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Abstract
Ordered Binary Decision Diagrams (OBDDs) have found

widespread use in CAD applications such as formal verification,
logic synthesis, and test generation. OBDDs represent Boolean
functions in a form that is both canonical and compact for many
practical cases. They can be generated and manipulated by effi-
cient graph algorithms. Researchers have found that many tasks
can be expressed as series of operations on Boolean functions,
making them candidates for OBDD-based methods.

The success of OBDDs has inspired efforts to improve their
efficiency and to expand their range of applicability. Techniques
have been discovered to make the representation more compact
and to represent other classes of functions. This has led to im-
proved performance on existing OBDD applications, as well as
enabled new classes of problems to be solved.

This paper provides an overview of the state of the art in
graph-based function representations. We focus on several recent
advances of particular importance for formal verification and
other CAD applications.

1. Introduction
Although the idea of representing Boolean functions as deci-

sion graphs has a long heritage, e.g., Akers’ seminal paper [1],
their widespread use as a data structure for symbolic Boolean
manipulation only started with the 1986 formulation of a set of
algorithms for constructing and operating on these data structures
[6]. One key to this algorithmic formulation was the imposition
of an ordering requirement, i.e., that the variables along every
path from the root to a leaf occur in a fixed order.

Since 1986, activity involving BDDs has been widespread [8].
Numerous applications, especially in CAD area have been found.
Refinements to the data structure and the manipulation algorithms
have yielded improved time and memory performance. The basic
ideas of BDDs have been extended to allow efficient represen-
tation of other classes of functions. An unfortunate byproduct
of the dynamic and diverse research community in this area has
been a proliferation of names and terminology, leading to an
“alphabet soup” of acronyms. The following is only a partial
list: OBDD, FBDD, FDD, OKFDD, EVBDD, MTBDD, BMD,
*BMD, ZBDD, ABDD, HDD, TDD, and OPDD. Keeping track
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Figure 1: Example OBDDs. A dashed (solid) line indicates the
branch when the decision variable is 0 (1).

of the developments and how they relate to one another is a chal-
lenging task.

In this paper, we present recent advances in the area of graph-
based function representations. Since it would be impractical
to chronicle all of the developments, we instead highlight a few
that have had particularly strong impact, especially in the area of
formal verification.

2. Background
A BDD represents a function as a graph, with eachnonterminal

node labeled by a function variable. Figure 1 illustrates BDDs
representing of the functions

���
1 � �

2 ��� �
3 (left) and

�
1 � �

2 � �
3

(right), where we use symbols � , � , and overline to indicate
Boolean OR, AND, and NOT, respectively. Each node has two
outgoing edges, corresponding to the cases where the variable
evaluates to 0 (shown as a dashed line) or to 1 (shown as a solid
line). The terminal nodes(shown as boxes) are labeled with 0 or 1,
correspondingto the possible function values. For any assignment
to the variables, the function value is determined by tracing a path
from the root to a terminal node following the appropriate branch
from each node.

The graphs of Figure 1 are examples Ordered BDDs (OBDDs).
That is, if we consider the variables to be ordered

�
1 	 �

2 	 �
3 ,

then every path from the root to a leaf encounters variables in
ascending order. By applying a set of reduction rules [6], it is
possible to reduce an OBDD to a canonical form, i.e., to a unique
representation for that particular variable ordering.



Many operations on Boolean functions can be implemented
by simple graph algorithms that operate on their OBDD repre-
sentations [6, 8]. Examples include: determining whether two
functions are equivalent, generating the function corresponding
to the AND, OR, or NOT of other functions, or determining the
size of the on-set for a function. These algorithms all have time
and space complexities that are polynomial in the sizes of their
operand graphs. They also have the property that all BDDs gen-
erated obey a single variable ordering and are in canonical form,
making them suitable as arguments for subsequent operations.

To apply BDDs to a problem domain, the data to be represented
must first be encoded as Boolean functions. The task is then ex-
pressed as a sequence of steps, each involving an operation on
one or more BDDs. For example, consider the task of generating
BDD representations for the output functions of a combinational
circuit. Variables are defined for the primary inputs and BDDs
for the functions denoted by the variables (each having a single
nonterminal node) are generated. Then the circuit is evaluated
symbolically, generating the BDD for each gate output by apply-
ing the gate operation to the BDDs representing the gate inputs.
This evaluation proceeds according to some topological order of
the network until the BDDs for all primary outputs have been
generated.

