Int J STTT (2001) 3: 112-136 / Digital Object Identifier (DOI) 10.1007/s100090100056

Special section on BDD

Binary decision diagrams in theory and practice

Rolf Drechslerl, Detlef Sieling2

1 Corporate Technology, Siemens, 81730 Munich, Germany; E-mail: rolf.drechsler@mchp.siemens.de
’FB Informatik, LS 2, University of Dortmund, 44221 Dortmund, Germany; E-mail: sieling@Is2.cs.uni-dortmund.de

Published online: 15 May 2001 — © Springer-Verlag 2001

Abstract. Decision diagrams (DDs) are the state-of-the-
art data structure in VLSI CAD and have been success-
fully applied in many other fields. DDs are widely used
and are also integrated in commercial tools. This spe-
cial section comprises six contributed articles on various
aspects of the theory and application of DDs. As prepar-
ation for these contributions, the present article reviews
the basic definitions of binary decision diagrams (BDDs).
We provide a brief overview and study theoretical and
practical aspects. Basic properties of BDDs are discussed
and manipulation algorithms are described. Extensions
of BDDs are investigated and by this we give a deeper
insight into the basic data structure. Finally we outline
several applications of BDDs and their extensions and
suggest a number of articles and books for those who wish
to pursue the topic in more depth.

Key words: Binary decision diagram — Branching pro-
gram — data structure — Boolean function — VLSI CAD

1 Introduction

Decision diagrams (DDs) are the most frequently used
data structure for representation and manipulation of
Boolean functions in the area of VLSI CAD. Binary deci-
sion diagrams (BDDs) as a data structure for representa-
tion of Boolean functions were first introduced by Lee [94]
and further popularized by Akers [2] and Moret [110]. In
the restricted form of reduced ordered BDDs (OBDDs)
they gained widespread application because OBDDs are
a canonical representation and allow efficient manipula-
tions as proved by Bryant [23]. Some fields of application

Supported in part by DFG grant We 1066/9.

in VLSI CAD are verification, test generation, fault simu-
lation, and logic synthesis. However, in other areas, such
as SAT-solving, OBDDs have also been successfully used.
OBDDs have been studied from a theoretical and prac-
tical point of view for several years. They have become
a very popular data structure, since they allow efficient
representation of many functions occurring in practice.
Furthermore, the data structure can be efficiently im-
plemented on modern computers using a programming
language such as C. It is important to note that BDDs
(also called branching programs (BPs) in this context)
have been studied theoretically for a long time, but these
results were (nearly) unknown in the “VLSI CAD com-
munity.”

One major contribution of this article is to point out
the close relation between the two “different” fields and it
turns out that they are effectively two sides of the same
coin. In this special section we introduce the basic concept
of OBDDs and discuss several aspects of this data struc-
ture. Even though the contributed articles mainly cover
the practical aspects, in this overview article several the-
oretical aspects are also covered. Before we give a detailed
outline of this overview, we sketch the contents of the con-
tributed articles (also see Sect. 6).

In the first article by Bryant and Chen, an extension
of BDDs to represent integer-valued functions is proposed
and the application in formal verification is studied. The
paper by Minato introduces a DD extension that is well
suited for representation of sets of combinations and in
this context outperforms “classic” BDDs. The two pa-
pers by Somenzi and Hoéreth focus on implementation
techniques of BDD and integer-valued DDs, respectively.
Optimization techniques are described regarding how to
speed up computations when using DDs in real-world ap-
plications. The article by Harlow and Brglez describes

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 113

a first step towards experimental evaluation of experi-
ments on the robustness of BDDs. Finally, an application
of BDDs, i.e., Boolean matching, is discussed in the work
of Mohnke, Molitor, and Malik.

This overview article is structured as follows: in Sect. 2
OBDDs are introduced and some basic notations and def-
initions are given. Examples are also provided to simplify
understanding for non-experts. Basic properties, such as
canonicity, are considered. Manipulation algorithms on
OBDDs are discussed and their complexity is analyzed.
Furthermore, we study the problem of variable ordering
for OBDDs.

In Sect. 3 generalizations of the basic OBDD concept
are discussed. We show that for some functions by chang-
ing the decomposition rule carried out in each node the
size can be reduced by an exponential factor. Then we
study the effect when the variable ordering is relaxed, and
when additional transformations may be applied to the
represented functions. Finally, in this section we consider
DDs for integer-valued functions, i.e., so-called word-level
DDs, that have shown to work very well in the area of
arithmetic circuit verification.

Several different applications of BDDs and their gen-
eralizations are outlined in Sect. 4. We first consider ap-
plications from the field of VLSI CAD, such as verifica-
tion, logic synthesis, and testing. However, we also show
that DDs are very useful in other areas of combinatorial
optimization. At the end of Sect. 4 we briefly discuss the
use of BDDs in complexity theory as a model of sequential
computation.

The main conclusions are summarized in Sect. 5 where
we also give pointers to further literature. Finally, we give
a more detailed overview of the contributed articles in
Sect. 6.

2 Ordered binary decision diagrams
2.1 Definition and examples of OBDDs

An OBDD is a graphic description of an algorithm for the
computation of a Boolean function. The following defin-
ition describes the syntax of OBDDs, i.e., the properties
of the underlying graph. The semantics of OBDDs, i.e.,
the functions represented by OBDDs, is specified in defin-
ition 2.

Definition 1. An OBDD G representing the Boolean
functions f!,...,f™ over the variables zi,...,x, is
a directed acyclic graph with the following properties:

1. For each function f? there is a pointer to a node in G.

2. The nodes without outgoing edges, which are called
sinks or terminal nodes, are labeled by 0 or 1.

3. All non-sink nodes of G, which are also called internal
nodes, are labeled by a variable and have two outgoing
edges, a 0-edge and a 1-edge.

4. On each directed path in the OBDD each variable oc-
curs at most once as the label of a node.

5. There is a variable ordering 7, i.e., a permutation of
T1,...,Tn, and on each directed path the variables
occur according to this ordering. This means, if x; is
arranged before z; in the variable ordering, then it
must not happen that on some path there is a node
labeled by z; before a node labeled by ;.

In the figures we draw sink nodes as squares and in-
ternal nodes as circles. We always assume that edges are
directed downwards. 0-edges are drawn as dashed lines
while 1-edges are drawn as solid lines. Figure 1 shows an
OBDD Gy with the variable ordering x1,x3, 2 and an
OBDD G, with the variable ordering x1, y1, Zo, Yo-

Definition 2. Let G be an OBDD for the functions
fY ..., f™ over the variables z1,...,2,, and let a =
(a1,...,a,) be an input. The computation path for the
node v of G and the input a is the path starting at v which
is obtained by choosing at each internal node labeled by
x; the outgoing a,-edge.

Each node v represents a function f,, where f,(a) is
defined as the value of the sink at the end of the com-
putation path starting at v for the input a. Finally, f7
is defined as the function represented at the head of the
pointer for f7.

Definition 2 can be seen as the description of an algo-
rithm to obtain for each function f7 and each input a the
computation path and, therefore, the value f7(a).

In the OBDD Gf in Fig. 1 the computation path for
the input (z1,x2,z3) = (1,1,0) is indicated by a dotted
line. Furthermore, for each node v of Gy the function
fv represented at v is given. By definition 2 it is easy to
verify that the OBDD Gy in Fig. 1 represents the func-
tion f(x1,22,23) =1 ®x2 B3 and the OBDD G, rep-
resents the function g(x1,y1, %o, yo) = (S2, $1, S0), Where
(82,81, S0) is the sum of the two 2-bit numbers (y1,yo)
and (z1,20). It suffices to consider all possible inputs
and to compute the values of the functions using defin-
ition 2. Of course, this is not feasible for functions with
a larger number of input variables. Another possibility to
obtain the functions represented by an OBDD is to con-
sider the relation between the functions f, represented at
the nodes of the OBDD.

Obviously, the function represented at the sink labeled
by ¢ € {0,1} is the constant function c¢. Now let v be an
internal node which is labeled by z;. Let vy be the 0-
successor of v, i.e., the node reached via the 0-edge leaving
v, and let v be the 1-successor of v. We consider the com-
putation of f, for some input. If in the input the value of
x; is 0, then by definition 2 we may obtain f, by evaluat-
ing fy, and, if the value of x; is 1, by evaluating f,,. This
can be expressed by the equation

fv:jifvo vmifvl' (1)

Using equation (1) we may compute the functions repre-
sented at the nodes of an OBDD in a bottom-up fashion.

114 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

f(z1,x2,23) =21 Bx2 D3

S2 S1 S0

Fig. 1. Examples of OBDDs

However, the opposite is also true. If a node v labeled
by x; represents the function f,, then the 0-successor of
v represents the subfunction (sometimes called cofactor)
fulz;—0 and the 1-successor the subfunction fy,,—;. In
other words, at v the function f, is decomposed using
Shannon’s decomposition rule

fU :fifvh:izo\/mifv\wi:l' (2)

We point out that in Sect. 3 we shall consider variants of
OBDDs where Shannon’s decomposition rule is replaced
by a different decomposition rule.

From equation (2) we see that we decompose the func-
tion f, in different ways if we choose different variables x;
for the decomposition. Hence, we may get different OB-
DDs for the same function if we use different variable
orderings. Later on, we shall see that the size of an OB-
DDs depends on the chosen variable ordering.

Finally, we note that in implementations a slightly
different version of OBDDs, namely OBDDs with com-
plemented edges (sometimes called output inverters), is
used. Complemented edges were suggested by Akers [2],
Minato, Ishiura and Yajima [108] and Brace, Rudell and
Bryant [21]. On each edge and each pointer for a func-
tion f7 there may be a complement attribute. Then f7(a)
is computed as described in definition 2 but the value
obtained by the computation is complemented if the num-
ber of complement attributes encountered on the com-
putation path is odd. The use of complemented edges
allows us to obtain an OBDD for f from an OBDD for
f in constant time. Furthermore, the number of nodes of
OBDDs with complemented edges is usually smaller than
the number of nodes of OBDDs without complemented
edges. On the other hand, the description of properties
of OBDDs and algorithms on OBDDs is more involved
for OBDDs with complemented edges. Hence, in the fol-
lowing, we consider OBDDs without complemented edges
unless stated explicitly.

2.2 The canonicity of reduced OBDDs

An important property of OBDDs is that they are
a canonical representation of Boolean functions. Canon-
icity means that for all Boolean functions f1,..., f™ and
each variable ordering 7 there is a unique OBDD G which
can be obtained from each OBDD for f!,..., f™ and 7
without much effort. The computation of G from some
OBDD for f1,..., f™ and 7 is called reduction, since it is
performed by applying reduction rules, and G is called the
reduced OBDD for f',..., f™ and . An obvious advan-
tage of canonical representations is that two functions are
identical iff their reduced OBDDs are identical. Further-
more, we shall see that reduced OBDDs for f1,..., f™
and the variable ordering 7 are of minimum size among
all OBDDs for f1,..., f™ and 7.

In the following, we always assume that the OBDDs
only contain nodes that are reachable from the pointer of
some function f7. Each node not reachable in this way can
be removed since it does not affect any computation path.

The reduction of OBDDs is based on only two reduc-
tion rules, the S-deletion rule and the merging rule. The
main idea of the reduction rules is to remove redundancies
from the OBDD, namely, superfluous tests of variables
and tests that are represented more than once. Both re-
duction rules are sketched in Fig. 2.

The S-deletion rule can be applied to nodes v for which
both outgoing edges lead to the same node w. It is obvious
that we can redirect all edges leading to v to the node w
and that we can delete v afterwards without changing the
function represented by the OBDD. We use the term S-
deletion rule (for Shannon deletion rule) instead of simply
deletion rule in order to distinguish this rule from a differ-
ent deletion rule for the variants of OBDDs which are not
based on Shannon’s decomposition rule.

The merging rule is applicable if there are nodes v and
w with the same label, the same 0-successor, and the same
1-successor. Again, it is obvious that we can redirect all

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 115

o O

Fig. 2. The (i) S-deletion rule and the (ii) merging rule for
OBDDs

edges leading to v to the node w and that we can delete
v afterwards without changing the represented function.
Furthermore, the same operation can be performed on
sinks with the same label.

Bryant [23] proved that these reduction rules suffice to
obtain the canonical representation for each function and
each variable ordering.

Theorem 1. For all functions f1,..., f™ and for each
variable ordering 7 there is a unique OBDD G which can
be obtained from each OBDD for f',... f™ and 7 by
applying the S-deletion rule and the merging rule until nei-
ther of the rules is applicable.

In particular, the reduction of an OBDD yields the
same result even if the reduction rules are applied in a dif-
ferent order. Theorem 1 also implies that the functions f?
and f7 represented in the same reduced OBDD are iden-
tical iff the pointers for f* and f7 lead to the same node.

An example of the application of the reduction rules is
shown in Fig. 3. Bryant [23] constructed an efficient algo-
rithm for the reduction of OBDDs. To make a reduction
algorithm efficient it is essential that the reduction rules
are applied levelwise bottom-up. The reason is that a re-
duction rule may become applicable to a node v if we
apply some reduction rule to some successor of v. On the

other hand, a reduction rule cannot become applicable
to v if we apply some reduction rule to some predecessor
of v (see Fig. 3). Hence, if during the bottom-up traver-
sal on some node neither reduction rule is applicable, it
cannot happen that later on some reduction rule is appli-
cable. The algorithm of Bryant has on input G a run time
of O(|G|log|G|) where |G| denotes the number of nodes
of G. An algorithm with linear run time O(|G|) was pre-
sented by Sieling and Wegener [124].

We do not present a complete proof of theorem 1. In
order to get a feeling why reduced OBDDs are unique we
describe which functions are computed at the nodes of
a reduced OBDD. In order to simplify the presentation
we only consider OBDDs for a single function f and we
fix the variable ordering x1, ... , z,. This is no restriction
since we may rename the variables. Let v be the node at
the head of the pointer for f.

Consider a partial assignment ©; =c1,...,%T;—1 =
¢;—1. If we follow the computation path which starts at v
and which is chosen for this partial assignment, we reach
some node w which obviously represents the subfunc-
tion g = flo1=c,... 2;_1=c; , Of f.- We conclude that at
the nodes of each OBDD for f only such subfunctions
are represented. The following lemma (Sieling and We-
gener [123] — a similar lemma is given in Friedman and
Supowit [55]) — describes which of these subfunctions
are represented at the nodes of a reduced OBDD for f.
We say that a function g essentially depends on z; iff

g‘$7;=0 §é g|wi=1~

Lemma 1. Let G be the reduced OBDD for the single
function f and the variable ordering x1, ... ,x,. Let S; be
the set of different subfunctions fiz —c,,... @i=c;, , where
C1y...,¢i—1 €{0,1} and which essentially depend on x;.
For each function g € S;, the OBDD G contains exactly
one node labeled by x; which represents g. The OBDD G

does not contain further internal nodes.

