable Applications, IEE Colloquium on Hardware Systems for
Dependable Applications, 1997

[Pasquato99] Pasquato, L. and Kale, I., System Identification via Hybrid FIR-IIR Adaptive
Filtering, IEEE Instrumentation and Measurement Technology Conference,
1999

[Pereira00] Pereira, J.M., Re-Defining Software (Defined) Radio: Re-Configurable Radio
Systems and Networks, IEICE Transactions on Communications, Vol E83-B
No 6, June 2000

[Pierzchala94] Pierzchala, E., Perkowski, M, High Speed Field Programmable Analog Array
Architecture Design, FPGA 1994

[Pryan01] Pryan, D, Xili nx Xtreme DSP Initiative, Embedded Systems Show, 2001

[Rachko00] Rachko, V., Bridging the FPGA Design Gap, Electronic Component News,
September 2000

Alison Carter page 25

07/11/01 16:42

[Richards94] Richards, M. A., The Rapid Prototyping of Application Specific Signal
Processors (RASSP) program: overview and status, IEEE International
Workshop on Rapid System Prototyping, 1994

[Read85] Read, J W, Gate Arrays: Design and Applications, 1985, ISBN 0-00-383012-5

[Rouse94] Rouse, C.J. and Carter A.J., Exploring Delay/Area Trade-Offs of an LDI Filter
using a Natural Based Algorithm, Proc. Int. Symposium on Circuits and
Systems, June 1994.

[Salcic98] Salcic, Z., VHDL and FPLDs in Digital Systems Design, Prototyping and
Customisation, Kluwer, 1998, ISBN 0-7923-8144-0

[Seals97] Seals, R. C. and Whapshott, G. F., Programmable Logic: PLDs and FPGAs,
Macmillan, 1997, ISBN 0-333-65570-2

[Smith97] Smith, M J S, Application-Specific Integrated Circuits, Addison Wesley, 1997,
ISBN 0-201-50022-1

[Stalli ngs98] Stalli ngs, W, Operating Systems: Internals and Design Principles, Prentice-
Hall, 1998, ISBN 0-13-917998-4

[Stoddart99] Stoddart, A.G., Systems Engineering: is it a new discipline?, IEE Control and
Computer, v10#3, 1999

[Weir97] Weir, D. and Stewart J., Immunology 8th Ed, Churchill -Livingstone, 1997

[Xili nx99] Xili nx, Inc., XC4000E and XC4000X Series Field Programmable Gate Arrays,
Product Specification, v1.6, 1999

[Xili nx01S] Xili nx, Inc., Spartan-II 2.5V FPGA Family: Functional Description,
Preliminary Product Specification, v2.1, 2001

[Xili nx01V] Xili nx, Inc., Virtex-II 1.5V Field-Programmable Gate Arrays, Advance
Product Specification, v1.6, 2001

9 Links
<Delphion> Delphion IP Network, http://www.delphion.com/

<Free IP> The Free IP Project, http://www.free-ip.com/about.htm

<FPGA CPUs> FPGA CPU news, http://www.fpgacpu.org/

<Intel> Intel Corp., Microprocessor quick reference guide,
http://www.intel.com/pressroom/kits/quickreffam.htm

<Mentor> Mentor Graphics Corporation, FPGA Advantage version 5.0, at
http://www.mentorg.com/fpga-advantage/

<PRO3> EC Framework 5 IST, Protocol Processor Project, IST Project 11499, at
http://www.pro3-processor.com/