3. Dynamic Variable Ordering
When using OBDDs the user must select some total ordering

of the function variables. In most applications, a single ordering
is used for all functions represented, making it feasible to com-
bine and compare different functions. Practitioners have found
that finding a suitable variable ordering is critical—a good order-
ing will yield compact representations with reasonable memory
requirements, while a poor one will exceed the physical memory
limits of even the largest workstations. Beyond this point, the
performance becomes unacceptable due to severe thrashing in the
virtual memory system.

Although the 1986 paper discusses the variable ordering is-
sue and presents several rules of thumb for manually choosing a
good one, OBDDs only became popular with the development of
heuristic methods for automatically generating an ordering based
on information about the application. For example, given a gate-
level combinational circuit, heuristic methods can generally find
an ordering for variables representing the primary inputs such that
the primary output functions havecompact OBDD representations
[13, 19]. Other applications, such as when analyzing sequential
circuits, have proved less amenable to such an approach. Fur-
thermore, this approach yields a static ordering to be used from
application start to finish. In practice, the ideal ordering may
change as the application moves through different phases of com-
putation. Finally, every new application requires a new heuristic
method to choose an appropriate variable ordering based on the
problem description.

Rudell’s dynamic variable ordering method [26] overcomes
many of these limitations. As the application proceeds, a global,
multi-rooted BDD is maintained representing all functions of in-
terest with a single variable ordering. Periodically the program
attempts to reorder the variables in this graph to reduce its mem-
ory requirement. This reordering can proceed in the background
without any direct involvement by the application program. Thus,
dynamic reordering can adapt to the changing functions being rep-
resented, and it works with any application.

A key to the success of dynamic variable reordering is the ease
with which it can be integrated into existing BDD packages. For
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Figure 2: Swapping Adjacent Variables in BDD. The exchange
can be implemented without altering any incoming pointers.

example, with the package described in [5], functions are denoted
by pointers to nodes within the global BDD. A reference count is
maintained for each nodeto detect whenall pointers to it havebeen
eliminated, and hence the node storage can be reclaimed. This
“garbage collection” is performed in the background periodically.
Thus, at any given time it is possible to determine the number of
pointers to a node, but not where these pointers are located.

Rudell’s implementation performs the variable ordering in
conjunction with garbage collection. That is, the program pe-
riodically attempts to reduce the storage requirement by rearrang-
ing the global BDD according to a new variable ordering and
by reclaiming unused node storage. It reorders the variables by
performing a series of swaps between adjacent variables. This
swapping and reclaiming does not require altering any external
pointers to the global BDD and hence can proceed with no effect
on the application except for an occasional reduction in perfor-
mance.

Figure 2 illustrates the procedure for swapping variables
� �

and
� ���

1 in the global BDD. Suppose in the original ordering
(left), function

�
is indicated by a pointer to a node � in the

global BDD, where node � is labeled by variable
� � . In the usual

case, node � will have branches to nodes � 0 and � 1, each labeled
by variable

� ���
1 , and these nodes will have branches to the sub-

graphs indicated as
�

00 ,
�

01,
�

10 , and
�

11. Following the swapping,
function

�
should be indicated by a pointer to a node labeled by

variable
� ���

1; this node should have branches to nodes labeled
by variable

� � ; and these nodes should in turn have branches to
the subgraphs

�
00,

�
10 ,

�
01 , and

�
11 . This result is indicated on the

right. Note how function
�

is still indicated by a pointer to node
� , and that any pointers to existing functions (shown as

�
0 and

�
1)

remain undisturbed. Instead, we have introduced nodes � 0 and � 1 .
Thus, the swapping can take place without changing any of the
external pointers to the global BDD. Although this figure shows
an increase in the graph size, in practice node � 0 or � 1 can often
be reclaimed, and nodes � 0 or � 1 may already exist. Somewhat
different transformations are required when node � has branches
to nodes labeled by variables other than

� ���
1.