Let us examine the reduction rules again (see Fig. 2).
By the S-deletion rule only nodes v labeled by z; are re-
moved which represent functions not essentially depend-
ing on z;. Furthermore, it is easy to see that v and its
successor w represent the same function. In addition, for

2 2

Fig. 3. An example for the reduction of an OBDD

116 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

the merging rule it is obvious that only nodes represent-
ing the same function are merged. Thus, the reduction
rules make sure that for each function in S; there is only
one node representing this function. The canonicity of G
can be proved by showing that there is only one possibil-
ity to combine the nodes for the functions described in
lemma 1 to an OBDD for f.

Finally, we discuss the reduction of OBDDs with com-
plemented edges. The merging rule can be adapted by
requiring that v and w can only be merged if addition-
ally the complement attributes on the outgoing edges of
v and w coincide. Similarly, the deletion rule is applicable
to nodes v for which both outgoing edges lead the same
node if there are complement attributes on both outgo-
ing edges or on neither outgoing edge. In order to en-
sure canonicity we have to restrict the use of complement
attributes by allowing complement attributes only on 1-
edges and on pointers for functions. Furthermore, there
is no sink labeled by 1 since this sink can be simulated
by a complemented edge to the sink labeled by 0. The
number of complement attributes on each computation
path does not change if we flip the complement attributes
on all edges leading to some node v (including function
pointers to v) and on all edges leaving v. It is clear that
by applying this rule bottom-up we can make sure that
complement attributes only occur on 1-edges. Examples
of the application of this rule are shown in Fig. 4. In this
figure the complement attributes are indicated by black
dots on edges.

With the above restrictions on the complement at-
tributes, OBDDs with complemented edges are also
a canonical representation; this means, theorem 1 holds
and there is also a slightly adapted version of lemma 1.
We note that the choice to allow complemented edges
only on the 1-edges and the choice to allow only the 0-
sink are somewhat arbitrary; it is also possible to allow
complement attributes on the 0-edges or to have only the
1-sink. Later on, we shall see that this symmetry does not
hold for other variants of OBDDs.

- -

SHhdb dhd b

Fig. 4. Replacing complement attributes on the edges leading to
and from some OBDD node

2.8 Algorithms on OBDDs

Many operations for the manipulation of Boolean func-
tions can be performed efficiently for functions repre-
sented by OBDDs. The most important basic operations
are the following ones:

1. Evaluation. For an OBDD G representing f and an
input a compute the value f(a).

2. Reduction. For an OBDD G compute the equivalent
reduced OBDD.

3. Equivalence test. Test whether two functions repre-
sented by OBDDs are equal.

4. Satisfiability problems. These problems include:

— Satisfiability. For an OBDD G representing f find
an input a for which f(a) =1 or output that no
such input exists.

— SAT-Count. For an OBDD G representing f com-
pute the number of inputs a for which f(a) = 1.

5. Synthesis (also called Apply). For functions f and g
represented by an OBDD G include into G a represen-
tation for f ® g where ® is a binary Boolean operation
(e.g., N).

6. Replacements (also called Substitution). There are
two replacement operations:

— Replacement by constants. For a function f repre-
sented by an OBDD, for a variable z; and a con-
stant ¢ € {0, 1} compute an OBDD for fj,,_..

— Replacement by functions. For functions f and g
represented by an OBDD and for a variable z;
compute an OBDD for f,,_,.

7. Universal quantification and existential quantifica-
tion. For a function f represented by an OBDD and
for a variable z; compute an OBDD for (Vx; : f) :=
f|mi=0 A f\mZv:l or (3z;: f):= f|mi=0 N f\mZv:lv respec-
tively.

We have already described algorithms for the oper-
ations evaluation and reduction. As we shall see in the
following, in OBDD packages the operation reduction is
usually integrated into the other operations such that
only reduced OBDDs are represented. Before we present
algorithms for the other operations we give a short moti-
vation for these operations.

Many applications of OBDDs concern functions that
are given as circuits. Hence, an important operation is the
computation of an OBDD for a function given by a cir-
cuit, which is usually performed by the symbolic simula-
tion of the circuit. This means the following. First, OB-
DDs for the functions representing the input variables are
constructed. This is easy since an OBDD for the func-
tion x; merely consists of a node labeled by x; with the
0-sink as O-successor and the 1-sink as 1l-successor. Af-
terwards we run through the circuit in some topological
order (each gate is considered after all its predecessors
have been considered) and compute for each gate a repre-
sentation of the function at its output by combining the
OBDDs representing the functions at its input by the syn-
thesis operation.

Another possibility is that a given circuit is built of
larger blocks. Then we may compute OBDDs for the func-
tions computed by each block and combine these OBDDs
with the operation replacement by functions.

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 117

If we have computed OBDDs for the functions rep-
resented by two circuits we may apply the equivalence
operation for OBDDs in order to test the circuits for
equivalence.

The operation quantification is important for the
application model checking (see, for example, Burch,
Clarke, McMillan, Dill, and Hwang [30]).

In applications such as Boolean matching, signatures
for the considered functions are computed. Roughly,
a signature is a property of a function that can be com-
puted efficiently and that is likely to be different for
different functions. Hence, signatures can be used to de-
tect that given functions are different. A very simple
signature is the number of satisfying inputs of a func-
tion. Hence, we may apply the operation SAT-count in
order to compute this (and also other) signatures (see, for
example, Mohnke, Molitor, and Malik [109]).

In order to simplify the presentation we assume in
the following that the variable ordering of the considered
OBDDs is z1, ... ,z,. We point out that in many appli-
cations it is a serious problem to select a suitable variable
ordering for the OBDDs. In Sect. 2.4 we shall see how
much the OBDD size may depend on the variable order-
ing. There we shall also discuss strategies to choose a suit-
able variable ordering. We note that some operations can
be performed more efficiently if the considered OBDDs
are reduced. Hence, in the following we sometimes distin-
guish between operations on reduced and on non-reduced
OBDDs, and discuss for which operations the result is re-
duced.

2.3.1 Equivalence and satisfiability

We start with the equivalence test. In BDD-packages dif-
ferent functions are usually represented in the same re-
duced OBDD. Then the equivalence test of two functions
f and g is easy. As mentioned above, it suffices to check
whether the pointers for f and g lead to the same node,
which can be done in constant time.

Another possibility is that f and g are represented in
different reduced OBDDs with the same variable order-
ing. Let vy and vy be the nodes that are the heads of the
pointers for f and g. By theorem 1 the OBDDs consist-
ing of the nodes reachable from v and v, are identical
iff f =g. Hence, it suffices to test these OBDDs for iso-
morphy, which can be done by a simultaneous depth-first
search traversal through the OBDDs starting at vy and
vg. The run time of this algorithm is O(min{|Gy|, |Gy4|})
where G denotes the OBDD for f, which consists of the
nodes reachable from v¢, and G is defined similarly.

There is also a third version of the equivalence test,
namely, for the case that the OBDDs for f and g have
a different variable ordering. The approaches of Sect. 2.4
for solving the variable ordering problem imply that this
situation may occur. Then the equivalence test is much
more complicated. A polynomial time algorithm for this
problem was first presented by Fortune, Hopcroft, and

Schmidt [54]. Later on, Meinel and Slobodové [99] pre-
sented an algorithm for this problem and estimated its
run time by O(|Gy||Gy)).

Now we consider the satisfiability problem. In order to
find an input a for which f(a) = 1, we start at the pointer
for f and search for a path to the 1-sink. For this, a sim-
ple depth-first search approach is sufficient. We choose
a such that this path is run through. If there is no such
path, we conclude that f = 0. If the OBDD is reduced,
the run time of this algorithm is O(n) since it suffices to
consider a single path. We point out that for this algo-
rithm it is essential that on each path in the OBDD each
variable occurs at most once (property 4 of definition 1).
Thus, there are no inconsistent paths, i.e., paths on which
some x;-node is left via the 0-edge and some other xz;-
node via the 1-edge. If there were such a path, it would
not be possible to define a as outlined before. There are
extensions of OBDDs in which inconsistent paths may
occur. For most such variants the satisfiability test is NP-
complete and the equivalence test is coNP-complete (see,
for example, Bollig, Sauerhoft, Sieling, and Wegener [19]).
Hence, if we relax the read-once property (property 4 of
definition 1) we do not only lose the canonicity of the
representation but also the efficient algorithms for satisfi-
ability and equivalence.

An operation closely related to satisfiability is the op-
eration SAT-count. Let f be the function represented at
some node v¢. We consider the 2" computation paths
starting at vy which are chosen for the 2™ inputs. Note
that for different inputs the computation paths need not
to be different. We want to count the number of these
paths that lead to the 1-sink. Let w be a node of the
OBDD. The following fact is easy to see: If N(w) paths
run through w then these paths equally distribute among
the 0-edge and the 1-edge leaving w. This directly leads
to the following algorithm for SAT-count. We start with
N(vf) =2" and N(w) =0 for all nodes w # vf. Then
we run levelwise top-down through the OBDD. For each
node w with the successors wg and w; we perform the
assignments N(wg) := N(wp)+ N(w)/2 and N(w;) :=
N (wy)+ N(w)/2. Hence, we distribute the paths through
w among the outgoing edges. Then the number of satisfy-
ing inputs is N (1-sink). The number of performed opera-
tions in O(|G]).

2.3.2 Synthesis

Synthesis is probably the most important operation since
it is used to construct OBDDs from circuits as outlined
above and, hence, it is needed in almost all applications.
In order to simplify the presentation we first present the
idea of the synthesis algorithm and discuss implementa-
tion issues later on.

Let v¢ and vy be the nodes of an OBDD G which rep-
resent the functions f and g. The goal is to construct an
OBDD for f ®g where ® is a binary Boolean operator,
e.g., A\. We consider how to compute (f ® g)(a) for some

118 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

input a. One may think of the evaluation of (f ® g)(a) as
a simultaneous traversal of the computation paths for a
starting at vy and vg. In this simultaneous traversal we
want to test the variables according to the variable order-
ing of G. We start at the nodes vf and v,. If vy and v,
are labeled by the same variable z;, we follow both com-
putation paths through the a;-edges leaving vy and vy,
respectively. However, it may also happen that, for ex-
ample, vy is labeled by x; and that v, is a sink or that it
is labeled by x; where ¢ < j. If we want to perform a sim-
ultaneous traversal, we have to wait at v, while we follow
the a;-edge leaving vy. Similarly, we may have to wait at
vr. In the same way we may perform all subsequent tests
of variables until we reach the sinks on both computation
paths. Then it is easy to compute the value of (f ® g)(a)
by combining the labels of the sinks by ®.

Our goal is to construct an OBDD G that “simulates”
this simultaneous traversal. The situation that a node u is
reached on the computation path for f(a) and a node w
on the computation path for g(a) is simulated by reaching
anode (u,w) in G. Hence, the node set for the represen-
tation of f ® g is some subset of V; x V; where V} is the
set of nodes reachable from v¢, and Vj is defined similarly.
We describe how to obtain the c-successor of (u,w). Let
ug and u1 be the 0- and 1-successor of u and let wg and w;
be defined similarly. We distinguish the following cases:

Case 1: u and w are sinks with labels ¢, and ¢,,. Then
(u, w) is a sink with label ¢, ® ¢.

Case 2: u and w are internal nodes and both are labeled
by z;. Then (u,w) is an internal node labeled by z;
and with the c-successors (u¢, we).

Case 3: u is an internal node with label x; and w is a sink
or an internal node with label z; where j > i. Then
(u,w) is an internal node with label z; and the c¢-
successors (e, w). This models the situation that we
have to wait on the computation path for g during the
simultaneous traversal.

Case 4: w is an internal node with label z; and wu is a sink
or an internal node with label z; where j > 4. This situ-
ation is handled similarly to Case 3.

An example of two OBDDs Gy and G, and the con-
structed OBDD G for f A g is shown in Fig. 5. It is easy to
see that the node set of G is much smaller than V; x V.
Hence, it is essential to construct only those nodes of G

w2

which are really needed. This is done by constructing G in
a depth-first search manner starting at the node (vf,vg)
where vy and v, are the nodes where the computations of
f and g start.

In order to make sure that no part of G is constructed
twice in the depth-first search construction, for each pair
(u, w) it is stored which node is constructed for this pair.
Usually, this is done using a hash table, which is called
the computed table. Before we create a node for (u, w) we
check using the computed table whether a node for (u, w)
was already created. In this case we do not need to create
this node for a second time.

In the example of Fig. 5 more than one 0-sink is cre-
ated. In particular, the constructed OBDD is not re-
duced. In order to keep the number of created nodes as
small as possible, usually the reduction is integrated into
the synthesis algorithm; this means it is ensured that no
two nodes represent the same function and that at each
zi-node a function essentially depending on xj is rep-
resented. Usually this is done using a hash table, which
is called the wunique table. In the unique table for each
triple (zx, Ro, R1) is stored whether there is a node in the
OBDD which is labeled by xj, has the 0-successor Ry, and
the 1-successor R;. In the positive case there is a pointer
to this node. Before we create a node labeled by x; and
with the 0-successor Ry and the 1-successor R;, we check
using the unique table whether such a node was already
constructed. In this case, we may set a pointer to this
node instead of creating a new node. Similarly, before cre-
ating the node we check whether Ry and R; coincide. In
this case, by the S-deletion rule it suffices to set a pointer
to Ry instead of creating a node labeled by xj.

The integration of the reduction into the synthesis is
also important because we want to represent f ® g in the
same OBDD as f and g. This can be done by storing the
unique table for the whole OBDD and using the unique
table as described in the last paragraph. Then the OBDD
for f ® g shares as many as possible nodes with the given
OBDD for f and g.

A generic algorithm for the synthesis is given in Fig-
ure 6. The check for terminal cases saves the construction
of nodes representing a constant function. For example,
if we consider the pair of v € V; and the 0-sink w €V
during the construction of an OBDD for f A g, we know
that at (u,w) the constant function 0 is represented and

é (vi,w1)

(v, w2) (v2,wy)

L] [o] [o] [

(v3,w3) (v3,wa)(v3,ws) (va,ws)

Fig. 5. An example of two OBDDs G and G4 and the constructed OBDD for fAg

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 119

Input: A reduced OBDD G with its unique table that
represents f and g at the nodes u and w, a binary operation
®.
Output: The reduced OBDD G still representing f and g,
a pointer to the node representing f ® g, and the updated
unique table for G.