Dynamic variable reordering has proved especially useful
when verifying and analyzing sequential circuits, e.g., to prove
that two circuits realize equivalent state machines. These appli-
cations typically proceed through a series of phases, first con-
structing representations of the next state functions from the com-
binational logic, possibly converting to a transition relation, and
then performing an iterative computation of the reachable state
set. Although heuristic methods based on traversing the gate-
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Figure 3: Example of a Free BDD. Variables may occur in any
order, but only once along each path.

level network can find a suitable ordering for representing the
next state functions, this ordering often does not work well for
subsequentphases. Dynamic reordering allows the representation
to adapt to the changing functions as the computation proceeds.
Dynamic reordering can slow down an application by as much as
a factor of 10, but users have found that it can make the difference
between success and failure in completing an application.

4. Relaxing the Ordering Requirement
Although selecting a good initial variable ordering and chang-

ing it dynamically as the application proceeds can minimize the
amount of memory used by OBDDs, there are times when the total
ordering requirement of OBDDs becomes an unacceptable limi-
tation. For example, there are some classes of functions that have
OBDDs of size exponential in the number of variables, regardless
of the ordering chosen [7]. This exponential blowup severely
limits the problems sizes that can be handled. One example of
a class of intractable functions are those representing the outputs
of a combinational multiplier. Ochi et al [22] have successfully
built the OBDDs for a 15-bit multiplier, requiring over 12 million
nodes (around 0.26 Gigabytes). Increasing the word size by one
bit causes the number of nodes to increase by a factor of approxi-
mately 2.7, and hence even more powerful computers will not be
able to get much beyond this point.

One obvious strategy then is to eliminate or relax the variable
ordering requirement. For example, Ashar et al go to the opposite
extreme of removing all restrictions on how variables occur in
the graph [2]. A variable may occur at any point along a path
and even multiple times. At this extreme, however, most of the
desirable algorithmic properties found in OBDDs are lost. There
is no canonical form, and the algorithms for many operations have
exponential worst case complexity.

A more prudent approach is to relax the ordering requirement
enough to improve the compactness of the representation, but
without eliminating the desirable algorithmic properties of OB-
DDs. One such relaxation is to allow variables to occur in any
order but at most once along any path from the root to a terminal
node. Such BDDs are known as either “Free” BDDs or 1-time
branching programs, an example of which is shown in Figure 3.
Both Gergov and Meinel [14], as well as Sieling and Wegener
[25] have developed efficient algorithms based on this represen-
tation. In both cases, they further require that all functions to
be represented obey a common ordering. That is, for any given
variable assignment, the resulting paths in all graphs would con-

tain the variables in the same order. The difference with OBDDs
is simply that the variable ordering may differ from one variable
assignment to another.

Recently, Bern et al have shown that such free BDDs can be
implemented by simple extensions to an existing OBDD package
[4]. In their implementation, the reordering of variables according
to different variable assignments is viewed as a transformation of
the function input space. Many of the operations performed on
functions are independent of such a transformation, as long as all
functions are transformed in a consistent way. They were able to
show that some functions which were previously intractable could
now be handled easily, and that modest performance gains could
be obtained on a number of benchmark circuits. For the case
of multipliers, unfortunately, only modest gains can be expected:
it has recently been shown that any free BDD representation of
these functions grows exponentially with the number of variables
[23].

It is too early to determine the full impact of this relaxation in
the ordering constraint. It allows BDDs to be applied to classes
of circuits that previously experienced exponential blowup, but
it is not clear how significant these classes are. In its favor, the
approach is backward compatible with OBDDs, and the overhead
caused by this generalization is relatively low.

5. Changing Function Decompositions
Another approach to obtaining a more compact representation

for Boolean functions is to change the interpretation of the nodes.
BDDs are based on a decomposition of Boolean functions com-
monly called the “Shannon expansion,” but which was, in fact,
formulated by Boole. A function

�
can be decomposed in terms

of a variable
�

as:

� � � � �
� � � � � � (1)

In this equation
� � is the “positive cofactor” of

�
with respect to�

, i.e., the result of replacing variable
�

by the value 1. Similarly,�
� is the “negative cofactor,” i.e., the result of replacing variable�
by the value 0. Observe that at least one of the terms in the

equation must evaluate to 0. In other words, this decomposition
splits the function into two separate cases, according to whether
the variable

�
evaluates to 1 or to 0. Each node and its descendants

in a BDD represents a Boolean function
�

, where for node label�
, one outgoing edge is directed to the subgraph representing

� � ,
and the other to

�
� . In following a path from the root to a terminal

node, we are simply taking successive cofactors of the function
until it reduces to a constant value.

Alternative function decompositionscan be expressedin terms
of the XOR (exclusive-or) operation:

� � �
� � � � ��� � (2)

� � � � � � � � � (3)

where
��� � denotes the Boolean difference of function

�
with re-

spect to variable
�

, i.e.,
��� � � � � � �

� . Equation 2 is commonly
referred to as either the “Reed-Muller” or “Negative Davio” ex-
pansion, while Equation 3 is referred to as the “Positive Davio”
expansion. These decompositions are somewhat analogous to
the Taylor expansion of a continuous function—they describe the
function in terms of its value for a fixed value of

�
(either 0 or

1), combined with how the function varies as
�

changes (given
by

��� � ). Since the variable
�

only takes on two values, only two
terms in the expansion are required.
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Figure 4: Reduction Rules Different rules apply for BDDs (left),
and for FDDs or ZBDDs (right).

Kebschull et al have proposed using the Reed-Muller expan-
sion as the basis for a graph representation of Boolean functions,
yielding a representation they term “Ordered Functional Decision
Diagrams” (OFDDs) [16]. This representation is analogous to
OBDDs, except that the two outgoing arcs from a node represent
the negative cofactor and the Boolean difference of the function
with respect to the node variable. As examples, the graphs of Fig-
ure 1 can be interpreted as FDDs, with the solid edge from each
node indicating the Boolean difference. Under this interpretation,
the example graphs denote the functions

���
1
� �

2 � � �
3 (left) and�

1
� �

2
� �

3 (right).
OFDDs have many properties in common with OBDDs: the

representation is canonical and many operations can be imple-
mented with polynomial complexity graph algorithms. Several
differences are worth highlighting. First, a different reduction
rule is applied to make the graph canonical. The rules for the two
classes of graphs are illustrated in Figure 4. Both express condi-
tions under which a node can be eliminated from the graph with
all incoming pointers directed to a child. In both cases we want
such a transformation to occur when the function is independent
of the node variable. If function

�
is independent of variable

�
,

then its cofactors will satisfy
� � � �

� � �
, and its difference

will satisfy
� � � � 0. Thus, we want the transformation to occur

under the conditions illustrated on the left hand side of the figure
for BDDs, and under those of the right hand side for FDDs.

Second, the evaluation of a function given its OFDD involves
more than tracing a single path. In particular, for the case of a
node variable with value

�
we must evaluate both subgraphs and

take their XOR. In other words, we compute the positive cofactor
of function

�
as

� � � �
� �

��� � . Nonetheless, evaluation can be
performed in time linear in the number of nodes by a postorder
traversal of the graph.

For some classes of functions, FDDs are exponentially more
compact than OBDDs, but the reverse can also hold. To obtain the
advantages of each, Drechsler et al have proposed a hybrid form
they call “Ordered Kronecker Functional Decision Diagrams”
(OKFDDs) [12]. In their representation, each variable has an as-
sociated decomposition, which can be any one of the three given
by Equations 1–3. All functions to be represented must follow a
common variable ordering and every occurrence of a given vari-
able must use the same decomposition. They implement decom-
position in conjunction with dynamic variable reordering. That is,
at the same time variables are being reordered, the program tries
different decompositions for the variables, attempting to reduce
the global graph size. Their experiments show an average reduc-

tion in the graph size of 35% over OBDDs for a set of benchmark
circuits.

It is still to early to judge the impact of FDDs and OKFDDs
on practical applications. It is not clear how much reduction can
be obtained for real-life examples. However, the ideas of chang-
ing the interpretation of nodes and of setting the decomposition
type independently for each variable have had major impact in
verifying arithmetic circuits, as will be discussed later.