Synthesis(u, w)
if (terminal case) then return result.
if (computed table entry(u, w) exists) then return result.
Let x;, be the top variable of v and w.
if u is labeled by z},
then let 4o be the 0-successor of u
else let g :=u
Let 11, wo and w1 be defined similarly
Ry = Synthesis(ﬁo, ’LZJ())
Ry = Synthesis(i, w1)
if Ry = R; then return Ry /* apply the S-deletion rule */
if (unique table entry R for (z,Ro,R1) does not exist)
then /* the merging rule is not applicable */
create node R with label zj, the 0-successor Ry
and the 1-successor Ry
insert ((z,Ro,R1),R) into unique table
insert ((u,w), R) into computed table
return R

Fig. 6. An algorithm for the synthesis of OBDDs

there is no need to construct successors of (u,w) as de-
scribed above. Similarly, if we have to construct a node for
the pair (u,u) and, for example, the operation A, it suf-
fices to return a pointer to u, which is already contained
in the OBDD. The ideas of all other instructions in the
algorithm in Fig. 6 have already been explained.

Since the set of nodes constructed for the represen-
tation of f® g is some subset of V; x V,;, the number of
constructed nodes is at most quadratic in the size of the
input. Since the algorithm uses hash tables, the expected
time for the construction of each node is constant. Hence,
the expected run time is O(|V}||Vy|). The worst case run
time is only bounded by O(|V;|?|V;|?) since hash tables
are very slow in the worst case which, however, is quite
unlikely to occur.

We remark that it is straightforward to generalize the
synthesis algorithm to combine three functions f, g, h by
a ternary operator op : {0,1}® — {0,1}; this means com-
puting a representation for op(f,g,h). As suggested by
Brace, Rudell, and Bryant [21], in OBDD packages usu-
ally the synthesis algorithm for the ternary operation ite
(“if-then-else”) is implemented where ite is defined by

ite(f,g,h) = fgV fh.

All binary Boolean operations can be simulated by the

ite-operator, e.g., f Vg =ite(f,1,9), f Ag=ite(f,g,0)or
f®g=ite(f,7,g). The motivation for preferring synthe-

sis with the operation ite is that this increases the hit-rate
of the computed table. For more details and further im-
plementation issues we refer to Somenzi [126].

Due to the importance of the synthesis operation,
alternative implementations of the synthesis operation
have also been suggested. Ochi, Ishiura, and Yajima [111]
and Ochi, Yasuoka, and Yajima [112] use a breadth-
first search approach instead of the depth-first search
approach which we described above. Such an approach
is more suitable for vector processing. Another ad-
vantage is the reduction of the number of page faults
when working on large OBDDs. Hett, Drechsler, and
Becker [70] use a totally different implementation of the
synthesis operation. We only remark that they intro-
duce OBDD nodes for Boolean operations and perform
the synthesis by moving these nodes in the considered
OBDDs. This approach also allows us to reorder OB-
DDs during synthesis. A combination of these alternative
approaches was presented by Yang, Chen, Bryant, and
O’Hallaron [138]. Horeth [71] suggests speeding up suc-
cessive applications of the synthesis operation by also
implementing synthesis for more complex operations
than ite.

As already discussed for the equivalence test, we may
consider OBDDs for different variable orderings. If f and
g are given by OBDDs with different variable orderings,
the above synthesis algorithm does not work since for the
simultaneous traversal the variables have to be encoun-
tered in the same ordering in both OBDDs. We note that
in this situation the synthesis problem is even harder:
Fortune, Hopcroft, and Schmidt [54] proved that it is NP-
hard to determine whether fAg=0. Hence, it is also
NP-hard to determine whether f A g can be represented
by an OBDD only consisting of the 0-sink.

2.3.3 Replacements and quantification

It is obvious how to construct an OBDD for f,,_. from
an OBDD for f. It suffices to redirect all edges leading
to nodes labeled by x; to the c-successor of these nodes.
Afterwards, the OBDD is not necessarily reduced such
that we may apply a reduction algorithm to the result.
If we consider an OBDD representing several functions
this algorithm destroys the representation of the other
functions. Thus, we have to create a copy of the rep-
resentation of f before performing the replacement as
described before.

Now the operation replacement by a function can be
solved easily by combining the algorithms for replace-
ment by a constant and synthesis for ternary operators
because

f|fi=g = ite(g, flxizl, f|xi=0)-

Similarly it follows from the definition of the quantifica-
tion operations that they can be implemented by combin-
ing replacement by constants and synthesis.

120 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

2.4 The variable ordering problem for OBDDs

Bryant [23] already discovered the dependence of the
OBDD size on the chosen variable ordering. In order to
show this he presented the following example. Let n be an
even number. Then f,, : {0,1}"™ — {0, 1} is defined by

fn(l'l, e

Figure 7 shows the OBDDs for fg for the variable order-
ings x1, To, ... ,x¢ and x1, X3, T5, T2, T4, Tg. For arbitrary
n it can be shown using lemma 1 that the number of inter-
nal nodes for f,, and the variable ordering 1, 2, ... , %y
is n while the number of internal nodes for the variable or-
dering 1,3, ..., Tn_1,T2, T4, ... , Ty is 27/2T1 —2 The
reason for the exponential size is that for this variable
ordering the OBDD has to “store” the values of the vari-
ables with odd indices in the (n/24 1)th level. We con-
clude that the choice of the variable ordering determines
whether the number of nodes is linear or exponential.
There are more examples with this property, see, for ex-
ample, Wegener [135]. The examples make clear that the
variable ordering must be chosen carefully.

Wegener [135] proves an even stronger result on the
function f,. He shows that the fraction of variable order-
ings 7 that lead to a polynomial number of nodes in an
OBDD for f and 7 with respect to all variable orderings
is exponentially small. The same holds, for example, for
the function describing the most significant bit of the sum
of two n-bit numbers. This result coincides with the ob-
servation that many practically important functions have
only few variable orderings leading to small OBDD size.
We conclude that variable orderings should not be chosen
randomly.

In applications, whether a computation on OBDDs
can be completed or fails because of lack of memory
may depend on the chosen variable ordering. Thus, com-
puting a good variable ordering is an important prob-
lem. Friedman and Supowit [55] present an algorithm for

yTn) = X122V T3T4 V.. N Ty 1T,

ol

Fig. 7. (Bryant [23]) OBDDs for f¢ = z122 V2324 V z5z6 and the
variable orderings x1,z2,... ,zs and x1,x3,T5, T2, T4, T6

the computation of a variable ordering leading to mini-
mum OBDD size. This algorithm is based on a dynamic
programming approach. However, the run time is expo-
nential and the algorithm can only be applied to func-
tions with a small number of inputs. The algorithm was
improved by Ishiura, Sawada, and Yajima [77], Jeong,
Kim, and Somenzi [79], and by Drechsler, Drechsler, and
Giinther [47]. However, if the number of variables exceeds
30, even with all these improvements, the optimum vari-
able ordering cannot be computed unless special proper-
ties of the considered function are exploited.

In many other papers heuristics for the variable or-
dering problem are presented, which we discuss shortly
in the following. We may distinguish two different situ-
ations where variable orderings have to be obtained. In
the first one, the function to be represented is given by
a circuit. Then the structure of the circuit might help to
obtain dependencies between the variables which we can
use to get a variable ordering. A rule of thumb to con-
struct a variable ordering is “variables belonging together
in some sense should be arranged together in the vari-
able ordering.” This rule is applied, for example, in the
heuristic algorithm of Fujita, Fujisawa, and Kawato [57].
Their algorithm runs through the given circuit starting at
the outputs and using a depth-first search approach. The
variables are arranged in the ordering in which they are
found by the depth-first search traversal. Hence, variables
occurring in the same part of the circuit are likely to be
arranged closely together in the variable ordering. Other
papers presenting heuristics to obtain variable orderings
from circuits are, for example, Malik, Wang, Brayton, and
Sangiovanni-Vincentelli [97], Butler, Ross, Kapur, and
Mercer [31], Fujita, Matsunaga, and Kakuda [58], Jeong,
Plessier, Hachtel and Somenzi [80], Ross, Butler, Kapur,
and Mercer [114], Touati, Savoj, and Lin [132], Mercer,
Kapur, and Ross [103], and Fujii, Ootomo, and Hori [56].

In the second situation we already have an OBDD G
for the functions to be represented and want to minimize
the number of nodes by choosing the variable ordering.
Fujita, Matsunaga, and Kakuda [58] use an algorithm for
this problem in the following case. For the transformation
of a circuit into an OBDD an initial variable ordering is
chosen, then the OBDD is constructed and, finally, this
OBDD is minimized by improving the variable ordering.
Rudell [115] suggests improving the variable ordering also
during the transformation of the circuit into the OBDD.
This approach is called dynamic reordering. It is moti-
vated by the fact that during the transformation the set
of represented functions changes and that it is unlikely
that the same variable ordering is suitable for all these
sets of functions. Dynamic reordering can also be used
in other applications where long sequences of computa-
tions are performed on OBDDs, i.e., for model checking.
Bryant [25] reports that this dynamic reordering slows
down the computations but it can make the difference be-
tween success and failure in completing an application.
This leads to the following problems:

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 121

1. MinOBDD. For an OBDD G for f!,..., f™ with the
variable ordering m compute a variable ordering mini-
mizing the OBDD size for f1,... f™.

2. Reordering of OBDDs. For a variable ordering 7 and
an OBDD G with the variable ordering 7’ compute
an OBDD with the variable ordering 7 that represents
the same functions as G.

For the problem MinOBDD several heuristics have
been suggested. Most of them are based on local search
approaches. The main observation is that it is easy to im-
plement algorithms for the following local changes of the
variable ordering:

1. Swap two variables which are adjacent in the variable
ordering. Figure 8 shows that this operation essen-
tially consists of redirecting pointers. We only remark
that swapping of two adjacent variables can be done in
a similar way for OBDDs with complemented edges.

2. Let the variable x; jump at the jth position in the vari-
able ordering without changing the relative ordering
of the other variables. The implementation of this op-
eration using the synthesis algorithm is described by
Bollig, Lébbing, and Wegener [18].

Fig. 8. Swapping two adjacent variables

Local search and simulated annealing approaches based
on these operations are presented, for example, in Mer-
cer, Kapur, and Ross [103], Fujita, Matsunaga, and
Kakuda [58], Ishiura, Sawada, and Yajima [77], and
Bollig, Lobbing, and Wegener [17]. One of the most suc-
cessful algorithms is the Rudell’s sifting algorithm [115].
Roughly, the sifting algorithm selects a variable and
searches for the position of this variables which minimizes
the OBDD size. This process is iterated until it does not
lead to further improvements. The reason for the success
of the sifting algorithm is that it provides a good trade-off
between the run time and the quality of its results. In [48]
Drechsler and Giinther present an approach to speed up
the sifting algorithm by lower bound computations. The
use of genetic algorithms for the computation of good
variable orderings is suggested by Drechsler, Becker, and
Gockel [43].

The fact that no efficient algorithm to solve the prob-
lem MinOBDD exactly on all instances is known leads to
the question of whether there are any such algorithms at
all. The following theorem implies that such algorithms
are quite unlikely to exist.

Theorem 2. MinOBDD is NP-hard.

The theorem was proved for OBDDs representing
a large number of functions by Tani, Hamaguchi, and Ya-
jima [129], and for OBDDs representing single functions
by Bollig and Wegener [20]. However, the NP-hardness
results do not exclude the existence of efficient algorithms
for approximately solving the problem MinOBDD. For
example, an algorithm that for each OBDD efficiently
computes a variable ordering such that the OBDD size
is at most 10% larger than the minimum size, would be
helpful in practice and is not excluded by theorem 2.
Such algorithms are known for many other combinatorial
optimization problems. For example, for the Knapsack
Problem, the polynomial time algorithm of Ibarra and
Kim [76] guarantees a solution that is larger than the
optimum size by a factor of at most 1 4 ¢ where each con-
stant € > 0 can be chosen. However, it is unlikely that an
approximate solution for the problem MinOBDD can be
computed by a polynomial time algorithm. For a func-
tion f and for @ > 1 we call a variable ordering 7 an
a-approximation, if the OBDD-size for f and 7 is larger
than the minimum OBDD size for f by a factor of at most
a. The following theorem (Sieling [119]) implies that it is
hard to approximate the problem MinOBDD.

Theorem 3. For each constant o > 1 the computation of
a-approximations is NP-hard.

Hence, heuristics are the only possibility to obtain
good variable orderings.

Now let us consider the reordering of OBDDs. From
the example of the function f,, defined at the beginning
of this section, it follows that the output size for the re-
ordering problem of OBDDs may be exponential in the
input size. Hence, we can only hope for algorithms which
are efficient with respect to the size of the input G and the
output H. Such algorithms are presented by Meinel and
Slobodova [99], Tani and Imai [130], and Savicky and We-
gener [116]. The most efficient algorithm is presented in
the latter paper and has a run time of O(|G||H|log | H]).

3 Generalizations of OBDDs

In the last section we have seen efficient algorithms for
the manipulation of functions represented by OBDDs.
However, there are many functions which occur in appli-
cations and for which OBDDs are much too large to be
stored in a computer memory. For example, Bryant [23,
24] proved that OBDDs for the multiplication of two n-
bit numbers have at least 2*/% nodes. Experiments show
that OBDDs for multipliers are very large even for small
values of n. For example Yang et al. [138] constructed an
OBDD for a 16-bit multiplier with more than 40 million
nodes. There are other functions with the same property.
This is the reason why quite a large number of extensions
of the basic OBDD concept have been suggested. Most
of these extensions allow a more succinct representation

122 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

of functions than OBDDs. On the other hand, these ex-
tensions have the disadvantage that for some of the basic
operations listed in Sect. 2 only less efficient algorithms
are known. In the following list we give a rough classifi-
cation of the extensions of OBDDs and examples of such
extensions:

1. Extensions obtained by replacing Shannon’s decom-
position rule by a different rule. Examples for such
extensions are ordered functional decision diagrams
(OFDDs), ordered Kronecker functional decision dia-
grams (OKFDDs) and parity OBDDs.

2. Extensions obtained by relaxing the variable order-
ing condition (5) of definition 1. Then we obtain free
BDDs.

3. Extensions obtained by relaxing the read-once condi-
tion (4) in definition 1. Examples are KOBDDs and
IBDDs.

4. Extensions obtained by introducing a transformation
7 and representing a function g such that f=gor.
This variant is called transformed BDD (TBDD).

5. Extensions that represent functions f:{0,1}" — Z
instead of Boolean functions. In order to represent
such functions, we may extend OBDDs and OFDDs
by allowing sinks labeled by numbers from Z or
by introducing edge labels. Examples of the former
variant are multi-terminal BDDs (MTBDDs), which
are also called algebraic decision diagrams (ADDs),
and binary moment diagrams (BMDs). Examples for
the latter variant are edge-valued BDDs (EVBDDs),
multiplicative binary moment diagrams (*BMDs),
hybrid decision diagrams (HDDs), Kronecker mul-
tiplicative BMDs (K*BMDs), and multiplicative
power hybrid decision diagrams (*PHDDs).