6. Zero-Suppressed BDDs
Minato has developed a variant of BDDs for solving combi-

natorial problems. His “Zero-Suppressed” BDDs (ZBDDs) are
suitable for applications that can be solved by representing and
manipulating sparse sets of bit vectors [20]. That is, suppose the
data for a problem are encoded as bit vectors of length � . Then
any subset of the vectors can be represented by a Boolean function
over � variables yielding 1 when the vector corresponding to the
variable assignment is in the set.

For example, consider problems involving sum-of-products
forms of logic functions. Such forms are commonly represented
as sets of “cubes,” each denoted by a string containing symbols0,
1, and -. For example, the function

� �
1 � �

2 � � � �
2
� �

3 � can be
represented by the cube set

�
01- � -11 � -00 � . To encode cubes

with bit vectors, we introduce a pair of bits for each cube position,
using the encodings 10, 01 and 00 to denote symbols 1, 0, and -,
respectively. We would then represent the cube set shown with
bit vectors

�
011000 � 001010 � 000101 � .

Observe in our example that the set of bit vectors is “sparse”
in two ways. First, the set contains much fewer than the 2 �
possible bit vectors. Second, the bit vectors themselves have
many elements equal to zero. In fact, our particular encoding
of cube symbols was chosen for this purpose. This motivates
choosing a representation that exploits both forms of sparseness.
Zero-suppressed BDDs are much like OBDDs, except that they
use the reduction rule shown on the right hand side of Figure 4,
rather than that on the left. That is, a node can be omitted if
setting the node variable to 1 causes the function to yield 0. When
representing sets of bit vectors, this condition occurs when having
a 1 at some bit position implies that the vector is not in the set.
For sparse sets, this condition arises frequently, and hence many
node eliminations are possible.

As examples, the graphs of Figure 1 can both be interpreted as
ZBDDs, denoting the sets

�
101 � 011 � (left) and

�
100 � 010 � 001 �

(right). Observe that the function denoted by some subgraph in
a ZBDD depends on its context. For example, the right hand
example of Figure 1 has three edges leading to the terminal node
labeled 1, each having a different interpretation. The rightmost
one corresponds to the case where

�
2
� �

3
� 0, the middle to the

case where
�

3
� 0, and the bottom to the case where no further

constraints are placed on the variables. In a sense, the reduction
rule defines what the “default” condition is when a variable does
not occur along some path in a graph. For BDDs and FDDs, the
default is that the function value is independent of the variable,
while with ZBDDs the default is that this variable must be 0.

Minato has shown that a number of combinatorial problems
can be solvedefficiently using a ZBDD representation [21]. These
include classical problems in two-level logic minimization, as
well as techniques used in multi-level minimization such as weak
division. It can be shown that ZBDDs reduce the size of the
representation of a set of � -bit vectors over OBDDs by at most a
factor of � [24]. In practice, the reduction is large enough to have
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significant impact.

7. Representing Numeric-Valued Functions
Building on the success of BDDs, there have been several ef-

forts to extend the concept to represent functions over Boolean
variables, but having non-Boolean ranges, such as integers or real
numbers. These functions arise in such applications as comput-
ing the state probabilities in a sequential circuit [3], using spectral
methods for technology mapping [10], integer linear program-
ming [18], and for verifying arithmetic circuits [9, 17]. Keeping
the variables Boolean allows the use of a branching structure sim-
ilar to BDDs. The challenge becomes finding a compact way to
encode the numeric function values.

7.1. MTBDDs
One straightforward way to represent numeric-valued func-

tions is use a decision graph like a BDD, but to allow arbitrary
values on the terminal nodes. We will call such a representation
a “Multi-Terminal” BDD (MTBDD) [10], although they have
also been called “Arithmetic Decision Diagrams” (ADDs) [3].
Figure 5 illustrates the MTBDD representation of the function�

0
�

2
�

1
�

4
�

2, i.e., the result of interpreting three bits as an
unsigned binary number. Observe that evaluating an MTBDD for
a given variable assignment is similar to evaluation in a BDD:
we simply trace the unique path from the root to a terminal node
determined by the variable values and return the terminal node
value as the function value.