This list is not complete at all. Due to the large num-
ber of extensions of OBDDs we can only discuss some
properties of these extensions in the following sections.
We remark that another extension of OBDDs, namely
zero-suppressed BDDs (ZBDDs), are considered in more
detail in the article of Minato [107] in this special sec-
tion. BMDs are also considered in the article of Bryant
and Chen [28].

8.1 Decision diagrams based on different decomposition
rules

Ordered functional decision diagrams (OFDDs) were pro-
posed by Kebschull, Schubert, and Rosenstiel [81,82].
They are syntactically defined as OBDDs (see definition
1) but the Shannon decomposition is replaced by the
(positive) Davio decomposition

f:f\xl':O @xi(f\xizo@fm:l)' (3)

Let w be an x;-node of an OFDD with the 0-successor wq
and the 1-successor wi. Then at wg the function f,, =
fw|z;—o0 and at wq the function fu, = fu|z,—0 D fuw|z;=1 18
represented.

The function represented by an OFDD can be evalu-
ated by a bottom-up traversal. The c-sink represents the
constant function c¢. At each internal node w the value
fw (a) is computed by fi,(a) = fwo (a) D xifwl (a)

It is also possible to describe the represented function
using computation paths. Different from OBDDs for each
input a there may be several computation paths. Let v be
a node representing some function f. Each computation
path for a = (a1, ... ,a,) and f starts at v. At an internal
node labeled by z; each computation path has to follow
the 0-edge, if a; = 0. Each computation path may follow
the 0-edge or the 1-edge, if a; = 1. Then f(a) =1 iff the
number of computation paths from v to the 1-sink is odd.

An example of an OFDD for f(z1,z9,23) =21 S22 P
x3 is shown in Fig. 9. The computation paths for the input
(1,0,1) are indicated by dotted lines. Since the number of
such paths leading to the 1-sink is even, the function takes
the value 0 for this input.

We consider the reduction rules for OFDDs. The
merging rule for OBDDs can also be applied to OFDDs,
while we need a different deletion rule which we call pD-
deletion rule. This has the following reason. For OBDDs
the deletion rule is applicable to nodes v for which both
outgoing edges lead to the same node w. However, for
OFDDs the nodes v and w do not represent the same
function. The pD-deletion rule is applicable to nodes v
whose 1-successor is the 0-sink (Drechsler, Theobald, and
Becker [52]). Let vg be the 0-successor of v. By the pos-
itive Davio decomposition rule f, = f,,. Hence, we can
delete v and redirect all edges leading to v to vg. The
reduction algorithm for OBDDs can easily be modified
to work on OFDDs by replacing the deletion rule. It
can also be shown that reduced OFDDs are a canonical
representation.

Since OFDDs are syntactically equivalent to OBDDs
one may ask for the relation between the function fogpp
which we obtain by considering a decision diagram G
as an OBDD and the function forpp which we ob-
tain by considering G as an OFDD. Since OBDDs and
OFDDs have different deletion rules this question can
only be answered for the case that neither of the dele-
tion rules has been applied. Hence, we consider com-

o 1]

Fig. 9. An OFDD for the function f(z1,z2,z3) =21 ®z2 D23
where the computation paths for the input (1,0,1) are indicated
by dotted lines

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 123

plete decision diagrams, i.e., decision diagrams where on
each path from a function pointer to a sink all vari-
ables are tested. Becker, Drechsler, and Werchner [12]
observed that in the case of a complete decision dia-
gram G it holds that foppp = T(fOFDD) and forpp =
7(foBpp), where 7(f(a)) = @, <, f(z). Here, < denotes
the componentwise comparison, i.e., z < a iff Vi : z; < a;.
The relation forpp = 7(foppp) can be used to obtain
size bounds for OFDDs for some function f by consid-
ering OBDDs for 7(f). Becker, Drechsler, and Werch-
ner [12] present functions for which OBDDs are exponen-
tially larger than OFDDs and vice versa.

Becker, Drechsler, and Theobald [10] implemented
an OFDD-package in which OFDDs with complemented
edges are used. As for OBDDs the use of complemented
edges may halve the size of the representation and al-
lows the negation of a represented function in constant
time. In order to obtain a canonical representation we
allow complement attributes only on 1-edges and on func-
tion pointers. Furthermore, there is only a 0-sink and
edges to the 1-sink are replaced by complemented edges
to the 0-sink. In Sect. 2.2 we discussed how to obtain
the canonical form of OBDDs with complemented edges.
Here we need a slightly different rule to modify the com-
plemented edges at a node. Let v be a node labeled by
x; and representing a function f. If we flip the comple-
ment attributes on all edges leading to v, the node has
to represent f afterwards. Let g and h be the functions
represented at the 0- and 1-successor of v, respectively.
Then f = g®z;h and f = G® x;h. We conclude that we
have to flip the complement attribute on the 0-edge leav-
ing v while the complement attribute on the 1-edge re-
mains unchanged. This rule is depicted in Fig. 10. By this
rule it is possible to remove all complement attributes
on 0-edges but it is not possible to remove complement
attributes on 1-edges. Hence, unlike OBDDs, we do not
have the choice to allow complement attributes on 0-
edges instead of 1-edges if we want to obtain a canonical
representation.

Algorithms for the manipulation of OFDDs are pre-
sented by Becker, Drechsler, and Werchner [12] and Wer-
chner, Harich, Drechsler, and Becker [136]. We only con-
sider the main differences to OBDDs. For the binary op-
eration @ there is a synthesis algorithm similar to that
for OBDDs. However, for the operation A, synthesis may
cause an exponential blow-up (Becker, Drechsler, and
Werchner [12]). However, it can be tested in polynomial
time whether the result of an A-synthesis is different from

SHah & bhd b

Fig. 10. Moving complement attributes in OFDDs

the constant function 0 (Drechsler, Sauerhoff, and Siel-
ing [51]). This can be shown by exploiting the relation
between OFDDs and ¢&-OBDDs, which we describe be-
low. The replacement of a variable x; by the constant 0
can be done as for OBDDs by redirecting the edges to x;-
nodes to their 0-successors. The replacement of x; by 1 is
more complicated since an edge leading to an x;-node v
has to be redirected to a node representing f|,,—; which
need not be in the OFDD. Then, such a node has to be
computed which can be done by applying the synthesis
for the operation @ to the successors of v. Hence, the re-
placement of a variable by the constant 1 may square the
size of the OFDD. An example where a logarithmic num-
ber of replacements of variables by the constant 1 causes
an exponential blow-up was presented by Bollig, Lébbing,
Sauerhoff, and Wegener [16].

Since OFDDs are a canonical representation, the test
of whether a function is satisfiable and the computation of
a satisfying input can be done efficiently. However, the op-
eration SAT-count is NP-hard (Werchner, Harich, Drech-
sler, and Becker [136]). The variable ordering influences
the size of OFDDs similarly to OBDDs. The problem to
compute an optimal variable ordering for a given OFDD
was shown to be NP-hard by Bollig, Lobbing, Sauerhoff,
and Wegener [16].

Besides Shannon’s decomposition rule and the posi-
tive Davio decomposition rule, there is a third decompos-
ition rule, namely the negative Davio decomposition rule
= flz;=1 ©Ti(flz;=0 @ flz;=1). There is also a variant
of OFDDs based on the negative Davio decomposition.
Drechsler, Sarabi, Theobald, Becker, and Perkowski [50]
combined OBDDs, positive Davio OFDDs, and negative
Davio OFDDs to a new variant called ordered Kronecker
functional decision diagrams (OKFDDs). The main idea
is that at different nodes different decompositions may be
chosen. However, in order to obtain a canonical represen-
tation, for each variable z; the decomposition chosen at
all z;-nodes needs to be the same. Hence, in OKFDDs,
there is a decomposition type list which describes for each
variable the decomposition rule applied at nodes labeled
by this variable. Obviously, each OBDD, each positive
Davio OFDD, and each negative Davio OFDD can be
transformed into an OKFDD without increasing the size.
Hence, for each function, the size of the best OKFDD is
not larger than the minimum of the sizes of OBDDs, pos-
itive Davio OFDDs, and negative Davio OFDDs for this
function. Drechsler, Becker, and Jahnke [44] presented
heuristics for the choice of the decomposition type list.
Becker, Drechsler, and Theobald [11] adapted the defin-
ition of the 7-operator to describe the relation between
the functions that we obtain when considering a deci-
sion diagram as an OBDD or as an OKFDD, respec-
tively. They also showed that when considering canon-
ical representations with complemented edges there is
no further decomposition type besides Shannon, positive
Davio, and negative Davio that can reduce the size of
ordered DDs.

124 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

A representation that combines OBDDs, OFDDs, and
OKFDDs as well and that avoids the exponential blow-up
for the A-synthesis and the replacement of variables by 1
are parity OBDDs (€-OBDDs) which were introduced by
Gergov and Meinel [62] and by Waack [133]. In the follow-
ing definition we use the notation of Waack [133].

Definition 3. A ®-OBDD G representing the Boolean
functions f!,..., f™ over the variables z1,...,z, is
a directed acyclic graph with the following properties:

1. For each function f7 there is a set of pointers to nodes
in G.

2. There is one node without outgoing edges, called the
1-sink.

3. All internal nodes of G are labeled by a variable x;,
and have two (possibly empty) sets of successors, a set
of 0-successors and a set of 1-successors.

4. On each directed path in G each variable occurs at
most once as the label of a node.

5. On each directed path in G the variables are tested
according to a fixed variable ordering.

For each input a and each node v there is a set of compu-
tation paths which can be obtained by starting at v and
choosing the a;-edges leaving each x;-node. The function
fv represented at the node v takes the value 1 on the input

a iff the number of computation paths for a from v to the
1-sink is odd.

Figure 11 shows examples of ®-OBDDs for the func-
tion (21 Axg)® xg. Similar to OBDDs, the relation be-
tween the functions represented at some node v and the
function represented at its successors can be described;
however, now v may have several 0-successors uy, ... , U,
and several 1-successors wi, ... ,ws. Let v be labeled by
x;. It is not hard to show that

fo=2i(fuy ® @ fu) V@i fur &+ @ fur):

In the case r = s =1 we obtain Shannon’s decompos-
ition rule. Hence, a node of a &-OBDD can simulate
a node that decomposes the represented function by
Shannon’s decomposition. Figure 12 shows that a node
of a @-OBDD can also simulate a node for the positive
and negative Davio decomposition. Hence, OKFDDs can
be transformed into &-OBDDs without increasing the
number of nodes.

Fig. 11. Examples of &-OBDDs for the function (z1 Az2) ® x3

positive Davio OFDD

f’u = f’uo @mzfvl

voO@\O

negative Davio OFDD

@-OBDD
fv :Eifvo @Ii(fvo @fvl)

.

UO f’Ul

®-OBDD
v = Ei(f’uo @f’ul) @mifvo

fo *fvo @fﬂzfvl g
. O@\O w(Ou

fuo fur

Flg. 12. The simulation of nodes for positive and negative Davio
decomposition by nodes of &-OBDDs

Waack [133] applied methods from linear algebra to
show that the minimal number of z;-nodes of a ®-OBDD
only depends on the variable ordering and the represented
function, i.e., it is not possible to reduce, for example,
the number of z;-nodes by increasing the number of z;-
nodes. Although @&-OBDDs with a minimum number of
nodes are not obtained by reduction rules, they are called
reduced @-OBDDs. However, reduced @-OBDDs are not
a canonical representation. There may be different re-
duced &-OBDDs for the same function and the same vari-
able ordering (see Fig. 11). This is similar to the fact in
linear algebra that a basis of a vector space is not uniquely
determined though different bases have the same size. We
mention that Kral [83] obtained a canonical variant of @-
OBDDs by imposing further restrictions on ¢&-OBDDs.
Waack [133] also presented a reduction algorithm based
on Gaussian elimination for &-OBDDs. Lobbing, Siel-
ing, and Wegener [95] showed that Gaussian elimination
cannot be avoided when computing reduced ©-OBDDs
such that a linear time reduction algorithm is unlikely
to exist. Efficient algorithms for the other basic oper-
ations listed in Sect. 2 except SAT-count are presented
by Gergov and Meinel [62] and Waack [133]. The syn-
thesis algorithm for @-OBDDs is a generalization of the
synthesis algorithm for OBDDs. In particular, the size
of a &-OBDD for fAg is bounded by O(|V;||Vy|) where
V¢ and V, are the sizes of the given ¢&-OBDDs for f
and g, respectively. Since @-OBDDs are not a canonical
representation, the equivalence test of functions f and
g is performed by computing a &-OBDD for f@® g and
testing this @-OBDD for nonsatisfiability. SAT-count for
@-0OBDDs is NP-hard since it is already NP-hard for
OFDDs.

@-OBDDs seem to be quite difficult to implement be-
cause the number of successors of each node is not fixed.
Furthermore, ©-OBDDs are not useful for the represen-
tation of multipliers, since Gergov [60] proved an expo-
nential lower bound on the size of @-OBDDs for integer
multiplication.

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 125

3.2 BDDs with generalized variable orderings

Free BDDs (FBDDs) are the extension of OBDDs that
is obtained by relaxing the variable ordering condition
(5) of definition 1. On each path in an FBDD each vari-
able may be tested at most once, but different from OB-
DDs the variables may be tested in different orderings
on different paths. Even in the early paper of Fortune,
Hopcroft, and Schmidt [54] an example of a function is
presented for which OBDDs are of exponential size while
FBDDs are of polynomial size. As an example of such
a function we consider the hidden weighted bit function
HW B. This function was introduced by Bryant [24] as
an example of a simple function without polynomial size
OBDDs. It is defined as

rsif s> 1,

HWB(z1,...,2n) = {0 Fs—0.

On the right of Fig. 13 an FBDD for HW Bg is shown. We
only remark that this construction can be generalized to
show that there are FBDDs for HW B of quadratic size
(Sieling and Wegener [125]; for Bryant, see [61]).
However, in the description of the synthesis algorithm for
OBDDs we saw that it is essential to encounter the vari-
ables in the given OBDDs in the same ordering. Hence,
the synthesis algorithm cannot be generalized to (unre-
stricted) FBDDs. In order to get a similar synthesis algo-
rithm we restrict FBDDs in such a way that in different
FBDDs for the same input the variables are found in the
same ordering. On the other hand, for different inputs
the orderings may be different. Hence, we obtain more
general variable orderings than for OBDDs. Such general-
ized variable orderings can be represented by a BDD-like
graph called a graph ordering. We point out that graph
orderings do not represent functions. The following defin-
ition describes the properties of graph orderings as well
as the requirements on FBDDs respecting a graph order-
ing G. Such FBDDs are also called graph-driven BDDs

or G-FBDDs. They were introduced by Sieling and We-
gener [125] and Gergov and Meinel [61].