As this example illustrates, MTBDDs are very inefficient for
representing functions yielding values over a large range. For
the case of unsigned binary numbers of length � , there are 2 �
possible values and hence the MTBDD representation must have
an exponential number of terminal nodes. For some applications,
the number of possible values is small enough that this shortcom-
ing is acceptable. With such applications, the simplicity of the
representation and its similarity to BDDs make MTBDDs viable
candidates.

7.2. EVBDDs
For applications where the number of possible function values

is too high for MTBDDs, alternative representations have been

devised to try to obtain a more compact form. Lai et al developed
“Edge-Valued” BDDs (EVBDDs) incorporating numeric weights
on the edges in order to allow greater sharingof subgraphs[17, 18].
As an example, the EVBDD representation of the function

�
0
�

2
�

1
�

4
�

2 is shown in Figure 5. In our drawings of EVBDDs,
edge weights are shown in square boxes, where an edge without
a box has weight 0. Evaluating a function represented by an
EVBDD involves tracing the path determined by the variable
assignment, summing the edge weights and the terminal node
value. As can be seen in this example, a sum of weighted bits
is represented by having each bit weight on the edge leading
out of the node labeled with the corresponding variable. This
representation grows linearly with the number of bits, a major
improvement over MTBDDs.

Various schemes can be used for “normalizing” edge weights
so that the resulting graph provides a canonical form for the func-
tion. For example, the standard formulation of EVBDDs requires
the edge corresponding to variable value 0 from each node to
have weight 0. EVBDDs can represent Boolean functions as
well, requiring the same number of nonterminal nodes as the
corresponding OBDD. However, the overhead of storing and ma-
nipulating edge weights makes them somewhat less efficient for
this task. Similarly, EVBDDs always improve on MTBDDs in
terms of the number of nonterminal nodes, but with somewhat
higher overhead per node.

Although EVBDDs improve on MTBDDs in many cases, there
are still important classes of functions for which they have un-
acceptable complexity. For example, one important application
of numeric-valued functions is in formally verifying arithmetic
circuits, e.g., those that compute functions such as addition,
multiplication, division, and radix conversion. In this applica-
tion, we want to express the numeric values encoded by oper-
ations on words of data. As an example, consider two � -bit
unsigned integers, represented by bit vectors �� � �

��� 1 � . . . � � 0

and �� � �
��� 1 � . . . � � 0. We can view these as encoding numeric

values � ��� ��� 1�
	
0 2

� � � , and similarly for � . As we have seen,
EVBDDs can represent these “encoding functions” for � and �
with complexity linearly in � . The result of applying addition
or subtraction to these words, i.e., � � � and �
��� can also
be represented by linear-sized EVBDDs. However, EVBDD rep-
resentations of multiplication ����� or exponentiation 2 � grow
exponentially with � . Thus, for verifying arithmetic circuits,
EVBDDs are limited to relatively simple units such as adders,
ALUs, and comparators.

7.3. BMDs
An alternative approach for representing numeric functions,

especially those encountered in arithmetic circuit verification, in-
volves changing the function decomposition with respect to its
variables in a manner analogous to FDDs. The resulting repre-
sentation is known as a “Binary Moment Diagram” (BMD) [9].

For expressing functions having numeric range, the Boole-
Shannon expansion of Equation 1 can be generalized as:

� � �
1 � � � � � � � � � � � (4)

where � , � , and � denote multiplication, addition, and subtraction,
respectively. Note that this expansion relies on the assumption
that variable

�
is Boolean, i.e., it evaluates to either 0 or 1. Both

MTBDDs and EVBDDs are based on such a pointwise decompo-
sition.

The moment decomposition of a function is obtained by rear-



ranging the terms of Equation 4:

� � �
� � � � � � � � �

� �
� �

� � � � � � � (5)

where
� � � � � � � �

� is called the linear moment of
�

with
respect to

�
. This terminology arises by viewing

�
as being a

linear function with respect to its variables, and thus
� � � is the

partial derivative of
�

with respect to
�

. Since we are interested
in the value of the function for only two values of

�
, we can

always extend it to a linear form. The negative cofactor is called
the constant moment, i.e., it denotes the portion of function

�
that

remains constantwith respect to
�

. Observe the similarity between
the moment decomposition and the Reed-Muller decomposition
of Equation 2.