Definition 4. A graph ordering G over the variables
Z1,...,Ty is a graph with the following properties:

1. There is one node, called the source without incoming
edges.

2. There is one sink.

3. All non-sink nodes are labeled by a variable and have
an outgoing 0-edge and an outgoing 1-edge.

4. On each directed path from the source to the sink each
variable occurs exactly once.

A G-FBDD (' is a graph that fulfills the properties 1-4 of
definition 1 and the following relaxed ordering condition:
for each input a on the computation path for a in G’ the
variables are found in the same ordering as on the com-
putation path for a in G (where in G’ variables may be
omitted).

An example of a graph ordering is shown on the left
of Fig. 13, and the FBDD for HW B given on the right is
driven by this graph ordering.

We note that the same reduction rules can be applied
to FBDDs as to OBDDs. For each graph ordering G, re-
duced G-FBDDs are a canonical representation. Hence,
the satisfiability test and the equivalence test can be done
as for OBDDs. In addition, the synthesis operation can be
done in similar way to OBDDs. However, when comput-
ing a G-FBDD for f ® g from G-FBDDs Gy and G|, for f
and g, we also have to take into account the graph order-
ing G such that the size of the output is only bounded by
GI1GF 1yl

The main difference to OBDDs is the complexity
of the replacement operations (see Sieling and We-
gener [125]). Let us consider the replacement of x; by 0. In
OBDDs, we have the situation that the OBDDs starting
at the successors of each z;-node have the same variable
ordering. Hence, we can replace the pointers to each x;-
node v by pointers to the 0-successor of v. In G-FBDDs

Fig.13. A graph ordering G and a G-FBDD for HW Bg

126 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

the graph ordering starting at the 0-successor of an z;-
node v may be different from the graph ordering starting
at the 1-successor of v. Hence, for each xz;-node v we have
to represent the function computed at the 0-successor of
v using the graph ordering starting at the 1-successor of
v. This may cause on exponential blow-up. Therefore, we
have to choose the graph ordering in such a way that for
variables x; that have to be replaced by a constant the
graph orderings at both successors of xz;-nodes coincide.
In other words, we lose the advantages of FBDDs if we
have to perform replacement operations. The same holds
for the quantification operations.

Similar to the variable ordering problem for OBDDs
we have the problem to choose a suitable graph order-
ing. Bern, Meinel, and Slobodové [14] present heuristics
to create graph orderings which have a tree-like shape.
An exact algorithm for FBDD-minimization with expo-
nential run time and a heuristic are suggested by Giinther
and Drechsler [64]. The problem to minimize FBDDs and,
therefore, the problem of computing an optimal graph or-
dering can be shown to be NP-hard (Sieling [120]).

3.8 Decision diagrams with repeated tests

As examples of decision diagrams where the read-once
property (condition 4 in definition 1) is relaxed we con-
sider indexed BDDs (IBDDs) and kOBDDs.

Definition 5. An IBDD is a decision diagram fulfilling
properties 1-3 of definition 1 and the following extra con-
dition: the set of nodes can be partitioned into k layers
of nodes such that for each layer there is a variable or-
dering. A kKOBDD fulfills the further condition that the
variable orderings of all k layers are equal. The function
represented by an IBDD and a KOBDDs is defined as for
OBDDs (definition 2).

IBDDs were suggested by Jain, Bitner, Abadir, Abra-
ham, and Fussell [78] and k<OBDDs by Bollig, Sauerhoff,
Sieling, and Wegener [19]. Both extensions of OBDDs are
considered because the set of functions with polynomial
size representations is larger than for OBDDs. An ex-
ample for a function without polynomial size OBDDs but
with IBDDs and KOBDDs of quadratic size is the hid-
den weighted bit function which we considered in the last
section. Remember that OBDDs for HW B have expo-
nential size. Figure 14 shows a 20BDD (which is also an
IBDD) for HW By. In the figure the border between the
top layer and the bottom layer is indicated by a dotted
line. In the top layer of the 20BDD the number s is com-
puted and the second layer is used to perform a second
test of z5. This construction can be generalized to show
that O(n?) nodes suffice to represent HW B,, in a 20BDD
or an IBDD.

The size of IBDDs and kOBDDs for multiplication de-
pends on the number of layers. Burch [29] constructed
BDDs of size O(n?) for multiplication where in the BDDs

Fig.14. An IBDD and 20BDD for HW By

variables are tested repeatedly. These BDDs can be seen
as IBDDs and KOBDDs with a large number of layers. On
the other hand, the results of Gergov [60] imply an expo-
nential lower bound on the size of IBDDs and KOBDDs
for multiplication if the number of layers is constant. We
see that the size of IBDDs and kOBDDs depends on
the number of layers. Bollig, Sauerhoff, Sieling, and We-
gener [19] proved that the set of functions representable
by polynomial size IBDDs and kKOBDDs becomes strictly
larger when increasing the number £ of layers only by 1.

The definition of IBDDs and KOBDDs implies that we
have more possibilities to choose a variable ordering for
IBDDs than for tOBDDs. Hence, we may expect that IB-
DDs with k layers are more powerful than £OBDDs. In
fact, Krause [85] (for a complete proof see [84]) proved
an exponential lower bound on the size of KOBDDs for
the permutation matrix test function. This function gets
as input a Boolean matrix and has to test whether each
row and each column contains exactly one 1. It is easy to
construct an IBDD of linear size for this function. This
IBDD only consists of two layers, where in the first layer
the variables are arranged in a rowwise ordering and in
the second layer in a columnwise ordering.

However, IBDDs and kOBDDs are not a canonical
representation. Figure 15 shows an example of a BDD
which can be seen as an IBDD or kKOBDD consisting of
two layers. It is easy to see that neither the S-deletion rule
nor the merging rule is applicable to this BDD and that it
represents the constant function 0. However, the constant
function 0 also has a second representation, namely, the
BDD only consisting of the 0-sink. We see that the equiv-

&-
o Ol

Fig.15. An IBDD and 20BDD representing the constant
function 0

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 127

alence test cannot be performed by a simple isomorphy
test as for reduced OBDDs. The figure also shows that
IBDDs and kOBDDs may contain inconsistent paths. In
the figure such a path is indicated by a dotted line. As al-
ready mentioned in Sect. 2.3.1, inconsistent paths make
the satisfiability test more difficult since there may be
paths from some node to the 1-sink not corresponding to
any input. For the satisfiability test of IBDDs Jain, Bit-
ner, Abadir, Abraham, and Fussell [78] present a heuristic
algorithm. In fact, the satisfiability test for IBDDs is NP-
complete and the equivalence test is coNP-complete even
if there are only two layers (Bollig, Sauerhoff, Sieling,
and Wegener [19]). For kOBDDs the situation is differ-
ent. In [19], algorithms for the satisfiability test with a run
time of O(|G|?*~1) and for the equivalence test with a run
time of O(|G1|**71|G2|?*~1) are given. The run time is
polynomial if the number k of layers is constant. Hence,
we should keep the number of layers as small as possible.
The main idea used for the construction of the algorithms
is the fact that different layers of a KOBDD have the
same variable ordering and, hence, can be combined by
the synthesis algorithm for OBDDs. Recently, Giinther
and Drechsler [66] presented an efficient way how to im-
plement decision diagrams with repeated tests based on
OBDD packages.

Finally, we remark that the synthesis algorithm for
OBDDs works for IBDDs and kKOBDDs as well. One may
rename the variables such that the variables in differ-
ent layers have different names. Then we have an OBDD
and may apply the synthesis algorithm for OBDDs. Af-
terwards, we undo the renaming of the variables and we
get an IBDD or KOBDD, respectively. As in the case of
OBDDs the size of the result is bounded by O(|G||Ggl)
where |G| and |G| are the sizes of representations of the
functions f and g. However, there is a second algorithm
for synthesis where the size of the output is bounded by
O(|Gf|+|Gyg|). For example, we may get an IBDD (or
kEOBDD) for f A g by replacing the 1-sink of Gy by a copy
of Gy. In this synthesis algorithm the number of layer in-
creases which makes satisfiability and equivalence more
difficult. Thus, it is reasonable to apply the second syn-
thesis algorithm only if the result of the first synthesis
algorithm is too large.

3.4 Transformed BDDs

Transformed BDDs (TBDDs) were suggested by Bern,
Meinel, and Slobodové [13,100]. The main of idea of
TBDDs is to represent a function f by an OBDD for
a function g where f =go7 for a one-to-one function
7:{0,1}™ — {0, 1}™. This is a quite general concept be-
cause there are many possibilities to choose 7. In par-
ticular, IBDDs, kOBDDs, and graph-driven BDDs can
be implemented by a suitable choice of 7. Before we dis-
cuss possible choices of 7 we mention the advantages
of this concept. First, besides the transformation 7, we
only have to represent OBDDs. For this we can use the

available OBDD-packages. In addition, the synthesis al-
gorithm of the OBDD-package can be used. In fact, we
implicitly used the concept of TBDDs when describing
the synthesis algorithm for IBDDs and KOBDDs by a re-
naming of the variables and the application of the synthe-
sis of OBDDs. Counsider, for example, a 20BDD G with
the variable ordering z1,... ,z, in both layers. We may
choose 7(z1,... ,2n) = (z1,... ,Tpn,Z1,... ,T,) and may
consider G as an OBDD with 2n distinct variables. The
second advantage of TBDDs is that the transformation
can help to reduce the size of the representation.
However, of course, we encounter the new problem
of how to choose a suitable transformation and how to
represent the transformation. For this reason only quite
restricted transformations have been considered so far.
The first one is the use of graph orderings as trans-
formation. We saw in Sect. 3.2 that a graph ordering G
can be used to compute for each input ai,...,a, the
permutation 7 such that in each G-FBDD the variable
ordering (1),... ,Zx(n) is chosen. Let 7(ai,... ,a,) =
(@r(1)s-++ > @r(n)). It can easily be shown that this map-
ping is one-to-one. We note that ar(i),...,ar(,) is the
ordering in which the variables are tested in each G-
FBDD such that one may see 7 as a renaming of the
variables so that G-FBDDs become OBDDs. Hence, we
can implement graph-driven BDDs as TBDDs where the
graph ordering G is a description of the transformation
7. However, the application of the merging rule leads
to slightly different representations when implementing
graph-driven BDDs as described in Sect. 3.2 or when
using TBDDs. These differences are considered in Siel-
ing and Wegener [122]. For example, as mentioned above
there are graph-driven BDDs for the hidden weighted bit
function HW B of quadratic size. It can be shown that
using the transformation function defined by the graph
ordering described above leads to a TBDD for HW B that
only consists of three nodes independent of the number of
variables. However, this does not mean that the represen-
tation size of HW B is constant, since the representation
of the graph ordering also has to be taken into account.
The second type of transformations that have been
considered are linear transformations. Then a transform-
ation function 7(z1,...,2,) = (li(z),...,ln(z)) has to
be chosen where l1(z), ... ,l,(x) are linear combinations
of the variables x1,...,x,. In order to ensure that 7 is
one-to-one the linear combinations have to be linearly in-
dependent. One may understand this variant of TBDDs
as OBDDs where at the nodes linear combinations of vari-
ables may be tested. A similar idea was already used by
Aborhey [1]. An example of an OBDD with linear tests is
shown in Fig. 16. The semantics of this generalization of
OBDDs is defined in the obvious way. At a node labeled
by I;(x) the computation path follows the outgoing c-edge
iff I;(a) = c for the given input a.
Ginther and Drechsler [65] presented an example of
a function which can be represented in polynomial size
using OBDDs with linear transformations, but only in

128 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

Fig.16. An example of an OBDD with linear tests

exponential size using ordinary OBDDs. The results of
Bern, Meinel, and Slobodové [13] imply that the synthe-
sis algorithm for OBDDs can be applied for OBDDs with
linear tests as well, and that OBDDs with linear trans-
formations are a canonical representation. Lower bound
results for OBDDs with linear transformations and for
some of their generalization are presented in Sieling [121].

There remains the problem of choosing a suitable lin-
ear transformation. Giinther and Drechsler [63] presented
an exact algorithm to determine an optimal linear trans-
formation such that the OBDD size is minimized, but
due to its exponential runtime it is only applicable to
functions depending on a small number of variables. In
Sect. 2.4 we showed how a swap of two adjacent vari-
ables can be performed efliciently by redirecting pointers.
In a similar way, it is possible to combine linear combi-
nations [; and ;11 of adjacent levels to the new linear
combinations [; and I; & 1,41 on these levels and to com-
pute the corresponding OBDD with linear tests. Based
on this observation, Meinel, Somenzi, and Theobald [101]
extended the sifting algorithm of Rudell [115], which we
discussed in Sect. 2.4, to optimize linear transformations.

3.5 Word-level decision diagrams

All DD types presented so far can only represent Boolean
functions, i.e., functions f:{0,1}" — {0,1}". Recently,
(especially in the area of verification) DDs have also been
used to represent integer-valued functions, i.e., functions
of the form f:{0,1}" — Z. Many functions are very
complex, when considered at the bit-level, while they be-
come much simpler when described at word-level (see, for
example, integer multiplication). For these functions the
size becomes exponential for OBDDs independent of the
variable ordering, but WLDDs can represent them using
a polynomial number of nodes.

Before we describe WLDDs in more detail, we gen-
eralize the following three decompositions for word-level
functions:

fU = (1 - xi)fv\wizo + xifv\m:l
fv :fv|wi=0 +xi(fv\xi=1 - fv\x¢=0)
fv :fv|wi=1 + (l - mi)(fv|wi=0 - fv\xizl)

The notation S, pD and nD is used analogously to the
bit-level. x; still denotes a Boolean variable, but the
values of the functions are integer numbers and they are
combined with the usual operations (addition, subtrac-
tion, and multiplication) in the ring Z of integers.

The simplest extension of OBDDs is to introduce non-
Boolean terminals, i.e., to allow more than two terminals
in reduced graphs. The resulting DDs are called multi-
terminal BDDs (MTBDDs) and have been introduced by
Clarke et al. [33] or algebraic decision diagrams (ADDs)
presented by Bahar et al. [6] where in each node an
(integer-valued) Shannon decomposition is carried out.
Notice that the variables are still Boolean. In Fig. 17 an
MTBDD for the unsigned integer encoding is given. The
reduction rules are analogous to those applied to OBDDs.
The synthesis algorithms known for OBDDs can be di-
rectly transferred and have the same worst-case complex-
ity. However, the major drawback of this data structure is
that the number of nodes increases very fast, if the num-
ber of different terminals becomes large.

As an alternative, edge values are introduced to
increase the amount of subgraph sharing when using
integer-valued terminal nodes. Lai and Sastry [93] have
presented edge-valued binary decision diagrams (EVB-
DDs), which are MTBDDs where an edge weight a is
added to the function being represented. Thus, in the
EVBDD, an edge with weight a to a node v labeled with
variable x; represents the function

<a7 fv> =a+ (1 - xi)fv|wi=0 +xifv\xi=1~

If, additionally, a multiplicative edge-weight is allowed
the DDs are called factored EVBDDs (FEVBDDs) as pre-
sented by Tafertshofer and Pedram [128].

Bryant and Chen [27,28] introduced (multiplicative)
binary moment diagrams ((*)BMDs). BMDs make use of
the (integer-valued) positive Davio decomposition (pD)
and allow terminal nodes labeled with integer values
(analogous to MTBDDs), i.e., they are the integer-valued
generalization of OFDDs. *BMDs are a generalization of
BMDs in the sense that they allow multiplicative edge
weights: the values at the edges are multiplied with the
functions represented. Thus, an edge with weight m to

Fig.17. MTBDD for unsigned integer encoding

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 129

anode v in a *BMD represents the function

<m’ fv> = m(fv\wizo + mi(f’uh:i:l - fv\wiZO))'

Using this data structure, it was possible for the first time
to verify multipliers of large bit length (see Sect. 4 below).

Next, the idea from OKFDDs to use more than one
decomposition in a graph has been considered. Kronecker
binary moment diagrams (KBMDs) proposed by Drech-
sler, Becker, and Ruppertz [45] (or hybrid decision dia-
grams (HDDs) as they are called by Clarke, Fujita, and
Zhao [34]) try to combine the advantages of MTBDDs
and BMDs. Analogous to OKFDDs at the bit-level, differ-
ent decomposition types per variable can be used. Since
we consider integer-valued functions a lot of different
decomposition types are possible. They can be defined by
the set Z 3 2 of non-singular 2 x 2 matrices over Z [34]. As
for OKFDDs decomposition types are associated to the n
Boolean variables with the help of a decomposition type
list (DTL) d:= (d1,... ,d,) whered; € Z 3 2, i.e., for each
variable one fixed decomposition is chosen.

K*BMDs [45] differ from KBMDs in the fact that
they allow the use of integer weights, additive and multi-
plicative weights in parallel (as it has been considered in
FEVBDDs). K*BMDs (and FEVBDDs) make use of the
following type of representation:

<(a7m),fv> =a+mf,

In contrast to FEVBDDs, which are based on Shannon
decomposition, K¥BMDs allow different decomposition
types per variable. In the case of Shannon decomposition
and positive and negative Davio decomposition the func-
tion represented at an edge that has the weight (a, m) and
leads to the node v is then given by one of the following
equations, respectively:

((a,m), fo) =a+m((1 — i) fo)z;=0 + Ti fo|z;=1)
((a,m), fo) =a+m(fyz;=0 +Ti(fojz;=1 — folz;=0)
((a,m), fo) =a+m(fojz;=1

+ (1 =2:) (fo|o;=0 — folz;=1))

To make DDs with edge values a canonical representa-
tion, some further restrictions on the graph with respect
to weights are required. For simplicity, here we only com-
ment on these restrictions for the case of K¥BMDs. (For
other DD types the restrictions are similar.) Basically the
following is required: there exists only one terminal and
this terminal is labeled 0, the 0-edge of a node has ad-
ditive weight 0 and the remaining weights have greatest
common divisor 1. A K¥*BMD for the unsigned integer
encoding is given in Fig. 18. (The *BMD for the same
function is given in [27].) At the edges the additive and
multiplicative values are displayed by (a, m). The decom-
position type of each node is also given. For efficient im-
plementation of word-level DDs see [72].

Recently, Chen and Bryant [32] proposed a data struc-
ture, called multiplicative power hybrid decision diagrams

Fig. 18. K¥BMD for unsigned integer encoding

(*PHDDs). The data structure is in principle similar to
K*BMDs, but the edge values are interpreted as powers
of a given basis. *PHDDs (with basis two) have been suc-
cessfully used for verification of circuits computing float-
ing point values.

Analogous to bit-level DDs, recursive synthesis algo-
rithms can be described for word-level DDs. Again, expo-
nential blow-ups can occur as in the case of Davio based
bit-level DDs [9]. (For a detailed description of synthe-
sis operations for word-level DDs see [28].) Depending on
the type of operation and the function being represented,
Drechsler and Horeth [49] showed that in some cases poly-
nomial upper bounds can also be proven. Furthermore,
several common algorithms known from OBDDs can be
transferred, for example, such as dynamic variable re-
ordering, since the variable ordering influences the size
of the DD significantly, analogously to OBDDs. If DDs
without edge values are considered, the reordering algo-
rithms for OBDDs can be used. Horeth and Drechsler [73]
proposed two methods on how to perform variable re-
ordering in the presence of edge values, i.e., modifying the
reduction algorithm or slightly modifying the standard
sifting algorithm from Rudell [115]. These methods can
be further sped up (analogously to OBDDs) using lower
bound computations as proposed by Giinther, Drechsler,
and Horeth [67]

We conclude this section with some comments on the-
oretical results that give some further insight into the
relation between the different data structures. As de-
scribed above for bit-level DDs, it turns out that there
exist functions that can only be represented by OBDDs
efficiently but not by OFDDs, and vice versa. By defin-
ition OKFDDs are a superset of OBDDs and OFDDs,
and thus combine the advantages both with respect to
representation size; it even can be shown, that they rep-
resent functions efficiently where OBDDs and OFDDs
fail. A theoretical background for word-level DDs has
been provided by Becker, Drechsler, and Enders [9, 53].
Here, exponential trade-offs have been proven for DDs
with and without edge-weights and for the three differ-
ent decomposition types, i.e., Shannon, and positive and

130 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

negative Davio. The diagram in Fig. 19 displays the re-
lation between the most commonly used types of DDs.
The solid lines show the inclusion relation, e.g., OBDDs
are a subset of OKFDDs. On the left- (right-) hand side
the Shannon-based (Davio-based) DD types are given.
The DDs in the middle column are hybrid in the sense
that they allow different decomposition types within the
graph.
For more details on word-level DDs see [41].

4 Applications

In this section, we outline some applications of OBDDs
and also briefly mention fields where the extensions in-
troduced above have been used. The list is not com-
plete in the sense that “all” applications are covered and
not all applications have equal importance. Furthermore,
not all approaches presented in the literature can be re-
viewed. Instead, some representative ones are selected.
However, the different sections in the following outline
various perspectives regarding what should be consid-
ered when using DDs. (Further discussion on experiences
when using BDDs can be found in [69].) Here, only the
main ideas of the applications are proposed, while the pa-
pers in this special issue will give more details for some
selected applications.

4.1 Verification

Nowadays modern circuit design can contain several mil-
lion transistors. Verification of such large designs is be-
coming more and more difficult, since pure simulation
cannot guarantee correct behavior and exhaustive simu-
lation is too time consuming. Verification (in its “sim-

N

MTBDDs

EVBDDs

FEVBDDs
\

K*BMDs

plest” form) consists of checking two function representa-
tions, e.g., two circuits, for equivalence. If an OBDD can
be constructed this problem becomes easy, since OBDDs
are a canonical data structures. After OBDDs were intro-
duced in the mid 1980s they were used in compiled sim-
ulators by Bryant et al. [26]. First approaches by Malik
et al. [97] and Fujita et al. [57] using OBDDs for equiva-
lence checking mainly focus on finding good variable or-
derings from the circuit description (also see Sect. 2.4).
OBDDs are nowadays the state-of-the-art data structure
in verification and have been integrated in many com-
mercial tools. An example of a verification procedure has
been described by Appenzeller and Kuehlmann [3]. If the
OBDD construction cannot be completed due to memory
limitations, combinations of OBDDs and structural ap-
proaches can also be used. A successful approach using
“cuts and heaps” has been described by Kuehlmann and
Krohm [89].

Nevertheless, for some “important” functions, such
as multiplication, OBDDs fail due to their exponen-
tial size. In these cases, especially when dealing with
arithmetic circuits, word-level DDs as introduced in
the previous section can be applied. Using *BMDs,
Bryant and Chen [27] showed that multipliers up to
256 bits could be verified. Unfortunately, *BMDs fail
for the representation of circuits that can easily be rep-
resented using OBDDs [46]. For this purpose, hybrid
DDs, such as HDDs and K*BMDs, have been applied.
By definition K*BMDs are a superset of *BMDs and
allow in all cases a representation at least as efficient
as OBDDs. In particular, in applications where data-
path and control logic have to be verified, a hybrid
data structure should be chosen. Recent studies by
Cyrluk, Moller, and Ruefl [39] and Héreth and Drech-
sler [74] have presented “real world” examples where

bit-level
OFDDs
BMDs
e]
*BMDs - edge values

Fig. 19. World of ordered decision diagrams

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 131

only mixed representations can be applied, while pure
approaches based on OBDDs and *BMDs, respec-
tively, fail.

In addition, in the field of sequential circuits OBDDs
have shown to work very well as demonstrated by Coud-
ert, Berthet, and Madre [37]. Using OBDDs, reachability
analysis and image computation for finite state machines
with more than several million states could be verified.
These techniques have been applied in the field of sym-
bolic model checking by Burch et al. [30] and McMil-
lan [98]. Based on OBDDs, industrial designs have also
been successfully checked. The integration of WLDDs in
symbolic model checking has been proposed by Clarke
and Zhao [35].

4.2 Logic synthesis

The classic 2-level minimizers, such as ESPRESSO [22],
used an enumeration of the terms in an array structure
for representing the prime implicants. Coudert, Fraisse,
and Madre [38] showed that using DDs tremendously im-
proved the performance of the algorithms. For more de-
tails see [36].

An interesting approach for FPGA design is based
on decompositions of functions as proposed by Ashen-
hurst [5]. The corresponding decomposition can easily
be expressed by OBDDs and several researchers have
studied the corresponding algorithms intensively (see, for
example, [91,118,137]). The interesting property from
the DD point of view is that a cut through the OBDD has
to be found that crosses a minimal number of edges. Thus,
minimization algorithms for OBDDs, e.g., based on sift-
ing, are obviously not directly applicable and should be
tailored to this context.

The construction of circuits resulting from a direct
mapping of OBDDs has gained great interest, since the
graph directly corresponds to a multiplexor network. One
argument is that the mapping process can be simplified
due to the simple structure. Additionally, the resulting
circuits have good testability properties [4,7,8]. In this
area, more general types than OBDDs, such as OKFDDs,
have several advantages, since in the area of circuit design
a small reduction in the graph size may also have a large
influence on the size of the resulting circuit.

4.3 Testing

One possibility of using DDs in the area of testing has just
been mentioned, i.e., in the form of design for testability.
Alternatively, the symbolic representation of a circuit by
OBDDs can be used for many problems in testing, such
as test pattern generation [15,40,127] and fault simula-
tion [87]. Using OBDDs, it was possible for the first time
to compute exact signal probabilities and fault detection
probabilities (see Krieger et al. [86, 88]). These probabil-
ities are used in different areas in testing, such as weight
optimization in built-in self-testing.

4.4 Combinatorial optimization and integer programming

DDs have been used in many other combinatorial op-
timization problems. For example, in many tasks dur-
ing logic synthesis sets of elements have to be repre-
sented. ZBDDs have been introduced by Minato [104]
(also see [107] in this special section) especially for this
problem. Even though from the theoretical point of view
they only differ by a linear factor from OBDDs with re-
spect to size [12] they are frequently used in applications,
such as 2-level minimization [36]. In addition, for multi-
level synthesis they can be used, for example, for factor-
ization in logic synthesis [106].

ZBDDs have also been used in “completely” differ-
ent areas, e.g., counting the number of knight’s tours on
a chessboard (Lobbing and Wegener [96]). The main idea
is to construct ZBDDs for which each satisfying input
corresponds to a knight’s tour. Thus, the operation SAT-
count can be used to obtain the number of knight’s tours.
We only remark that several refinements are necessary
since a ZBDD representing all knight’s tours is much too
large.

Lai, Pedram, and Vrudhula [92] use edge-valued BDDs
for the implementation of an algorithm solving 0-1-
integer linear programs. Such an optimization problem
consists of a linear goal function

c1r1+ -+ cpTy — min,
where ¢; € Z , the m linear constraints
a;1T1 4+ ainxn < by,

where i € {1,... ,m} and a; j,b; € Z , and the integrality
constraints

Z1,...,%n € {0,1}.

It is well-known that solving 0-1-integer linear programs
is NP-hard such that we can only hope for heuristic
approaches. One can easily see that the goal function
and the left-hand sides of the linear constraints can
be represented by EVBDDs of linear size. The main
ideas of the approach of Lai, Pedram, and Vrudhula
are roughly the following ones. In a first step from the
EVBDD for each linear constraint an OBDD is con-
structed that computes 1 on those inputs for which the
constraint is fulfilled. Then the constructed OBDDs are
combined by the logical AND. Finally, by a procedure
similar to synthesis, the EVBDD for the goal function
and the OBDD representing all linear constraints are
combined in order to obtain an assignment to the x-
variables that fulfills all constraints and for which the
goal function takes the minimum. Since each of these
steps may cause an exponential blow-up of the sizes of
the BDDs, several refinements are used; in particular,
all these ideas are integrated into a branch-and-bound
algorithm in order to obtain a solver for 0-1 integer

132 R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

linear programs. In addition, this example shows that
OBDDs and their variants may be useful in quite unre-
lated areas.

4.5 Binary decision diagrams in complezity theory

As already mentioned in the introduction, BDDs have
also been investigated in complexity theory. For a long
time researchers in applications and in complexity the-
ory did not know of each other since the terminology
was different, e.g., BDDs are called branching programs
in complexity theory. However, the motivation for con-
sidering BDDs in complexity theory is quite different.
There BDDs are explored as a model describing the space
complexity of computations. First, BDDs without the
read-once property and without variable orderings were
considered. It can be proved that polynomial size BDDs
represent exactly those functions that can be computed
by any reasonable model of sequential computation with
a logarithmic amount of memory, see, for example, We-
gener [134]. Thus, the problem to prove superlogarith-
mic space bounds for explicitly defined functions reduces
to proving superpolynomial size bounds for BDDs. How-
ever, to obtain such a proof is considered to be as dif-
ficult as obtaining a solution of the P # NP question.
For this reason restricted BDDs have been considered in
order to develop methods for the proof of lower bounds.
Among others the variants of BDDs used in applications
are also investigated and powerful methods for proving
lower bounds are known. As the most important method
we mention the theory of communication complexity.
Roughly, the part of the input tested in the upper part
of an OBDD has to “communicate” with the part of the
input tested in the lower part of the OBDD. If much in-
formation has to be exchanged between the parts of the
OBDD in order to compute the function, its width has to
be large. For an introduction to communication complex-
ity theory we refer to the monographs of Hromkovi¢ [75]
and Kushilevitz and Nisan [90]. We already mentioned
some lower bound results in Sect. 3. An overview over
lower bound results for several variants of BDDs, in par-
ticular, variants that are not used in applications, is given
by Razborov [113]. We would like to point out that com-
munication complexity is the same measure that is min-
imized when searching for good decompositions in logic
synthesis as described above.