Each node of a BMD describes a function in terms of its mo-
ment decomposition with respect to the variable labeling the node.
As an example, the BMD representation of the unsigned binary
encoding function

�
0
�

2
�

1
�

4
�

2 is illustrated in Figure 5. The
two outgoing arcs from each node denote the constant (dashed)
and linear moments (solid) of the function with respect to the
variable. Observe that the linear moment of the example function
with respect to any variable

� � is simply 2
�
: the function decom-

poses according to the bit weights. This property makes BMDs
particularly well suited for representing arithmetic functions.

An extension of BMDs is to incorporate weights on the
edges [9], yielding a representation called “Multiplicative” BMDs
(*BMDs) [9]. These edge weights combine multiplicatively,
rather than additively as with EVBDDs. With *BMDs, such
word-level functions as � � � , � � � , � � � , 2 � all have
linear-sized representations.

Both BMDs and *BMDs offer considerableadvantagesover all
other known representationsfor representing arithmetic functions,
but this gain comes at a cost. Many of the operations one would
like to perform on the functions have worst case complexity that
grows exponentially in the operand graph sizes. Although, in
practice the algorithms are often quite efficient, our experience
has been that the exponential cases do arise, mandating various
tactics to work around them. In addition, BMDs can represent
Boolean functions, but generally not as efficiently as BDDs. In
fact, there are cases where the BMD representation of a Boolean
function can be exponentially larger than the BDD representation,
and we have encountered such cases in practice. Furthermore, the
overhead of representing and manipulating edge weights is high.
Since we encounter very large weights (e.g., 2512 in verifying a
256-bit multiplier), the code must use an unbounded precision
number representation.

Adapting the idea of OKFDDs, Clarke, et al have recently
developed a hybrid between BMDs and MTBDDs that they term
“Hybrid” Decision Diagrams (HDDs) [11]. In their representa-
tion, each variable can use one of four different decompositions,
including both pointwise and moment decompositions.

7.4. Word-Level Verification of Arithmetic Cir-
cuits

A major success in formal verification has been in using
numeric-valued functions for verifying arithmetic circuits. Fig-
ure 6 illustrates schematically an approach to circuit verification
originally formulated by Lai and Vrudhula [17]. The overall goal
is to prove a correspondence between a logic circuit, represented
by a vector of Boolean functions �� , and the specification, rep-
resented by the word level function

�
. The Boolean functions
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Figure 6: Formulation of Verification Problem. The goal of
verification is to prove a correspondence between a bit-level cir-
cuit and a word-level specification

can correspond to the outputs of a combinational circuit in terms
of the primary inputs, or to the outputs of a sequential circuit
operated for a fixed number of steps, in terms of the initial state
and the input values at each step. Assume that the circuit inputs
(and possibly initial state) are partitioned into vectors of binary
signals �� 1 � . . . ������ (in the figure � � 2). For each set of signals �� �

,
we are given an encoding function ENC � describing a word-level
interpretation of the signals, e.g., as an unsigned binary number.
This encoding yields a numeric value � � � ENC ��� �� ���

for each
input word. The circuit implements a set of Boolean functions
over the inputs, denoted by the vector of functions �� � �� 1 � . . . ������ � .
Typically this circuit is given in the form of a network of logic
gates. Furthermore, we are given an encoding function ENC 	
defining a word-level interpretation of the output. Finally, we
are given as specification a word-level function

� � � 1 � . . . � � � �
yielding a numeric value based on the numeric inputs. The task
of verification is then to prove the equivalence:

ENC 	 � ���
 �� 1 � . . . � �� �
� �
� � 


ENC1
� �� 1

�
� . . . � ENC � � �� � � � (6)

That is, the circuit output, interpreted as a word should match the
specification when applied to word interpretations of the circuit
inputs.

Both EVBDDs and (*)BMDs provide suitable data structures
for this form of verification, because they can represent both bit-
level and word-level functions efficiently. As discussed above,
however, EVBDDs are limited to relatively simple circuit func-
tions. By contrast, BDDs can only represent bit-level functions,
and hence the specification must be expanded into bit-level form.
While this can be done readily for standard functions such as bi-
nary addition, a more complex function such as binary to BCD
conversion would be difficult to specify at the bit level.