After recognizing the importance of BDD-like repre-
sentations as a data structure for Boolean functions, re-
searchers in complexity theory also investigated the com-
plexity of operations on BDDs. The most important clas-
sification of problems in complexity theory is the distinc-
tion between problems solvable in polynomial time and
NP-complete problems (see Garey and Johnson [59]). The
advantage of this classification is that it is independent
of the model of computation. However, in some appli-
cations exponential time algorithms may be helpful for

small instances, while in other applications even poly-
nomial time algorithms may be too slow. Nevertheless,
the classification helps to determine whether it makes
sense to search for an efficient algorithm for solving the
considered problem exactly or whether we have to be sat-
isfied with approximate solutions or heuristic solutions.
Examples of negative results from complexity theory that
solve problems raised in applications are the nonapprox-
imability result for the variable ordering problem (theo-
rem 3), or the result of Scholl, Becker, and Weis [117] and
Thathachar [131] that word-level decision diagrams for
division have exponential size and, therefore, cannot be
used to verify division circuits. An example of a positive
result is the introduction of &-OBDDs by Waack [133].
Although they seem to be difficult to implement, they
explain and show how to avoid the exponential blow-up
happening for some operations on OFDDs. Several other
results from complexity theory that concern the complex-
ity of operations on OBDDs and their generalizations are
mentioned in Sects. 2 and 3.

5 Conclusion

We have presented a brief overview on OBDDs and their
generalizations. Theoretical concepts and applications
have been discussed as an introduction to the articles of
this special section. The six contributions in the following
discuss several issues on application in more detail. Prac-
tical aspects of implementation of DD packages are given
and an evaluation approach for OBDDs is proposed.

We conclude with a list of books that have been
published on OBDDs and related topics. The interested
reader can find some more information about OBDDs
and their generalizations in these books. The books in al-
phabetic order of the first author’s name are: Drechsler
and Becker [42], Hachtel and Somenzi [68], Meinel and
Theobald [102], Minato [105], and Wegener [135].

6 Contributions to this special section

Finally, after having given this (brief) overview on BDDs,
we revisit the articles contributed to this special section
and discuss their contents in the context of the previ-
ous sections. While mainly basic concepts and several
theoretical results are considered in this introductory art-
icle, it was the goal to cover many aspects of BDDs that
are driven by applications in the contributed articles. We
roughly distinguish four main categories:

Concepts: starting from BDDs as introduced in Sect. 2
several extensions of the basic concept have been pro-
posed (see Sect. 3).

Implementations: since the data structures should be ap-
plied to real-world problems it turned out to be very
important to find clever implementations.

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice 133

Properties: besides the theoretical aspects as discussed in
previous sections, experimental studies have been car-
ried out that provide an in-depth understanding of the
behavior of algorithms on BDDs.

Applications: the wide use of BDDs and their extensions
is mainly due to their successful application to many
problems that were known to be infeasible before.

The articles in the following were selected in such a way
that all of these aspects are touched.

We start with an article by Bryant and Chen, where
an extension of BDDs to represent so-called pseudo-
Boolean functions, i.e., functions with an integer range
and a Boolean domain, is introduced. The resulting data
structure, called BMDs (see above), especially allows us
to represent arithmetic functions very efficiently. Based
on BMDs, it was for the first time possible to represent
multipliers of several hundred bits input-length very com-
pact. Besides the representation, synthesis algorithms are
also presented and it is shown how the algorithms known
from BDDs can be extended to this more general case.

The second paper by Minato describes another exten-
sion of BDDs, where the focus is not arithmetic func-
tions, but the efficient handling of sets of combinations.
Again, first the data structure, called ZBDDs, is de-
scribed and then algorithms for efficient manipulation are
introduced. The efficiency of the algorithms known from
BDDs, i.e., polynomial worst-case behavior, can be trans-
ferred to this case, too.

The next two papers focus on the implementation of
BDDs and their extensions, respectively.

Somenzi describes an efficient implementation of
BDDs. Besides the “pure” BDD structure, assistant data
structures, such as hash-based unique and computed
table, are introduced and their influence is discussed. Fur-
thermore, aspects of the memory management during
BDD construction and variable reordering are described.
Statistical experiments are given to give an impression of
the influence of the various aspects.

The paper by Horeth discusses the problems that re-
sult from implementation of extensions of BDDs and
presents hybrid algorithms, i.e., algorithms mixing differ-

ent DD-types. One section is devoted to modulo arith-
metic, since this allows us to describe an elegant method
for verification of high-level descriptions. Several experi-
ments and a case study are given to provide an impression
of the efficiency of the techniques proposed.

While BDDs have been studied intensively from a the-
oretical point of view, most experimental evaluations
have been driven by applications. In the paper by Har-
low and Brglez robustness properties are experimentally
studied. After introducing the benchmark generation
principles, variable ordering heuristics are studied. The
behavior of BDDs and algorithms working on them is
studied under various aspects of randomization.

Finally, the paper of Mohnke, Molitor, and Malik
presents an application of BDDs. BDDs are used for
Boolean matching that is one of the underlying problems
in combinational equivalence checking. BDDs are used
for the computation of signatures of a given function to
determine matching candidates. Experiments on bench-
mark functions show the effectiveness of the approach.

The papers classified according to the four categories
introduced above are shown in Fig. 20. The papers have
been selected in such a way that all perspectives are
considered, even though a complete coverage cannot be
given. The papers are ordered starting from the basic
data structures moving towards the application.

Acknowledgements. We would like to thank the reviewers for their
comments and suggestions for improvement for all papers of this
special section.

References

1. Aborhey, S.: Binary decision tree test functions. IEEE Trans
Comp 27(11): 1461-1465, 1988

2. Akers, S.B.: Binary decision diagrams. IEEE Trans Comp 27:
509-516, 1978

3. Appenzeller, D.P., Kuehlmann, A.: Formal verification of
a PowerPC microprocessor. In: Int Conf Comp Design, pp.
79-84, 1995

4. Ashar, P., Devadas, S., Keutzer, K.: Path-delay-fault testa-
bility properties of multiplexor-based networks. Integration,
VLSI J 15(1): 1-23, 1993

Applications Mohnke, Molitor and Malik

!

|
Properties Harlow and Brglez

}

|
Implementations Somenzi Horeth

! !

BMD B t and Ch

Concepts BDD < ryant and Chen

Minato

Fig. 20. Classification of contributed papers

134

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

Ashenhurst, R.L.: The decomposition of switching functions.
In: Int Symp Theor Switching Funct, pp. 74-116, 1959

Bahar, R.I.,, Frohm, E.A., Gaona, C.M., Hachtel, G.D.,
Macii, E., Pardo, A., Somenzi, F.. Algebraic decision
diagrams and their applications. In: Int Conf CAD,

pp. 188-191, 1993

. Becker, B.: Synthesis for testability: Binary decision diagrams.

In: Symp Theor Aspects Comp Sci. LNCS 577. Berlin, Heidel-
berg, New York: Springer-Verlag, 1992, pp. 501-512

. Becker, B., Drechsler, R.: Synthesis for testability: circuits de-

rived from ordered Kronecker functional decision diagrams. In:
Eur Des Test Conf, p. 592, 1995

. Becker, B., Drechsler, R., Enders, R.: On the computational

power of bit-level and word-level decision diagrams. In: ASP
Des Autom Conf, pp. 461-467, 1997

Becker, B., Drechsler, R., Theobald, M.: On the implementa-
tion of a package for efficient representation and manipulation
of functional decision diagrams. IFIP WG 10.5 Workshop on
Applications of the Reed-Muller Expansion in Circuit Design,
pp. 162-169, 1993

Becker, B., Drechsler, R., Theobald, M.: On the expressive
power of OKFDDs. Formal Methods Syst Des 11(1): 5-21,
1997

Becker, B., Drechsler, R., Werchner, R.: On the relation be-
tween BDDs and FDDs. Inf Comput 123(2): 185-197, 1995
Bern, J., Meinel, C., Slobodové, A.: Efficient OBDD-based
Boolean manipulation in CAD beyond current limits. In: Des
Autom Conf, pp. 408-413, 1995

Bern, J., Meinel, C., Slobodovd, A.: Some heuristics for gen-
erating tree-like FBDD types. IEEE Trans CAD 15: 127-130,
1996

Bhattacharya, D., Agrawal, P., Agrawal, V.D.: Test gener-
ation for path delay faults using binary decision diagrams.
IEEE Trans Comp 44(3): 434447, 1995

Bollig, B., Lobbing, M., Sauerhoff, M., Wegener, I.: Com-
plexity theoretical aspects of OFDDs. In: Sasao, T., Fujita,
M. (eds.): Representations of discrete functions, pp. 249-268.
Kluwer Academic, Boston, Mass., USA, 1996

Bollig, B., Lébbing, M., Wegener, I.: Simulated annealing
to improve variable orderings for OBDDs. In: Int Workshop
Logic Synth, pp. 5.1-5.10, 1995

Bollig, B., Lobbing, M., Wegener, I.: On the effect of local
changes in the variable ordering of ordered decision diagrams.
Info Process Lett 59: 233-239, 1996

Bollig, B., Sauerhoff, M., Sieling, D., Wegener, 1.: Hierarchy
theorems for kKOBDDs and kIBDDs. Theor Comput Sci 205:
45-60, 1998

Bollig, B., Wegener, I.: Improving the variable ordering of OB-
DDs is NP-complete. IEEE Trans Comp 45(9): 993-1002, 1996
Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implemen-
tation of a BDD package. In: Des Automat Conf, pp. 4045,
1990

Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-
Vincentelli, A.L..: Logic minimization algorithms for VLSI
synthesis. Kluwer Academic, Boston, Mass., USA, 1984
Bryant, R.E.: Graph-based algorithms for Boolean function
manipulation. IEEE Trans Comp 35(8): 677-691, 1986
Bryant, R.E.: On the complexity of VLSI implementations
and graph representations of Boolean functions with applica-
tion to integer multiplication. IEEE Trans Comp 40: 205-213,
1991

Bryant, R.E.: Binary decision diagrams and beyond: enabling
techniques for formal verification. In: Int Conf CAD, pp. 236—
243, 1995

Bryant, R.E., Beatty, D., Brace, K., Cho, K., Sheffler, T.:
COSMOS: a compiled simulator for MOS circuits. In: Des Au-
tom Conf, pp. 9-16, 1987

Bryant, R.E., Chen, Y.-A..: Verification of arithmetic func-
tions with binary moment diagrams. In: Des Autom Conf, pp.
535-541, 1995

Bryant, R.E., Chen, Y.-A..: Verification of arithmetic cir-
cuits using binary moment diagrams. Software Tools Technol
Transfer (this issue)

Burch, J.R.: Using BDDs to verify multipliers. In: Des Au-
tomat Conf, pp. 408-412, 1991

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang,
L.J.: Symbolic model checking: 1020 states and beyond. Inf
Comput 98(2): 142-170, 1992

Butler, K.M., Ross, D.E., Kapur, R.K., Mercer, M.R.: Heuris-
tics to compute variable orderings for efficient manipulation
of ordered binary decision diagrams. In: Des Autom Conf, pp.
417-420, 1991

Chen, Y.-A., Bryant, R.E.: *PHDD: an efficient graph repre-
sentation for floating point circuit verification. In: Int Conf
CAD, pp. 2-7, 1997

Clarke, E., Fujita, M., McGeer, P., McMillan, K.L., Yang, J.,
Zhao, X.: Multi terminal binary decision diagrams: An effi-
cient data structure for matrix representation. In: Int Work-
shop Logic Synth, pp. P6a: 1-15, 1993

Clarke, E.M., Fujita, M., Zhao, X.: Hybrid decision diagrams
— overcoming the limitations of MTBDDs and BMDs. In: Int
Conf CAD, pp. 159-163, 1995

Clarke, E.M., Zhao, X.: Word level symbolic model checking
- a new approach for verifying arithmetic circuits. Technical
Report CMU-CS-95-161, 1995

Coudert, O.: Two-level logic minimization: an overview. Inte-
gration, VLSI J 17(2): 97-140, 1994

Coudert, O., Berthet, C., Madre, J.C.: Verification of sequen-
tial machines using Boolean functional vectors. In: Proc IFIP
Int Workshop Applied Formal Methods Correct VLSI Des, pp.
111-128, 1989

Coudert, O., Fraisse, H., Madre, J.C.: A breakthrough in two-
level logic minimization. In: Int Workshop Logic Synth, p.
P2b, 1993

Cyrluk, D., Moller, O., Ruef3, H..: An efficient decision pro-
cedure for the theory of fixed-sized bitvectors. In: Comput
Aided Verification. LNCS 1254. Berlin, Heidelberg, New York:
Springer-Verlag, 1997

Drechsler, R.: BiTeS: a BDD based test pattern generator for
strong robust path delay faults. In: Eur Des Autom Conf, pp.
322-327, 1994

Drechsler, R.: Formal verification of circuits. Kluwer Aca-
demic, Boston, Mass., USA, 2000

Drechsler, R., Becker, B.: Binary decision diagrams - the-
ory and implementation. Kluwer Academic, Boston, Mass.,
USA,1998

Drechsler, R., Becker, B., Gockel, N.: A genetic algorithm for
variable ordering of OBDDs. IEE Proc 143(6): 364-368, 1996
Drechsler, R., Becker, B., Jahnke, A.: On variable ordering
and decomposition type choice in OKFDDs. In: IEEE Trans
Comp 47(12), December 1998

Drechsler, R., Becker, B., Ruppertz, S.: K¥BMDs: a new data
structure for verification. In: Eur Des Test Conf, pp. 2-8, 1996
Drechsler, R., Becker, B., Ruppertz, S.: The K¥BMD: a verifi-
cation data structure. IEEE Des Test Comp, pp. 51-59, 1997
Drechsler, R., Drechsler, N., Giinther, W.: Fast exact mini-
mization of BDDs. In: Des Autom Conf, pp. 200-205, 1998
Drechsler, R., Giinther, W.: Using lower bounds during dy-
namic BDD minimization. In: Des Autom Conf, pp. 29-32,
1999

Drechsler, R., Horeth, S.: Manipulation of *BMDs. In: ASP
Des Autom Conf, pp. 433-438, 1998

Drechsler, R., Sarabi, A., Theobald, M., Becker, B.,
Perkowski, M.A.: Efficient representation and manipulation
of switching functions based on ordered Kronecker functional
decision diagrams. In: Des Autom Conf, pp. 415-419, 1994
Drechsler, R., Sauerhoff, M., Sieling, D.: The complexity of the
inclusion operation on OFDDs. IEEE Trans CAD 17(5): 457—
459, 1998

Drechsler, R., Theobald, M., Becker, B.: Fast OFDD based
minimization of fixed polarity Reed-Muller expressions. In:
European Des Autom Conf, pp. 2-7, 1994

Enders, R.: Note on the complexity of binary moment diagram
representations. IFIP WG 10.5 Workshop Appl Reed-Muller
Expansion Circuit Des, pp. 191-197, 1995

Fortune, S., Hopcroft, J., Schmidt, E.M.: The complexity of
equivalence and containment for free single variable program
schemes. In: Int Colloquium Automat Lang Comput. LNCS
62. Berlin, Heidelberg, New York: Springer-Verlag, 1997, pp.
227-240

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

Friedman, S.J., Supowit, K.J.: Finding the optimal variable
ordering for binary decision diagrams. IEEE Trans Comp
39(5): 710-713, 1990

Fujii, H., Ootomo, G., Hori, C.: Interleaving based variable or-
dering methods for ordered binary decision diagrams. In: Int
Conf CAD, pp. 38-41, 1993

Fujita, M., Fujisawa, H., Kawato, N.: Evaluation and im-
provements of Boolean comparison method based on binary
decision diagrams. In: Int Conf CAD, pp. 2-5, 1988

Fujita, M., Matsunaga, Y., Kakuda, T.: On variable ordering
of binary decision diagrams for the application of multi-level
logic synthesis. In: Eur Conf Des Autom, pp. 50-54, 1991
Garey, M.R., Johnson, D.S.: Computers and intractability —
a guide to the theory of NP-completeness. Freemann, San
Francisco, 1979

Gergov, J.: Time-space tradeoffs for integer multiplication on
various types of input oblivious sequential machines. Inf Pro-
cess Lett 51: 265-269, 1994

Gergov, J., Meinel, C.: Efficient analysis and manipulation of
OBDD’s can be extended to FBDD’s. IEEE Trans Comp 43:
1197-1209, 1994

Gergov, J., Meinel, C.: Mod-2-OBDD’s — a data structure that
generalizes EXOR-sum-of-products and ordered binary deci-
sion diagrams. Formal Methods Syst Des 8: 273—-282, 1996
Gilinther, W., Drechsler, R..: Linear transformations and exact
minimization of BDDs. In: Great Lakes Symp VLSI, pp. 325—
330, 1998

Gilinther, W., Drechsler, R.: Minimization of free BDDs. In:
ASP Des Autom Conf, 1999

Gilinther, W., Drechsler, R.: On the computational power
of linearly transformed BDDs. Inf Process Lett 119-125(75),
2000

Gilinther, W., Drechsler, R.: Implementation of read-k-times
BDDs on top of standard BDD packages. In: VLSI Design
Conf, pp. 173-178, 2001

Gilinther, W., Drechsler, R., Héreth, S.: Efficient dynamic min-
imization of word-level DDs based on lower bound computa-
tion. In: Int Conf Comp Des, pp. 383-388, 2000

Hachtel, G., Somenzi, F.: Logic synthesis and verification algo-
rithms. Kluwer Academic, Boston, Mass., USA 1996

Harlow, J., Brglez, F.: Design of experiments and evaluation
of BDD ordering heuristics. Software Tools Technol Transfer,
(this issue)

Hett, A., Drechsler, R., Becker, B.: MORE: Alternative imple-
mentation of BDD packages by multi-operand synthesis. In:
Eur Des Autom Conf, pp. 164-169, 1996

Horeth, S.: Compilation of optimized OBDD-algorithms. In:
Eur Des Autom Conf, pp. 152-157, 1996

Horeth, S.: A word-level graph manipulation package. Soft-
ware Tools Technol Transfer, (this issue)

Hoéreth, S., Drechsler, R.: Dynamic minimization of word-level
decision diagrams. In: Des Autom Test Eur, pp. 612-617, 1998
Horeth, S., Drechsler, R.: Formal verification of word-level
specifications. In: Des Autom Test Eur, pp. 52-58, 1999
Hromkovi¢, J..: Communication complexity and parallel com-
puting. Berlin, Heidelberg, New York: Springer-Verlag, 1997
Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for
the knapsack and sum of subset problems. J ACM 22: 463—
468, 1975

Ishiura, N., Sawada, H., Yajima, S.: Minimization of binary
decision diagrams based on exchanges of variables. In: Int
Conf CAD, pp. 472-475, 1991

Jain, J., Bitner, J.B., Abadir, M.S., Abraham, J.A., Fussell,
D.: Indexed BDDs: algorithmic advances in techniques to rep-
resent and verify Boolean functions. IEEE Trans Comp 46:
1230-1245, 1997

Jeong, S.-W., Kim, T'.-S., Somenzi, F.: An efficient method for
optimal BDD ordering computation. In: Int Conf VLSI CAD,
pp. 252-256, 1993

Jeong, S.-W., Plessier, B.F., Hachtel, G.D., Somenzi, F.: Vari-
able ordering and selection for FSM traversal. In: Int Conf
CAD, pp. 476-479, 1991

Kebschull, U., Rosenstiel, W.: Efficient graph-based computa-
tion and manipulation of functional decision diagrams. In: Eur
Conf Des Autom, pp. 278-282, 1993

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

135

Kebschull, U., Schubert, E., Rosenstiel, W.: Multilevel logic
synthesis based on functional decision diagrams. In: Eur Conf
Des Autom, pp. 43-47, 1992

Kral, D.: Algebraic and uniqueness properties of parity
ordered binary decision diagrams and their generalization. In:
Symp Math Found Comp Sci. LNCS 1873. Berlin, Heidelberg,
New York: Springer-Verlag, 2000, pp. 477-487

Krause, M.: Untere Schranken fiir Berechnungen durch
Verzweigungsprogramme. PhD thesis, Humboldt Universitat
Berlin, 1988. (in German)

Krause, M.: Lower bounds for depth-restricted branching pro-
grams. Inf Comput 91: 1-14, 1991

Krieger, R.: PLATO: a tool for computation of exact signal
probabilities. In: VLSI Des Conf, pp. 65—-68, 1993

Krieger, R., Becker, B., Keim, M.: A hybrid fault simulator
for synchronous sequential circuits. In: Int Test Conf, pp. 614—
623, 1994

Krieger, R., Becker, B., Sinkovi¢, R.: A BDD-based algorithm
for computation of exact fault detection probabilities. In: Int
Symp Fault-Tolerant Comp, pp. 186—-195, 1993

Kuehlmann, A., Krohm, F.: Equivalence checking using cuts
and heaps. In: Des Autom Conf, pp. 263268, June 1997
Kushilevitz, E., Nisan, N.: Communication complexity. Cam-
bridge University, Cambridge, UK, 1997

Lai, Y.-T., Pedram, M., Vrudhula, S.B.K.: BDD based decom-
position of logic functions with application to FPGA synthe-
sis. In: Des Autom Conf, pp. 642-647, 1993

Lai, Y.-T., Pedram, M., Vrudhula, S.B.K.: EVBDD-based al-
gorithms for integer linear programming, spectral transform-
ation, and function decomposition. IEEE Trans CAD 13(8):
959-975, 1994

Lai, Y.-T., Sastry, S.: Edge-valued binary decision diagrams
for multi-level hierarchical verification. In: Des Autom Conf,
pp. 608-613, 1992

Lee, C.Y.: Representation of switching circuits by binary deci-
sion diagrams. Bell Syst Tech J 38: 985-999, 1959

Lobbing, M., Sieling, D., Wegener, 1.: Parity OBDDs cannot
be handled efficiently enough. Inf Process Lett 67: 163-168,
1998

Lobbing, M., Wegener, I.: The number of knight’s tours equals
33,439,123,484,294 — counting with binary decision diagrams.
Electron J Combin 3: R5, 1996

Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-
Vincentelli, A.L.: Logic verification using binary decision
diagrams in a logic synthesis environment. In: Int Conf CAD,
pp. 6-9, 1988

McMillan, K.L.: Symbolic Model Checking. Kluwer Academic,
Boston, Mass., USA 1993

Meinel, C., Slobodova, A.: On the complexity of construct-
ing optimal ordered binary decision diagrams. In: Symp Math
Found Comp Sci. LNCS 841. Berlin, Heidelberg, New York:
Springer-Verlag, 1994, pp. 515-524

Meinel, C., Slobodové, A.: A unifying theoretical background
for some BDD-based data structures. Formal Meth Syst Des
11: 223-237, 1997

Meinel, C., Somenzi, F., Theobald, T.: Linear sifting of deci-
sion diagrams. In: Des Autom Conf, pp. 202-207, 1997
Meinel, C., Theobald, T.: Algorithms and data structures in
VLSI design: OBDD - foundations and applications. Berlin,
Heidelberg, New York: Springer-Verlag

Mercer, M.R., Kapur, R., Ross, D.E.: Functional approaches
to generating orderings for efficient symbolic representations.
In: Des Autom Conf, pp. 624-627, 1992

Minato, S.: Zero-suppressed BDDs for set manipulation in
combinatorial problems. In: Des Autom Conf, pp. 272-277,
1993

Minato, S.: Binary decision diagrams and applications for
VLSI CAD. Kluwer, Boston, Mass., USA, 1996

Minato, S.: Fast factorization for implicit cube set representa-
tion. IEEE Trans CAD 15: 377-384, 1996

Minato, S.: Zero-suppressed BDDs and their applications.
Software Tools Technol Transfer, (this issue)

Minato, S., Ishiura, N., Yajima, S.: Shared binary decision
diagram with attributed edges for efficient Boolean function
manipulation. In: Des Autom Conf, pp. 52-57, 1990

136

109

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

R. Drechsler, D. Sieling: Binary decision diagrams in theory and practice

. Mohnke, J., Molitor, P., Malik, S.: Application of BDDs
in Boolean matching techniques for formal logic com-
binatorial verification. Software Tools Technol Transfer,
(this issue)

Moret, B.M.E.: Decision trees and diagrams. Comput Surv
14: 593-623, 1982

Ochi, H., Ishiura, N., Yajima, S.: Breadth-first manipulation
of SBDD of Boolean functions for vector processing. In: Des
Autom Conf, pp. 413-416, 1991

Ochi, H., Yasuoka, K., Yajima, S.: Breadth-first manipulation
of very large binary decision diagrams. In: Int Conf CAD, pp.
48-55, 1993

Razborov, A.A.: Lower bounds for deterministic and nonde-
terministic branching programs. In: Fundam Comput Theor.
LNCS 529. Berlin, Heidelberg, New York: Springer-Verlag,
1991, pp. 47-60

Ross, D.E., Butler, K.M., Kapur, R., Mercer, M.R..: Fast func-
tional evaluation of candidate OBDD variable orderings. In:
Eur Conf Des Autom, pp. 4-10, 1991

Rudell, R.: Dynamic variable ordering for ordered binary de-
cision diagrams. In: Int Conf CAD, pp. 42-47, 1993

Savicky, P., Wegener, I.: Efficient algorithms for the trans-
formation between different types of binary decision diagrams.
Acta Inform 34: 245-256, 1997

Scholl, C., Becker, B., Weis, T.M.: Word-level decision dia-
grams, WLCDs and division. Technical Report 102, Albert-
Ludwigs-University, Freiburg, In: Int. Conf. on Computer
Aided Design, pp. 672-677, 1998

Scholl, C., Molitor, P.: Efficient ROBDD based computation
of common decomposition functions of multioutput Boolean
functions. In: Saucier, G., Mignotte, A. (eds.): Novel ap-
proaches in logic and architecture synthesis, pp. 57-63. Chap-
man & Hall, London, 1995

Sieling, D.: The nonapproximability of OBDD minimization.
Inf Comput (to appear)

Sieling, D.: The complexity of minimizing FBDDs. In: Symp
Math Found Comp Sci. LNCS 1672. Berlin, Heidelberg, New
York: Springer-Verlag, 1999, pp. 251-261

Sieling, D.: Lower bounds for linear transformed OBDDs and
FBDDs. In: Conf Found Software Technol Theor Comput Sci.
LNCS 1738. Berlin, Heidelberg, New York: Springer-Verlag,
1999, pp. 356-368

Sieling, D., Wegener, I.: A comparison of free BDDs and
transformed BDDs. Formal Meth Syst Des (to appear)
Sieling, D., Wegener, I.: NC-algorithms for operations on bi-
nary decision diagrams. Parallel Process Lett 3(1): 3-12, 1993
Sieling, D., Wegener, I.: Reduction of OBDDs in linear time.
Inf Process Lett 48(3): 139-144, 1993

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

Sieling, D., Wegener, I.: Graph driven BDDs — a new data
structure for Boolean functions Theor Comput Sci 141: 283—
310, 1995

Somenzi, F.: Efficient manipulation of decision diagrams.
Software Tools Technol Transfer, (this issue)

Stanion, T., Bhattacharya, D.: TSUNAMI: a path oriented
scheme for algebraic test generation. In: Int Symp Fault-
Tolerant Comp, pp. 3643, 1991

Tafertshofer, P., Pedram, M.: Factored edge-valued binary
decision diagrams. Formal Meth Syst Des 10(2): 243-270,
1997

Tani, S., Hamaguchi, K., Yajima, S.: The complexity of the
optimal variable ordering problems of shared binary decision
diagrams. In: 4th Int Symp Algorithms Comput. LNCS 762.
Berlin, Heidelberg, New York: Springer-Verlag, 1993, pp. 389—
398

Tani, S., Imai, H.: A reordering operation for an ordered
binary decision diagram and an extended framework for com-
binatorics of graphs. In: 5th Int Symp Algorithms Comput.
LNCS 834. Berlin, Heidelberg, New York: Springer-Verlag,
1994, pp. 575-583

Thathachar, J.S.: On the limitations of ordered represen-
tations of functions. In: Comput Aided Verif. LNCS 1427.
Berlin, Heidelberg, New York: Springer-Verlag, 1998, pp. 232—
243

Touati, H.J., Savoj, H., Lin, B.: Implicit state enumeration of
finite state machines using BDDs. In: Int Conf CAD, pp. 130—
133, 1991

Waack, S.: On the descriptive and algorithmic power of parity
ordered binary decision diagrams. In: 14th Symp Theor As-
pects Comp Sci. LNCS 1200. Berlin, Heidelberg, New York:
Springer-Verlag, 1997, pp. 201-212

Wegener, 1.: The complexity of Boolean functions. Wiley,
New York, and B.G. Teubner, Stuttgart, 1987

Wegener, I.: Branching programs and binary decision dia-
grams — theory and applications. STAM Monogr Discrete Math
Appl, 2000

Werchner, R., Harich, T., Drechsler, R., Becker, B.: Satisfia-
bility problems for ordered functional decision diagrams. In:
Sasao, T., Fujita, M. (eds.): Representations of discrete func-
tions, pp. 233-248. Kluwer Academic, Boston, Mass., USA
1996

Wurth, B., Eckl, K., Antreich, K.: Functional multiple-output
decomposition: Theory and implicit algorithm. In: Des Autom
Conf, pp. 54-59, 1995

Yang, B., Chen, Y., Bryant, R., O’Hallaron, D.: Space and
time efficient BDD construction via working set control. In:
ASP Des Autom Conf, pp. 423-432, 1998