A straightforward approach to verifying such circuits with
EVBDDs or (*)BMDs is to construct function representations
and test the equivalence given by Equation 6. That is, we con-
struct representations of the Boolean circuit functions �� , as we
would using BDDs, and apply the encoding function ENC 	 to ob-
tain a word-level representation of the circuit output. We would
then derive a representation of the word-level specification

�
by

applying the operations of the specification to the word-level input
representations. Testing these two functions for equivalence then
completes the verification.

This straightforward approach works well for circuits where



the Boolean circuit functions �� can be represented efficiently. For
complex circuits, such as multipliers, dividers, and radix convert-
ers, however, these functions become intractable. Two methods
have been developed to overcome this limitation. The first re-
quires the user to partition the circuit into blocks, each having its
own word-level specification [9]. Typical blocks include adders,
Booth step units, etc. Each block is verified according to the
method outlined above, but the overall word-level circuit function
is derived by composingthe block specificationsat the word-level.
Using this technique, multipliers with word sizes up to 256 bits
have been verified successfully, far larger than could be achieved
by other approaches. This approach has the limitation that it can
only be applied to circuits having a relatively clean hierarchical
structure that is well understood by the user.

More recently, Hamaguchi et al have developed an approach
to verifying multipliers using *BMDs that does not require a hier-
archical partitioning [15]. Instead, they directly construct a repre-
sentation of the word-level circuit output ENC 	 � ���
 �� 1 � . . . � �� � � �
from a flat, gate-level representation of the circuit. To avoid the
complexity of representing the Boolean circuit functions, they
work backwards through the circuit, starting with a *BMD repre-
sentation of the function ENC 	 � �� � , where �� represents the circuit
output signals. The program maintains a *BMD representation of
the circuit output in terms of a set of variables corresponding to
intermediate signal points in the circuit. At each step, it replaces
one of these variables with a function representing the logic gate
driving the signal. This process continues until all variables cor-
respond to primary inputs.

8. Conclusions
Although we have only covered a small fraction of the recent

developments in graph-based function representations, the mate-
rial covered demonstrates the types of advances that have been
made. Ideas such as dynamic variable reordering focus on the ac-
tual implementation of the algorithms. A key to its success is the
ease with which it could be integrated into existing packages with
minimal rewriting of application code. Ideas such as relaxing the
variable ordering or changing the variable decomposition attempt
to improve the compactness of the representation for Boolean
functions. Again, the greatest successes have been those methods
that could be integrated into existing packages.

Zero-suppressedBDDs show the utility of tuning the represen-
tation to a particular class of applications. The success of ZBDDs
depends on two factors: that useful combinatorial problems can
be expressed in terms of operations on sparse bit vector sets,
and that such sets can be represented efficiently using a form of
BDD using a nonstandard reduction rule. Perhaps there are other
application domains for which the BDD representation could be
adapted and tuned.

The recent interest in numeric-valued functions illustrates how
a successful approach for one class of application can “spill over”
into other applications. Although the straightforward use of BDDs
may not prove practical, suitable tuning and refinements to the
representation can lead to major breakthroughs. It is interesting
to speculate how many other applications could be solved by this
strategy.

One interesting phenomenonnotedby this paper is the possibil-
ity of combining different extensions and refinements. Examples
include incorporating other compaction methods along with dy-
namic reordering, and setting the decomposition type for different
variables independently. An area for further exploration would be

to find other combinations. For example, it may prove desirable
to form a hybrid between ZBDDS and BDDs, selecting different
reduction rules for different variables. Allowing data-dependent
variable orderings, as is done with Free BDDs, could also be done
with most of the other representations.

The greatest area of success for BDDs and related structures
has been in formal circuit verification. This application requires
exact results: we want to show whether or not the circuit will
operate correctly under all possible operating conditions. Hence
the approximate methods used in applications such as placement
and routing are not acceptable. Furthermore, whereas problems
such as automatic test generation require finding only one solu-
tion, and hence can be solved efficiently by combinatorial search,
formal verification must establish correctness for all cases. In a
sense, we must show that there are no solutions to the problem
of finding some condition where the circuit fails. By providing a
complete representation of the circuit behavior in a compact and
manageable form, BDDs provide the most powerful approach to
formal verification known.
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